Chlamydia trachomatis Cross-Serovar Protection during Experimental Lung Reinfection in Mice
Chlamydia trachomatis causes most bacterial sexually transmitted diseases worldwide. Different major outer membrane proteins (MOMPs) define various serovars of this intracellular pathogen: In women, D to L3 can cause urethritis, cervicitis, salpingitis, and oophoritis, and, thus, infertility. Protec...
Saved in:
Published in: | Vaccines (Basel) Vol. 9; no. 8; p. 871 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
06-08-2021
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Chlamydia trachomatis causes most bacterial sexually transmitted diseases worldwide. Different major outer membrane proteins (MOMPs) define various serovars of this intracellular pathogen: In women, D to L3 can cause urethritis, cervicitis, salpingitis, and oophoritis, and, thus, infertility. Protective immunity might be serovar-specific since chlamydial infection does not appear to induce an effective acquired immunity and reinfections occur. A better understanding of induced cross-serovar protection is essential for the selection of suitable antigens in vaccine development. In our mouse lung infection screening model, we evaluated the urogenital serovars D, E, and L2 in this regard. Seven weeks after primary infection or mock-infection, respectively, mice were infected a second time with the identical or one of the other serovars. Body weight and clinical score were monitored for 7 days. Near the peak of the second lung infection, bacterial load, myeloperoxidase, IFN-γ, and TNF-α in lung homogenate, as well as chlamydia-specific IgG levels in blood were determined. Surprisingly, compared with mice that were infected then for the first time, almost independent of the serovar combination used, all acquired parameters of disease were similarly diminished. Our reinfection study suggests that efficient cross-serovar protection could be achieved by a vaccine combining chlamydial antigens that do not include nonconserved MOMP regions. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2076-393X 2076-393X |
DOI: | 10.3390/vaccines9080871 |