Ammonia decomposition to clean hydrogen using non-thermal atmospheric-pressure plasma

The plasma decomposition of ammonia was studied as a function of applied voltage/power, residence time including length of an inner electrode and flow rate of reactant gases, partial pressure of ammonia, and amount and the metal species of the inner electrodes. The ammonia decomposition rates were i...

Full description

Saved in:
Bibliographic Details
Published in:International journal of hydrogen energy Vol. 43; no. 31; pp. 14493 - 14497
Main Authors: Akiyama, Mao, Aihara, Keigo, Sawaguchi, Tomiko, Matsukata, Masahiko, Iwamoto, Masakazu
Format: Journal Article
Language:English
Published: Elsevier Ltd 02-08-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The plasma decomposition of ammonia was studied as a function of applied voltage/power, residence time including length of an inner electrode and flow rate of reactant gases, partial pressure of ammonia, and amount and the metal species of the inner electrodes. The ammonia decomposition rates were in excellent agreement with the hydrogen production rates and no hydrazine production was detected, indicating the clean decomposition of ammonia in the current system. The decomposition rates were dependent on the applied power and the residence time and independent of metal species of the inner electrodes, in contrast to the strong dependence of the ammonia synthesis reaction on the metal species. A hydrogen yield of 100% was achieved with an applied power of approximately 50 W and a residence time of 1.2 s at ambient temperature and atmospheric pressure, with an applied voltage of 5 kV and a frequency of 50 kHz. [Display omitted] •The plasma decomposition of ammonia without hydrazine by-production.•Full decomposition was achieved at ambient temperature and atmospheric pressure.•The reaction rates were dependent on the applied power and the residence time.
AbstractList The plasma decomposition of ammonia was studied as a function of applied voltage/power, residence time including length of an inner electrode and flow rate of reactant gases, partial pressure of ammonia, and amount and the metal species of the inner electrodes. The ammonia decomposition rates were in excellent agreement with the hydrogen production rates and no hydrazine production was detected, indicating the clean decomposition of ammonia in the current system. The decomposition rates were dependent on the applied power and the residence time and independent of metal species of the inner electrodes, in contrast to the strong dependence of the ammonia synthesis reaction on the metal species. A hydrogen yield of 100% was achieved with an applied power of approximately 50 W and a residence time of 1.2 s at ambient temperature and atmospheric pressure, with an applied voltage of 5 kV and a frequency of 50 kHz. [Display omitted] •The plasma decomposition of ammonia without hydrazine by-production.•Full decomposition was achieved at ambient temperature and atmospheric pressure.•The reaction rates were dependent on the applied power and the residence time.
Author Akiyama, Mao
Aihara, Keigo
Iwamoto, Masakazu
Matsukata, Masahiko
Sawaguchi, Tomiko
Author_xml – sequence: 1
  givenname: Mao
  surname: Akiyama
  fullname: Akiyama, Mao
  organization: Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
– sequence: 2
  givenname: Keigo
  surname: Aihara
  fullname: Aihara, Keigo
