Integrating transcriptomics and bulk time course data into a mathematical framework to describe and predict therapeutic resistance in cancer

A significant challenge in the field of biomedicine is the development of methods to integrate the multitude of dispersed data sets into comprehensive frameworks to be used to generate optimal clinical decisions. Recent technological advances in single cell analysis allow for high-dimensional molecu...

Full description

Saved in:
Bibliographic Details
Published in:Physical biology Vol. 18; no. 1; p. 016001
Main Authors: Johnson, Kaitlyn E, Howard, Grant R, Morgan, Daylin, Brenner, Eric A, Gardner, Andrea L, Durrett, Russell E, Mo, William, Al'Khafaji, Aziz, Sontag, Eduardo D, Jarrett, Angela M, Yankeelov, Thomas E, Brock, Amy
Format: Journal Article
Language:English
Published: England 20-11-2020
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A significant challenge in the field of biomedicine is the development of methods to integrate the multitude of dispersed data sets into comprehensive frameworks to be used to generate optimal clinical decisions. Recent technological advances in single cell analysis allow for high-dimensional molecular characterization of cells and populations, but to date, few mathematical models have attempted to integrate measurements from the single cell scale with other types of longitudinal data. Here, we present a framework that actionizes static outputs from a machine learning model and leverages these as measurements of state variables in a dynamic model of treatment response. We apply this framework to breast cancer cells to integrate single cell transcriptomic data with longitudinal bulk cell population (bulk time course) data. We demonstrate that the explicit inclusion of the phenotypic composition estimate, derived from single cell RNA-sequencing data (scRNA-seq), improves accuracy in the prediction of new treatments with a concordance correlation coefficient (CCC) of 0.92 compared to a prediction accuracy of CCC = 0.64 when fitting on longitudinal bulk cell population data alone. To our knowledge, this is the first work that explicitly integrates single cell clonally-resolved transcriptome datasets with bulk time-course data to jointly calibrate a mathematical model of drug resistance dynamics. We anticipate this approach to be a first step that demonstrates the feasibility of incorporating multiple data types into mathematical models to develop optimized treatment regimens from data.
AbstractList A significant challenge in the field of biomedicine is the development of methods to integrate the multitude of dispersed data sets into comprehensive frameworks to be used to generate optimal clinical decisions. Recent technological advances in single cell analysis allow for high-dimensional molecular characterization of cells and populations, but to date, few mathematical models have attempted to integrate measurements from the single cell scale with other types of longitudinal data. Here, we present a framework that actionizes static outputs from a machine learning model and leverages these as measurements of state variables in a dynamic model of treatment response. We apply this framework to breast cancer cells to integrate single cell transcriptomic data with longitudinal bulk cell population (bulk time course) data. We demonstrate that the explicit inclusion of the phenotypic composition estimate, derived from single cell RNA-sequencing data (scRNA-seq), improves accuracy in the prediction of new treatments with a concordance correlation coefficient (CCC) of 0.92 compared to a prediction accuracy of CCC = 0.64 when fitting on longitudinal bulk cell population data alone. To our knowledge, this is the first work that explicitly integrates single cell clonally-resolved transcriptome datasets with bulk time-course data to jointly calibrate a mathematical model of drug resistance dynamics. We anticipate this approach to be a first step that demonstrates the feasibility of incorporating multiple data types into mathematical models to develop optimized treatment regimens from data.
