An attention-based BiLSTM-CRF approach to document-level chemical named entity recognition
Abstract Motivation In biomedical research, chemical is an important class of entities, and chemical named entity recognition (NER) is an important task in the field of biomedical information extraction. However, most popular chemical NER methods are based on traditional machine learning and their p...
Saved in:
Published in: | Bioinformatics Vol. 34; no. 8; pp. 1381 - 1388 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
England
Oxford University Press
15-04-2018
|
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract
Motivation
In biomedical research, chemical is an important class of entities, and chemical named entity recognition (NER) is an important task in the field of biomedical information extraction. However, most popular chemical NER methods are based on traditional machine learning and their performances are heavily dependent on the feature engineering. Moreover, these methods are sentence-level ones which have the tagging inconsistency problem.
Results
In this paper, we propose a neural network approach, i.e. attention-based bidirectional Long Short-Term Memory with a conditional random field layer (Att-BiLSTM-CRF), to document-level chemical NER. The approach leverages document-level global information obtained by attention mechanism to enforce tagging consistency across multiple instances of the same token in a document. It achieves better performances with little feature engineering than other state-of-the-art methods on the BioCreative IV chemical compound and drug name recognition (CHEMDNER) corpus and the BioCreative V chemical-disease relation (CDR) task corpus (the F-scores of 91.14 and 92.57%, respectively).
Availability and implementation
Data and code are available at https://github.com/lingluodlut/Att-ChemdNER.
Supplementary information
Supplementary data are available at Bioinformatics online. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1367-4803 1460-2059 1367-4811 |
DOI: | 10.1093/bioinformatics/btx761 |