  organization: Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
– sequence: 3
  givenname: Tomiko
  surname: Sawaguchi
  fullname: Sawaguchi, Tomiko
  organization: Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Sinjuku-ku, Tokyo 169-8555, Japan
– sequence: 4
  givenname: Masahiko
  surname: Matsukata
  fullname: Matsukata, Masahiko
  organization: Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Sinjuku-ku, Tokyo 169-8555, Japan
– sequence: 5
  givenname: Masakazu
  orcidid: 0000-0001-9141-1873
  surname: Iwamoto
  fullname: Iwamoto, Masakazu
  email: iwamotom@aoni.waseda.jp
  organization: Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Sinjuku-ku, Tokyo 169-8555, Japan
BookMark eNqFkMtqwzAQRUVJoUnaXyj6AbsaybbsXUPoCwLdNGshy-NExpaM5BTy93VIu-7qMot75nJWZOG8Q0IegaXAoHjqUtsdzw06TDmDMmVFyji_IUsoZZWIrJQLsmSiYImAqrojqxg7xkCyrFqS_WYYvLOaNmj8MPpoJ-sdnTw1PWpHZ3DwB3T0FK070Pl1Mh0xDLqnehp8HOfDmmQMGOMpIB17HQd9T25b3Ud8-M012b--fG3fk93n28d2s0tMVogpAVOXIBvNEEQmM9NCneWcG82lzMqqEryWXJqc1SDqQtZt3XDAnFemLLHRINakuHJN8DEGbNUY7KDDWQFTFzmqU39y1EWOYoWa5czF52sR53XfFoOKxqIz2NiAZlKNt_8hfgA-KXTe
CitedBy_id crossref_primary_10_1016_j_cej_2021_130802
crossref_primary_10_3390_en16135196
crossref_primary_10_1016_j_enconman_2023_117166
crossref_primary_10_1016_j_fusengdes_2024_114294
crossref_primary_10_1002_cctc_202201626
crossref_primary_10_1088_1361_6463_ad0988
crossref_primary_10_1252_jcej_21we030
crossref_primary_10_1016_j_ijhydene_2020_04_127
crossref_primary_10_1039_D0GC02058C
crossref_primary_10_1021_acs_iecr_1c00843
crossref_primary_10_1007_s11090_024_10459_7
crossref_primary_10_1016_j_rser_2021_110963
crossref_primary_10_1002_ange_202109516
crossref_primary_10_1016_j_cej_2021_134310
crossref_primary_10_1016_j_ijhydene_2022_06_021
crossref_primary_10_1016_j_ces_2023_118550
crossref_primary_10_2200_S01107ED1V01Y202105MEC035
crossref_primary_10_1021_acs_langmuir_3c02268
crossref_primary_10_1088_1361_6463_ad4717
crossref_primary_10_3390_en16073218
crossref_primary_10_1016_j_jiec_2023_05_048
crossref_primary_10_1088_2516_1083_acac5c
crossref_primary_10_3390_molecules28135245
crossref_primary_10_1016_j_ijhydene_2022_03_039
crossref_primary_10_1016_j_ijhydene_2020_01_124
crossref_primary_10_3390_ijms241814397
crossref_primary_10_1016_j_egyr_2021_06_087
crossref_primary_10_1016_j_ijhydene_2024_02_016
crossref_primary_10_1016_j_rser_2019_109262
crossref_primary_10_1021_acs_iecr_3c01419
crossref_primary_10_1021_acssuschemeng_1c02713
crossref_primary_10_1016_j_ijhydene_2020_03_094
crossref_primary_10_1016_j_ijhydene_2023_12_166
crossref_primary_10_1021_acscatal_0c00684
crossref_primary_10_1002_anie_202109516
crossref_primary_10_1016_j_ijhydene_2019_11_071
crossref_primary_10_3390_ijms23179638
crossref_primary_10_1016_j_cej_2024_153125
crossref_primary_10_1016_j_ijhydene_2022_07_102
crossref_primary_10_1088_1742_6596_1153_1_012087
crossref_primary_10_1016_j_jcou_2024_102755
crossref_primary_10_1016_j_fuproc_2023_107695
crossref_primary_10_1021_acscatal_3c05434
crossref_primary_10_1039_D1RE00407G
crossref_primary_10_1007_s11090_023_10427_7
crossref_primary_10_1016_j_cej_2023_141294
Cites_doi 10.1039/c3cc43836h
10.1021/acscatal.7b01624
10.1039/C6SC02382G
10.1002/fuce.201600165
10.3390/ma6062400
10.1002/ppap.200400051
10.1016/j.fuel.2010.07.055
10.1016/j.apcata.2004.09.020
10.1021/acscatal.6b03357
10.1021/ja01857a019
10.1039/C6CC06752B
10.1007/s11090-015-9664-3
10.1039/c3cc41301b