Author Howard, Grant R
Johnson, Kaitlyn E
Gardner, Andrea L
Brock, Amy
Durrett, Russell E
Mo, William
Morgan, Daylin
Brenner, Eric A
Jarrett, Angela M
Sontag, Eduardo D
Yankeelov, Thomas E
Al'Khafaji, Aziz
Author_xml – sequence: 1
  givenname: Kaitlyn E
  surname: Johnson
  fullname: Johnson, Kaitlyn E
  organization: Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, United States of America
– sequence: 2
  givenname: Grant R
  surname: Howard
  fullname: Howard, Grant R
  organization: Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, United States of America
– sequence: 3
  givenname: Daylin
  orcidid: 0000-0002-4218-2805
  surname: Morgan
  fullname: Morgan, Daylin
  organization: Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, United States of America
– sequence: 4
  givenname: Eric A
  orcidid: 0000-0001-6755-0910
  surname: Brenner
  fullname: Brenner, Eric A
  organization: Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, United States of America
– sequence: 5
  givenname: Andrea L
  surname: Gardner
  fullname: Gardner, Andrea L
  organization: Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, United States of America
– sequence: 6
  givenname: Russell E
  surname: Durrett
  fullname: Durrett, Russell E
  organization: Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, United States of America
– sequence: 7
  givenname: William
  surname: Mo
  fullname: Mo, William
  organization: Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, United States of America
– sequence: 8
  givenname: Aziz
  surname: Al'Khafaji
  fullname: Al'Khafaji, Aziz
  organization: Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, 78712, United States of America
– sequence: 9
  givenname: Eduardo D
  surname: Sontag
  fullname: Sontag, Eduardo D
  organization: Laboratory of Systems Pharmacology, Program in Therapeutics Science, Harvard Medical School, Boston, MA, 02115, United States of America
– sequence: 10
  givenname: Angela M
  surname: Jarrett
  fullname: Jarrett, Angela M
  organization: Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin
– sequence: 11
  givenname: Thomas E
  surname: Yankeelov
  fullname: Yankeelov, Thomas E
  organization: Department of Imaging Physics, The MD Anderson Cancer Center Houston, TX, 77030, United States of America
– sequence: 12
  givenname: Amy
  surname: Brock
  fullname: Brock, Amy
  organization: Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, United States of America
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33215611$$D View this record in MEDLINE/PubMed
BookMark eNo9kMtOwzAQRS0EorSwZ4XmB0Jt5-FkiSoelSqxgXU1scfF0DiR7QjxD3w0Ka_N3Kuro7OYOTv2vSfGLgW_Fryul6JQdZY3qlxi2_JGH7Gz_2nG5jG-ci4bydUpm-W5FGUlxBn7XPtEu4DJ-R2kgD7q4IbUd05HQG-gHfdvkFxHoPsxRAKDCcH51ANCh-mFpuM07sEG7Oi9DxPeg6GDqKVvxxDIOJ1gggMONE48BIouJvSaJhnoQwnn7MTiPtLFby7Y893t0-oh2zzer1c3m0wXVZEyU4u8aYWs8rwU09RwZQpUlVRKW4mFFMJYgVg1wiBaa1uyUtZWyFLZGpVcsKsf7zC2HZntEFyH4WP79xb5BT9NaLk
CitedBy_id crossref_primary_10_1042_EBC20220038
crossref_primary_10_1007_s00285_022_01828_x
crossref_primary_10_3390_cancers13081765
crossref_primary_10_1016_j_cmpb_2023_107920
crossref_primary_10_1038_s44222_023_00089_7
crossref_primary_10_1152_ajpcell_00185_2022
crossref_primary_10_1016_j_coisb_2021_03_005
crossref_primary_10_1038_s41540_022_00244_7
crossref_primary_10_7554_eLife_84263
crossref_primary_10_1016_j_cobme_2021_100317
crossref_primary_10_1016_j_medj_2021_08_007
crossref_primary_10_1080_15384047_2024_2321769
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
DOI 10.1088/1478-3975/abb09c
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Biology
EISSN 1478-3975
ExternalDocumentID 33215611
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: T32 EB007507
– fundername: NCI NIH HHS
  grantid: R01 CA186193
– fundername: NCI NIH HHS
  grantid: U24 CA226110
– fundername: NCI NIH HHS
  grantid: R21 CA212928
– fundername: NCI NIH HHS
  grantid: U01 CA174706
GroupedDBID ---
123
1JI
4.4
5B3
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFO
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CGR
CJUJL
CRLBU
CS3
CUY
CVF
DU5
EBS
ECM
EDWGO
EIF
EMSAF
EPQRW
EQZZN
F5P
HAK
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NPM
P2P
PJBAE
RIN
RNS
RO9
ROL
RPA
SY9
UCJ
W28
XPP
ID FETCH-LOGICAL-c464t-d8139b1263351c46907d4a76277cf2a4211df1aa691daafffbef228f1257f8a72
IngestDate Sat Sep 28 08:24:48 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c464t-d8139b1263351c46907d4a76277cf2a4211df1aa691daafffbef228f1257f8a72
ORCID 0000-0001-6755-0910
0000-0002-4218-2805
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8156495
PMID 33215611
ParticipantIDs pubmed_primary_33215611
PublicationCentury 2000
PublicationDate 20201120
PublicationDateYYYYMMDD 2020-11-20
PublicationDate_xml – month: 11
  year: 2020
  text: 20201120
  day: 20
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physical biology
PublicationTitleAlternate Phys Biol
PublicationYear 2020
SSID ssj0029207
Score 2.3815236
Snippet A significant challenge in the field of biomedicine is the development of methods to integrate the multitude of dispersed data sets into comprehensive...