10.1021/acscatal.7b00284
10.1016/j.jpowsour.2007.06.015
10.1039/C7SC00840F
10.1002/aic.690080406
10.1002/cssc.201501498
10.1016/j.egypro.2017.03.1002
10.1038/nchem.626
10.1021/acssuschemeng.7b02219
ContentType Journal Article
Copyright 2018 Hydrogen Energy Publications LLC
Copyright_xml – notice: 2018 Hydrogen Energy Publications LLC
DBID AAYXX
CITATION
DOI 10.1016/j.ijhydene.2018.06.022
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3487
EndPage 14497
ExternalDocumentID 10_1016_j_ijhydene_2018_06_022
S0360319918318020
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
TN5
XPP
ZMT
~G-
29J
AAQXK
AAXKI
AAYXX
ABXDB
ACNNM
ADMUD
AFJKZ
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
FEDTE
FGOYB
G-2
HVGLF
R2-
SAC
SCB
SEW
T9H
WUQ
ID FETCH-LOGICAL-c463t-1cb817da0e13474cf1b4522ca277489932b727c50b13b67bfbd21e529c88eda13
ISSN 0360-3199
IngestDate Thu Sep 26 15:54:12 EDT 2024
Fri Feb 23 02:47:15 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 31
Keywords Plasma
Hydrazine
Applied power
Ammonia decomposition
Clean hydrogen
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c463t-1cb817da0e13474cf1b4522ca277489932b727c50b13b67bfbd21e529c88eda13
ORCID 0000-0001-9141-1873
OpenAccessLink http://manuscript.elsevier.com/S0360319918318020/pdf/S0360319918318020.pdf
PageCount 5
ParticipantIDs crossref_primary_10_1016_j_ijhydene_2018_06_022
elsevier_sciencedirect_doi_10_1016_j_ijhydene_2018_06_022
PublicationCentury 2000
PublicationDate 2018-08-02
PublicationDateYYYYMMDD 2018-08-02
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-02
  day: 02
PublicationDecade 2010
PublicationTitle International journal of hydrogen energy
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sakai, Hiraoka, Kihara, Blanquet, Urabe, Tanaka (bib18) 2016; 36
Hansgen, Vlachos, Chen (bib12) 2010; 2
Gao, Wang, Guo, Chang, He, Wang (bib5) 2017; 7
Yu, Guo, Liu, Wang, Wu, Chang (bib11) 2016; 9
Iwamoto, Akiyama, Aihara, Deguchi (bib17) 2017; 7
Tay, Yang, Chou, Zhou, Li, Yu (bib8) 2017; 105
Manabe, Nakatsubo, Gondo, Murakami, Ogo, Tsuneki (bib6) 2017; 8
Sato, Imamura, Kawano, Miyahara, Yamamoto, Matsumura (bib3) 2017; 8
Love, Emmett (bib15) 1941; 63
Giddey, Badwal, Munnings, Dolan (bib1) 2017; 5
Hara, Kitano, Hosono (bib4) 2017; 7
Vidal-Iglesias, Solla-Gullon, Montiel, Feliu, Aldaz (bib9) 2007; 171
Fateev, Leipold, Kusano, Stenum, Tsakadze, Bindslev (bib19) 2005; 2
Reiter, Kong (bib7) 2011; 90
Yinabc, Xu, Zhouc, Au (bib13) 2004; 277
Freeman, Skrivan (bib21) 1962; 8
Wang, Zhao, Liu, Gong, Guo (bib20) 2013; 49
Aihara, Akiyama, Deguchi, Tanaka, Hagiwara, Iwamoto (bib16) 2016; 52
Dalebrook, Gan, Grasemann, Moret, Laurenczy (bib2) 2013; 49
Lendzion-Bielun, Narkiewicz, Arabczyk (bib14) 2013; 6
Okanishi, Okura, Srifa, Muroyama, Matsui, Kishimoto (bib10) 2017; 17
Sato (10.1016/j.ijhydene.2018.06.022_bib3) 2017; 8
Lendzion-Bielun (10.1016/j.ijhydene.2018.06.022_bib14) 2013; 6
Iwamoto (10.1016/j.ijhydene.2018.06.022_bib17) 2017; 7
Dalebrook (10.1016/j.ijhydene.2018.06.022_bib2) 2013; 49
Wang (10.1016/j.ijhydene.2018.06.022_bib20) 2013; 49
Gao (10.1016/j.ijhydene.2018.06.022_bib5) 2017; 7
Hara (10.1016/j.ijhydene.2018.06.022_bib4) 2017; 7
Hansgen (10.1016/j.ijhydene.2018.06.022_bib12) 2010; 2
Sakai (10.1016/j.ijhydene.2018.06.022_bib18) 2016; 36
Vidal-Iglesias (10.1016/j.ijhydene.2018.06.022_bib9) 2007; 171
Freeman (10.1016/j.ijhydene.2018.06.022_bib21) 1962; 8
Manabe (10.1016/j.ijhydene.2018.06.022_bib6) 2017; 8
Okanishi (10.1016/j.ijhydene.2018.06.022_bib10) 2017; 17
Aihara (10.1016/j.ijhydene.2018.06.022_bib16) 2016; 52
Reiter (10.1016/j.ijhydene.2018.06.022_bib7) 2011; 90
Fateev (10.1016/j.ijhydene.2018.06.022_bib19) 2005; 2
Tay (10.1016/j.ijhydene.2018.06.022_bib8) 2017; 105
Love (10.1016/j.ijhydene.2018.06.022_bib15) 1941; 63
Yu (10.1016/j.ijhydene.2018.06.022_bib11) 2016; 9
Yinabc (10.1016/j.ijhydene.2018.06.022_bib13) 2004; 277
Giddey (10.1016/j.ijhydene.2018.06.022_bib1) 2017; 5
References_xml – volume: 36
  start-page: 281
  year: 2016
  end-page: 294
  ident: bib18
  article-title: Microdischarge-induced decomposition of ammonia and reduction of silver ions for formation of two-dimensional network structure
  publication-title: Plasma Chem Plasma Process
  contributor:
    fullname: Tanaka
– volume: 2
  start-page: 193
  year: 2005
  end-page: 200
  ident: bib19
  article-title: Plasma chemistry in an atmospheric pressure Ar/NH
  publication-title: Plasma Process Polym
  contributor:
    fullname: Bindslev
– volume: 105
  start-page: 4621
  year: 2017
  end-page: 4626
  ident: bib8
  article-title: Effects of injection timing and pilot fuel on the combustion of a kerosene-diesel/ammonia dual fuel engine: a numerical study
  publication-title: Energy Procedia
  contributor:
    fullname: Yu
– volume: 7
  start-page: 6924
  year: 2017
  end-page: 6929
  ident: bib17
  article-title: Ammonia synthesis on wool-like Au, Pt, Pd, Ag, or Cu electrode catalysts in nonthermal atmospheric-pressure plasma of N
  publication-title: ACS Catal
  contributor:
    fullname: Deguchi
– volume: 17
  start-page: 383
  year: 2017
  end-page: 390
  ident: bib10
  article-title: Comparative study of ammonia-fueled solid oxide fuel cell systems
  publication-title: Fuel Cell
  contributor:
    fullname: Kishimoto
– volume: 6
  start-page: 2400
  year: 2013
  end-page: 2409
  ident: bib14
  article-title: Cobalt-based catalysts for ammonia decomposition
  publication-title: Materials
  contributor:
    fullname: Arabczyk
– volume: 171
  start-page: 448
  year: 2007
  end-page: 456
  ident: bib9
  article-title: Screening of electrocatalysts for direct ammonia fuel cell: ammonia oxidation on PtMe (Me: Ir, Rh, Pd, Ru) and preferentially oriented Pt(100) nanoparticles
  publication-title: J Power Sources
  contributor:
    fullname: Aldaz
– volume: 277
  start-page: 1
  year: 2004
  end-page: 9
  ident: bib13
  article-title: A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications
  publication-title: Appl Catal A General
  contributor:
    fullname: Au
– volume: 49
  start-page: 8735
  year: 2013
  end-page: 8751
  ident: bib2
  article-title: Hydrogen storage: beyond conventional methods
  publication-title: Chem Commun
  contributor:
    fullname: Laurenczy
– volume: 7
  start-page: 3654
  year: 2017
  end-page: 3661
  ident: bib5
  article-title: Barium hydride-mediated nitrogen transfer and hydrogenation for ammonia synthesis: a case study of cobalt
  publication-title: ACS Catal
  contributor:
    fullname: Wang
– volume: 2
  start-page: 484
  year: 2010
  end-page: 489
  ident: bib12
  article-title: Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction
  publication-title: Nat Chem
  contributor:
    fullname: Chen
– volume: 90
  start-page: 87
  year: 2011
  end-page: 97
  ident: bib7
  article-title: Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel
  publication-title: Fuel