SourceID pubmed
SourceType Index Database
StartPage 016001
SubjectTerms Drug Resistance, Neoplasm - genetics
Neoplasms - drug therapy
Neoplasms - genetics
Sequence Analysis, RNA
Single-Cell Analysis
Transcriptome
Title Integrating transcriptomics and bulk time course data into a mathematical framework to describe and predict therapeutic resistance in cancer
URI https://www.ncbi.nlm.nih.gov/pubmed/33215611
Volume 18
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBa7CS25lDbpM2nRoTdjEslayz42yZaEkFJoArkFSZZKSeJdts1h_0N_dGc8ktdsKG0PvRgj7Q7C8zEvzYOx98ZWjStVmXujXa6U9LnxjcrtJKiJC7rWBkPZJ1_0p6vqeKqmo1Ga7rpa-6-chjXgNVbO_gO3e6KwAO_Ac3gC1-H5V3w_jf0f4vyHlsQC1h5TN2Z7f3vTTZTP3AwTODLMEcWuEbPMZHd9E1esa0x5W2ifNh4JxcSM-QKvd7oqyFS8lYHbjqYoyglMbceXxdDy_ZwAEds-DVN3YtXXGQ7xWbar4gjK6aVSGkBANkwR_kqR22OzvP3WA_xw4dMoMRTwMVAbgxrgwQqRS7qf8SSIFaZt1DRV5aGk7hFJYhfb5FFM5IFGACna9RSI5FD1WXtQu-GPgYPzuw4PRQEmUCnEn3fXunSnrTEbg82FZvnRee_41_JAxytyOM5-f5h9OsoWe5z-vubcdEbOxVP2JHon_APB6hkb-XabPaJ5pcsd9nMALr4GLg7A4AgujuDiBC6O4OIILm74EFy8BxeHvQSujkYEFx-Ai6_ABcQ4ges5u_w4vTg6yeM4j9ypUv3Imwq8DStkWRQT4bqwTKMMKGOtXZBGSSGaIIwpa9EYE0KwPkhZBTDBdaiMli_YRjtr_SvGC1UGC6Yo-MZeOSVsmIAeAd1dKxybrl-zl_QZr-fUs-U6feA3v93ZZVsrJO6xzQACwb9l4-_N_buOnb8Ab4WHCg
link.rule.ids 782
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrating+transcriptomics+and+bulk+time+course+data+into+a+mathematical+framework+to+describe+and+predict+therapeutic+resistance+in+cancer&rft.jtitle=Physical+biology&rft.au=Johnson%2C+Kaitlyn+E&rft.au=Howard%2C+Grant+R&rft.au=Morgan%2C+Daylin&rft.au=Brenner%2C+Eric+A&rft.date=2020-11-20&rft.eissn=1478-3975&rft.volume=18&rft.issue=1&rft.spage=016001&rft_id=info:doi/10.1088%2F1478-3975%2Fabb09c&rft_id=info%3Apmid%2F33215611&rft_id=info%3Apmid%2F33215611&rft.externalDocID=33215611