  contributor:
    fullname: Kong
– volume: 49
  start-page: 3787
  year: 2013
  end-page: 3789
  ident: bib20
  article-title: Plasma driven ammonia decomposition on a Fe-catalyst: eliminating surface nitrogen poisoning
  publication-title: Chem Commun
  contributor:
    fullname: Guo
– volume: 9
  start-page: 364
  year: 2016
  end-page: 369
  ident: bib11
  article-title: Ammonia decomposition with manganese nitride-calcium imide composites as efficient catalysts
  publication-title: ChemSusChem
  contributor:
    fullname: Chang
– volume: 8
  start-page: 674
  year: 2017
  end-page: 679
  ident: bib3
  article-title: A low-crystalline ruthenium nano-layer supported on praseodymium oxide as an active catalyst for ammonia synthesis
  publication-title: Chem Sci
  contributor:
    fullname: Matsumura
– volume: 52
  start-page: 13560
  year: 2016
  end-page: 13563
  ident: bib16
  article-title: Remarkable catalysis of a wool-like copper electrode for NH
  publication-title: Chem Commun
  contributor:
    fullname: Iwamoto
– volume: 63
  start-page: 3297
  year: 1941
  end-page: 3308
  ident: bib15
  article-title: The catalytic decomposition of ammonia over iron synthetic ammonia catalysts
  publication-title: J Am Chem Soc
  contributor:
    fullname: Emmett
– volume: 5
  start-page: 10231
  year: 2017
  end-page: 10239
  ident: bib1
  article-title: Ammonia as a renewable energy transportation media
  publication-title: ACS Sustainable Chem Eng
  contributor:
    fullname: Dolan
– volume: 7
  start-page: 2313
  year: 2017
  end-page: 5324
  ident: bib4
  article-title: Ru-Loaded C
  publication-title: ACS Catal
  contributor:
    fullname: Hosono
– volume: 8
  start-page: 5434
  year: 2017
  end-page: 5439
  ident: bib6
  article-title: Electrocatalytic synthesis of ammonia by surface proton hopping
  publication-title: Chem Sci
  contributor:
    fullname: Tsuneki
– volume: 8
  start-page: 450
  year: 1962
  end-page: 454
  ident: bib21
  article-title: Rate studies of the decomposition of ammonia and methane in a plasma jet
  publication-title: AIChE J
  contributor:
    fullname: Skrivan
– volume: 49
  start-page: 8735
  year: 2013
  ident: 10.1016/j.ijhydene.2018.06.022_bib2
  article-title: Hydrogen storage: beyond conventional methods
  publication-title: Chem Commun
  doi: 10.1039/c3cc43836h
  contributor:
    fullname: Dalebrook
– volume: 7
  start-page: 6924
  year: 2017
  ident: 10.1016/j.ijhydene.2018.06.022_bib17
  article-title: Ammonia synthesis on wool-like Au, Pt, Pd, Ag, or Cu electrode catalysts in nonthermal atmospheric-pressure plasma of N2 and H2
  publication-title: ACS Catal
  doi: 10.1021/acscatal.7b01624
  contributor:
    fullname: Iwamoto
– volume: 8
  start-page: 674
  year: 2017
  ident: 10.1016/j.ijhydene.2018.06.022_bib3
  article-title: A low-crystalline ruthenium nano-layer supported on praseodymium oxide as an active catalyst for ammonia synthesis
  publication-title: Chem Sci
  doi: 10.1039/C6SC02382G
  contributor:
    fullname: Sato
– volume: 17
  start-page: 383
  year: 2017
  ident: 10.1016/j.ijhydene.2018.06.022_bib10
  article-title: Comparative study of ammonia-fueled solid oxide fuel cell systems
  publication-title: Fuel Cell
  doi: 10.1002/fuce.201600165
  contributor:
    fullname: Okanishi
– volume: 6
  start-page: 2400
  year: 2013
  ident: 10.1016/j.ijhydene.2018.06.022_bib14
  article-title: Cobalt-based catalysts for ammonia decomposition
  publication-title: Materials
  doi: 10.3390/ma6062400
  contributor:
    fullname: Lendzion-Bielun
– volume: 2
  start-page: 193
  year: 2005
  ident: 10.1016/j.ijhydene.2018.06.022_bib19
  article-title: Plasma chemistry in an atmospheric pressure Ar/NH3 dielectric barrier discharge
  publication-title: Plasma Process Polym
  doi: 10.1002/ppap.200400051
  contributor:
    fullname: Fateev
– volume: 90
  start-page: 87
  year: 2011
  ident: 10.1016/j.ijhydene.2018.06.022_bib7
  article-title: Combustion and emissions characteristics of compression-ignition engine using dual ammonia-diesel fuel
  publication-title: Fuel
  doi: 10.1016/j.fuel.2010.07.055
  contributor:
    fullname: Reiter
– volume: 277
  start-page: 1
  year: 2004
  ident: 10.1016/j.ijhydene.2018.06.022_bib13
  article-title: A mini-review on ammonia decomposition catalysts for on-site generation of hydrogen for fuel cell applications
  publication-title: Appl Catal A General
  doi: 10.1016/j.apcata.2004.09.020
  contributor:
    fullname: Yinabc
– volume: 7
  start-page: 2313
  year: 2017
  ident: 10.1016/j.ijhydene.2018.06.022_bib4
  article-title: Ru-Loaded C12A7:e− Electride as a Catalyst for Ammonia Synthesis
  publication-title: ACS Catal
  doi: 10.1021/acscatal.6b03357
  contributor:
    fullname: Hara
– volume: 63
  start-page: 3297
  year: 1941
  ident: 10.1016/j.ijhydene.2018.06.022_bib15
  article-title: The catalytic decomposition of ammonia over iron synthetic ammonia catalysts
  publication-title: J Am Chem Soc
  doi: 10.1021/ja01857a019
  contributor:
    fullname: Love
– volume: 52
  start-page: 13560
  year: 2016
  ident: 10.1016/j.ijhydene.2018.06.022_bib16
  article-title: Remarkable catalysis of a wool-like copper electrode for NH3 synthesis from N2 and H2 in non-thermal atmospheric plasma
  publication-title: Chem Commun
  doi: 10.1039/C6CC06752B
  contributor:
    fullname: Aihara
– volume: 36
  start-page: 281
  year: 2016
  ident: 10.1016/j.ijhydene.2018.06.022_bib18
  article-title: Microdischarge-induced decomposition of ammonia and reduction of silver ions for formation of two-dimensional network structure
  publication-title: Plasma Chem Plasma Process
  doi: 10.1007/s11090-015-9664-3
  contributor:
    fullname: Sakai
– volume: 49
  start-page: 3787
  year: 2013
  ident: 10.1016/j.ijhydene.2018.06.022_bib20
  article-title: Plasma driven ammonia decomposition on a Fe-catalyst: eliminating surface nitrogen poisoning
  publication-title: Chem Commun
  doi: 10.1039/c3cc41301b
  contributor:
    fullname: Wang
– volume: 7
  start-page: 3654
  year: 2017
  ident: 10.1016/j.ijhydene.2018.06.022_bib5
  article-title: Barium hydride-mediated nitrogen transfer and hydrogenation for ammonia synthesis: a case study of cobalt
  publication-title: ACS Catal
  doi: 10.1021/acscatal.7b00284
  contributor:
    fullname: Gao
– volume: 171
  start-page: 448
  year: 2007
  ident: 10.1016/j.ijhydene.2018.06.022_bib9
  article-title: Screening of electrocatalysts for direct ammonia fuel cell: ammonia oxidation on PtMe (Me: Ir, Rh, Pd, Ru) and preferentially oriented Pt(100) nanoparticles
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2007.06.015
  contributor:
    fullname: Vidal-Iglesias
– volume: 8
  start-page: 5434
  year: 2017
  ident: 10.1016/j.ijhydene.2018.06.022_bib6
  article-title: Electrocatalytic synthesis of ammonia by surface proton hopping
  publication-title: Chem Sci
  doi: 10.1039/C7SC00840F
  contributor:
    fullname: Manabe
– volume: 8
  start-page: 450
  year: 1962
  ident: 10.1016/j.ijhydene.2018.06.022_bib21
  article-title: Rate studies of the decomposition of ammonia and methane in a plasma jet
  publication-title: AIChE J
  doi: 10.1002/aic.690080406
  contributor:
    fullname: Freeman
– volume: 9
  start-page: 364
  year: 2016
  ident: 10.1016/j.ijhydene.2018.06.022_bib11
  article-title: Ammonia decomposition with manganese nitride-calcium imide composites as efficient catalysts
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201501498
  contributor:
    fullname: Yu
– volume: 105
  start-page: 4621
  year: 2017
  ident: 10.1016/j.ijhydene.2018.06.022_bib8
  article-title: Effects of injection timing and pilot fuel on the combustion of a kerosene-diesel/ammonia dual fuel engine: a numerical study
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.1002
  contributor:
    fullname: Tay
– volume: 2
  start-page: 484
  year: 2010
  ident: 10.1016/j.ijhydene.2018.06.022_bib12
  article-title: Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction
  publication-title: Nat Chem
  doi: 10.1038/nchem.626
  contributor:
    fullname: Hansgen
– volume: 5
  start-page: 10231
  year: 2017
  ident: 10.1016/j.ijhydene.2018.06.022_bib1
  article-title: Ammonia as a renewable energy transportation media
  publication-title: ACS Sustainable Chem Eng
  doi: 10.1021/acssuschemeng.7b02219
  contributor:
    fullname: Giddey
SSID ssj0017049
Score 2.5185542
Snippet The plasma decomposition of ammonia was studied as a function of applied voltage/power, residence time including length of an inner electrode and flow rate of...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 14493
SubjectTerms Ammonia decomposition
Applied power
Clean hydrogen
Hydrazine
Plasma
Title Ammonia decomposition to clean hydrogen using non-thermal atmospheric-pressure plasma
URI https://dx.doi.org/10.1016/j.ijhydene.2018.06.022
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFLdKuYwDgm0Ixod82A2FNYkbO8cKigBpuxQkbpHtuJBWJVOTCvHf817sfGyqxCbEJWqd2nH8fn1-z37vZ0K-G50OkGffY3LKPcaH0osZ7rIHU24iZbj0Md_5asJ_3YuLMRv3evXZgm3Zh0oaykDWmDn7H9JuGoUC-AwyhytIHa7_JPcRPiqTp6nBaHEXkoUWJvwO_suPL-kyh8qnq2qRAJx_D03ABVIGlIu8QJaBDHkh0QtfGjxlunCqe9YGvbdriB3miaZpU-UTNlCaZy9yIW1iUN6UZsgUbTODsoemeCKf5QOez1LhKF9k8-bWT1kWq7ksXUuFfKxvukULX1Qhc62L22TTtKFLNoML5wR7YNKZsQpZ8NgLmZuUnca2xE4OmW4SsfoX3EN74KKbzPE7XztT2EWL2Vk2g9GBccEoP0vlavOk_2LhnmDnsG-gApE0b7BBNgPQbcM-2Rxdj-9vmq0r7nyu-mU6aenrn7beIupYObc7ZNu5J3RkcbVLeubpM9nqkFZ-IXcOYfQPhNEypxXCaA0DWiGMdhBG1yGMWoR9JXeX49vzK88dzuFpFoWl52slfJ7KgcFkZKanvkJyfi0DjoRG4BYoMI31cKD8UEVcTVUa-GYYxFoIk0o_3CN96IHZJzTlPIwjIXUcxSwUXOKqBAuU0riJzsUB-VEPUPLbcrAkdXDiLKmHNMEhTTBKMwgOSFyPY-IsSWshJiD-N-p-e0fdQ_KpRfsR6ZfLlTkmG0W6OnEweQWwAp1q
link.rule.ids 315,782,786,27935,27936
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ammonia+decomposition+to+clean+hydrogen+using+non-thermal+atmospheric-pressure+plasma&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Akiyama%2C+Mao&rft.au=Aihara%2C+Keigo&rft.au=Sawaguchi%2C+Tomiko&rft.au=Matsukata%2C+Masahiko&rft.date=2018-08-02&rft.pub=Elsevier+Ltd&rft.issn=0360-3199&rft.eissn=1879-3487&rft.volume=43&rft.issue=31&rft.spage=14493&rft.epage=14497&rft_id=info:doi/10.1016%2Fj.ijhydene.2018.06.022&rft.externalDocID=S0360319918318020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon