Neuronal calcium sensor‐1 facilitates neuronal exocytosis through phosphatidylinositol 4‐kinase
This work tested the theory that neuronal calcium sensor‐1 (NCS‐1) has effects on neurotransmitter release beyond its actions on membrane channels. We used nerve‐ending preparations where membrane channels are bypassed through membrane permeabilization made by mechanical disruption or streptolysin‐O...
Saved in:
Published in: | Journal of neurochemistry Vol. 92; no. 3; pp. 442 - 451 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford, UK
Blackwell Science Ltd
01-02-2005
Blackwell |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | This work tested the theory that neuronal calcium sensor‐1 (NCS‐1) has effects on neurotransmitter release beyond its actions on membrane channels. We used nerve‐ending preparations where membrane channels are bypassed through membrane permeabilization made by mechanical disruption or streptolysin‐O. Nerve ending NCS‐1 and phosphatidylinositol 4‐kinase (PI4K) are largely or entirely particulate, so their concentrations in nerve endings remain constant after breaching the membrane. Exogenous, myristoylated NCS‐1 stimulated nerve ending phosphatidylinositol 4‐phosphate [PI(4)P] synthesis, but non‐myristoylated‐NCS‐1 did not. The N‐terminal peptide of NCS‐1 interfered with PI(4)P synthesis, and with spontaneous and Ca2+‐evoked release of both [3H]‐norepinephrine (NA) and [14C]‐glutamate (glu) in a concentration‐dependent manner. An antibody raised against the N‐terminal of NCS‐1 inhibited perforated nerve ending PI(4)P synthesis, but the C‐terminal antibody had no effects. Antibodies against the N‐ and C‐termini of NCS‐1 caused significant increases in mini/spontaneous/stimulation‐independent release of [3H]‐NA from perforated nerve endings, but had no effect on [14C]‐glu release. These results support the idea that NCS‐1 facilitates nerve ending neurotransmitter release and phosphoinositide production via PI4K and localizes these effects to the N‐terminal of NCS‐1. Combined with previous work on the regulation of channels by NCS‐1, the data are consistent with the hypothesis that a NCS‐1–PI4K (NP, neuropotentiator) complex may serve as an essential linker between lipid and protein metabolism to regulate membrane traffic and co‐ordinate it with ion fluxes and plasticity in the nerve ending. |
---|---|
AbstractList | This work tested the theory that neuronal calcium sensor-1 (NCS-1) has effects on neurotransmitter release beyond its actions on membrane channels. We used nerve-ending preparations where membrane channels are bypassed through membrane permeabilization made by mechanical disruption or streptolysin-O. Nerve ending NCS-1 and phosphatidylinositol 4-kinase (PI4K) are largely or entirely particulate, so their concentrations in nerve endings remain constant after breaching the membrane. Exogenous, myristoylated NCS-1 stimulated nerve ending phosphatidylinositol 4-phosphate [PI(4)P] synthesis, but non-myristoylated-NCS-1 did not. The N-terminal peptide of NCS-1 interfered with PI(4)P synthesis, and with spontaneous and Ca(2+)-evoked release of both [(3)H]-norepinephrine (NA) and [(14)C]-glutamate (glu) in a concentration-dependent manner. An antibody raised against the N-terminal of NCS-1 inhibited perforated nerve ending PI(4)P synthesis, but the C-terminal antibody had no effects. Antibodies against the N- and C-termini of NCS-1 caused significant increases in mini/spontaneous/stimulation-independent release of [(3)H]-NA from perforated nerve endings, but had no effect on [(14)C]-glu release. These results support the idea that NCS-1 facilitates nerve ending neurotransmitter release and phosphoinositide production via PI4K and localizes these effects to the N-terminal of NCS-1. Combined with previous work on the regulation of channels by NCS-1, the data are consistent with the hypothesis that a NCS-1-PI4K (NP, neuropotentiator) complex may serve as an essential linker between lipid and protein metabolism to regulate membrane traffic and co-ordinate it with ion fluxes and plasticity in the nerve ending. This work tested the theory that neuronal calcium sensor‐1 (NCS‐1) has effects on neurotransmitter release beyond its actions on membrane channels. We used nerve‐ending preparations where membrane channels are bypassed through membrane permeabilization made by mechanical disruption or streptolysin‐O. Nerve ending NCS‐1 and phosphatidylinositol 4‐kinase (PI4K) are largely or entirely particulate, so their concentrations in nerve endings remain constant after breaching the membrane. Exogenous, myristoylated NCS‐1 stimulated nerve ending phosphatidylinositol 4‐phosphate [PI(4)P] synthesis, but non‐myristoylated‐NCS‐1 did not. The N‐terminal peptide of NCS‐1 interfered with PI(4)P synthesis, and with spontaneous and Ca 2+ ‐evoked release of both [ 3 H]‐norepinephrine (NA) and [ 14 C]‐glutamate (glu) in a concentration‐dependent manner. An antibody raised against the N‐terminal of NCS‐1 inhibited perforated nerve ending PI(4)P synthesis, but the C‐terminal antibody had no effects. Antibodies against the N‐ and C‐termini of NCS‐1 caused significant increases in mini/spontaneous/stimulation‐independent release of [ 3 H]‐NA from perforated nerve endings, but had no effect on [ 14 C]‐glu release. These results support the idea that NCS‐1 facilitates nerve ending neurotransmitter release and phosphoinositide production via PI4K and localizes these effects to the N‐terminal of NCS‐1. Combined with previous work on the regulation of channels by NCS‐1, the data are consistent with the hypothesis that a NCS‐1–PI4K (NP, neuropotentiator) complex may serve as an essential linker between lipid and protein metabolism to regulate membrane traffic and co‐ordinate it with ion fluxes and plasticity in the nerve ending. This work tested the theory that neuronal calcium sensor‐1 (NCS‐1) has effects on neurotransmitter release beyond its actions on membrane channels. We used nerve‐ending preparations where membrane channels are bypassed through membrane permeabilization made by mechanical disruption or streptolysin‐O. Nerve ending NCS‐1 and phosphatidylinositol 4‐kinase (PI4K) are largely or entirely particulate, so their concentrations in nerve endings remain constant after breaching the membrane. Exogenous, myristoylated NCS‐1 stimulated nerve ending phosphatidylinositol 4‐phosphate [PI(4)P] synthesis, but non‐myristoylated‐NCS‐1 did not. The N‐terminal peptide of NCS‐1 interfered with PI(4)P synthesis, and with spontaneous and Ca2+‐evoked release of both [3H]‐norepinephrine (NA) and [14C]‐glutamate (glu) in a concentration‐dependent manner. An antibody raised against the N‐terminal of NCS‐1 inhibited perforated nerve ending PI(4)P synthesis, but the C‐terminal antibody had no effects. Antibodies against the N‐ and C‐termini of NCS‐1 caused significant increases in mini/spontaneous/stimulation‐independent release of [3H]‐NA from perforated nerve endings, but had no effect on [14C]‐glu release. These results support the idea that NCS‐1 facilitates nerve ending neurotransmitter release and phosphoinositide production via PI4K and localizes these effects to the N‐terminal of NCS‐1. Combined with previous work on the regulation of channels by NCS‐1, the data are consistent with the hypothesis that a NCS‐1–PI4K (NP, neuropotentiator) complex may serve as an essential linker between lipid and protein metabolism to regulate membrane traffic and co‐ordinate it with ion fluxes and plasticity in the nerve ending. |
Author | Zheng, Qian Jeromin, Andreas Vidugiriene, Jolanta Thomas, Fairwell Bobich, Joseph A. McFadden, Susanne C. Roder, John |
Author_xml | – sequence: 1 givenname: Qian surname: Zheng fullname: Zheng, Qian – sequence: 2 givenname: Joseph A. surname: Bobich fullname: Bobich, Joseph A. – sequence: 3 givenname: Jolanta surname: Vidugiriene fullname: Vidugiriene, Jolanta – sequence: 4 givenname: Susanne C. surname: McFadden fullname: McFadden, Susanne C. – sequence: 5 givenname: Fairwell surname: Thomas fullname: Thomas, Fairwell – sequence: 6 givenname: John surname: Roder fullname: Roder, John – sequence: 7 givenname: Andreas surname: Jeromin fullname: Jeromin, Andreas |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16437541$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15659215$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkM-O0zAQhy20iO0uvALKBW4JHseO3QMHVPFXq-UCZ8txJ9TFtYudiPbGI_CM-yTr0MJemYtHmu83Hn1X5CLEgIRUQBso9WrbAJdQcxDLhlHKG8rUUjaHR2Txb3BBFpQyVreUs0tylfOWUuh4B0_IJYhOLBmIBbG3OKUYjK-s8dZNuypjyDHd_foN1WCs8240I-Yq_OXwEO1xjNnlatykOH3bVPtNzPuNGd366F0oozH6ipcV310wGZ-Sx4PxGZ-d32vy9d3bL6sP9c3n9x9Xb25qy7tW1gMw01sFiq2tkhSYoLwcLBiaXioh-57Zdi0M9p0UyKG3OCjOepAloqxtr8nL0959ij8mzKPeuWzRexMwTll3su1gqWgB1Qm0KeaccND75HYmHTVQPQvWWz171LNHPQvWfwTrQ4k-P_8x9TtcPwTPRgvw4gyYXJQOyQTr8gPX8VYKDoV7feJ-Oo_H_z5Af7pdzV17D8uSnBU |
CODEN | JONRA9 |
CitedBy_id | crossref_primary_10_3390_biom10020164 crossref_primary_10_1074_mcp_M115_055954 crossref_primary_10_1016_j_tcm_2012_06_004 crossref_primary_10_1073_pnas_0701133104 crossref_primary_10_1371_journal_pone_0010534 crossref_primary_10_1016_j_neuroscience_2009_04_019 crossref_primary_10_1158_1541_7786_MCR_16_0408 crossref_primary_10_1074_jbc_M110_208868 crossref_primary_10_31857_S0026898423060022 crossref_primary_10_1007_s12035_012_8250_4 crossref_primary_10_1042_BCJ20180622 crossref_primary_10_1002_dneu_20509 crossref_primary_10_1016_j_ceca_2018_04_007 crossref_primary_10_1016_j_celrep_2023_113528 crossref_primary_10_1177_1073858409340702 crossref_primary_10_15360_1813_9779_2019_2_99_114 crossref_primary_10_1074_jbc_M512924200 crossref_primary_10_1194_jlr_R089730 crossref_primary_10_3389_fnmol_2019_00056 crossref_primary_10_1074_jbc_M112_402289 crossref_primary_10_1113_jphysiol_2007_148304 crossref_primary_10_1016_j_canlet_2012_06_009 crossref_primary_10_1085_jgp_200910313 crossref_primary_10_1134_S002689332306002X crossref_primary_10_1007_s00424_007_0295_2 crossref_primary_10_1074_jbc_M705499200 crossref_primary_10_1016_j_colsurfb_2015_11_065 crossref_primary_10_1016_j_fertnstert_2012_08_052 crossref_primary_10_1016_j_bbagen_2011_10_003 crossref_primary_10_1074_jbc_M114_629006 crossref_primary_10_1074_jbc_M509842200 crossref_primary_10_1111_j_1460_9568_2010_07303_x crossref_primary_10_1083_jcb_200908107 crossref_primary_10_1085_jgp_201210944 crossref_primary_10_1007_s12035_012_8358_6 crossref_primary_10_1111_j_1471_4159_2006_03892_x |
Cites_doi | 10.1016/S0021-9258(17)45429-9 10.1074/jbc.M103262200 10.1074/jbc.M204702200 10.1038/374173a0 10.1016/S0955-0674(02)00357-5 10.1111/j.1600-0854.2004.0162.x 10.1074/jbc.M203669200 10.1021/bi0012890 10.1016/S0896-6273(01)00455-X 10.1093/emboj/20.9.2202 10.1074/jbc.M309017200 10.1074/jbc.M000925200 10.1016/S0896-6273(00)80522-X 10.1074/jbc.273.35.22768 10.4049/jimmunol.171.10.5320 10.1126/science.1068278 10.3233/JAD-2004-6305 10.1007/BF01686643 10.1016/0076-6879(93)21014-Y 10.1074/jbc.M108571200 10.1016/S0165-0270(01)00350-8 10.1016/j.neuint.2004.03.028 10.1111/j.1462-5822.2007.00901.x 10.1016/S0896-6273(01)00434-2 10.1038/nature01118 10.1242/jcs.00072 10.1038/12058 10.1073/pnas.221168498 10.1074/jbc.M304727200 10.1016/j.tins.2004.01.010 10.1074/jbc.M107539200 10.1007/s004410051246 10.1113/jphysiol.1994.sp020015 10.1016/0006-8993(88)91383-2 10.1016/S0167-4889(03)00093-4 10.1074/jbc.M104048200 10.1038/nn1117 10.1016/S0955-0674(00)00241-6 10.1074/jbc.M201132200 10.1074/jbc.M111750200 10.1074/jbc.M000671200 10.1042/BST0310828 10.1016/S0197-0186(03)00149-9 10.1073/pnas.92.17.8001 10.1016/S0896-6273(01)00276-8 10.1074/jbc.M209537200 10.1083/jcb.200102098 10.1042/bj3530001 10.1073/pnas.93.17.9253 10.1146/annurev.cellbio.14.1.231 10.1016/0896-6273(93)90267-U 10.1073/pnas.0230488100 10.1074/jbc.274.42.30258 10.1016/S0021-9258(20)30063-6 10.1074/jbc.M201614200 10.1242/jcs.115.11.2399 10.1523/JNEUROSCI.22-07-02427.2002 10.1074/jbc.M009373200 10.1042/bj2680015 10.1523/JNEUROSCI.3801-03.2004 |
ContentType | Journal Article |
Copyright | 2005 INIST-CNRS |
Copyright_xml | – notice: 2005 INIST-CNRS |
DBID | IQODW CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1111/j.1471-4159.2004.02897.x |
DatabaseName | Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1471-4159 |
EndPage | 451 |
ExternalDocumentID | 10_1111_j_1471_4159_2004_02897_x 15659215 16437541 JNC2897 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 24P 29L 2WC 31~ 33P 36B 3SF 4.4 41~ 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAYJJ AAZKR ABCQN ABCUV ABEML ABIVO ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACGOF ACIWK ACMXC ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHEFC AI. AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BAWUL BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DIK DPXWK DR2 DRFUL DRMAN DRSTM DU5 E3Z EBS EJD EMOBN ESX EX3 F00 F01 F04 F5P FEDTE FIJ FUBAC FZ0 G-S G.N GAKWD GODZA GX1 H.X HF~ HGLYW HH5 HVGLF HZI HZ~ IH2 IHE IPNFZ IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MVM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TEORI TWZ UB1 V8K VH1 W8V W99 WBKPD WIH WIJ WIK WIN WNSPC WOHZO WOW WQJ WRC WUP WXI WXSBR WYISQ X7M XG1 XJT YFH YNH YOC YUY ZGI ZXP ZZTAW ~IA ~KM ~WT 08R AAJUZ AAUGY AAVGM ABCVL ABHUG ABPTK ABWRO ACSMX ACXME ADAWD ADDAD AFVGU AGJLS IQODW ZA5 CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c4637-f12abc8182dc8701250416452eab7857bb2c3d5aeb675e41bcef842b171828cc3 |
IEDL.DBID | 33P |
ISSN | 0022-3042 |
IngestDate | Fri Aug 16 10:03:22 EDT 2024 Thu Nov 21 22:43:06 EST 2024 Sat Sep 28 07:49:58 EDT 2024 Sun Oct 22 16:04:46 EDT 2023 Sat Aug 24 00:54:01 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | norepinephrine Calcium Enzyme Transferases Catecholamine Exocytosis neurotransmitter release 1-Phosphatidylinositol 4-kinase Phosphatidylinositol Nerve ending neuronal calcium sensor-1 Excitatory aminoacid Neurotransmitter Membrane channel Release glutamate phosphatidylinositol 4-kinase |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4637-f12abc8182dc8701250416452eab7857bb2c3d5aeb675e41bcef842b171828cc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 15659215 |
PQID | 67361980 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_67361980 crossref_primary_10_1111_j_1471_4159_2004_02897_x pubmed_primary_15659215 pascalfrancis_primary_16437541 wiley_primary_10_1111_j_1471_4159_2004_02897_x_JNC2897 |
PublicationCentury | 2000 |
PublicationDate | February 2005 |
PublicationDateYYYYMMDD | 2005-02-01 |
PublicationDate_xml | – month: 02 year: 2005 text: February 2005 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: Oxford – name: England |
PublicationTitle | Journal of neurochemistry |
PublicationTitleAlternate | J Neurochem |
PublicationYear | 2005 |
Publisher | Blackwell Science Ltd Blackwell |
Publisher_xml | – name: Blackwell Science Ltd – name: Blackwell |
References | 2002; 14 1990; 268 2004; 27 2002; 277 2004; 24 2004; 6 2002; 115 2004; 5 1995; 374 2001; 107 2003; 278 1990; 265 1974; 3 1998; 273 1994; 269 2003; 6 1999; 295 2001; 13 1989 1998; 14 2001; 98 2004; 44 1994; 474 1995; 92 1995; 16 2002; 295 2004; 45 1996; 93 2003; 171 1988; 441 2000; 275 2002; 419 1999; 1 1998; 21 1970; 227 2003; 31 2001; 20 1993; 221 2001; 276 2001; 353 2001; 154 2003; 1641 2000; 39 1993; 11 2002; 22 1999; 274 2003; 100 2001; 30 2001; 32 e_1_2_19_28_1 e_1_2_19_26_1 e_1_2_19_49_1 e_1_2_19_20_1 e_1_2_19_43_1 e_1_2_19_41_1 e_1_2_19_24_1 e_1_2_19_62_1 e_1_2_19_22_1 e_1_2_19_45_1 Zheng X. (e_1_2_19_61_1) 1995; 16 e_1_2_19_60_1 Cox J. A. (e_1_2_19_10_1) 1994; 269 e_1_2_19_7_1 e_1_2_19_5_1 e_1_2_19_15_1 e_1_2_19_17_1 e_1_2_19_38_1 e_1_2_19_59_1 e_1_2_19_19_1 Atherton E. (e_1_2_19_3_1) 1989 e_1_2_19_32_1 e_1_2_19_53_1 e_1_2_19_30_1 e_1_2_19_51_1 e_1_2_19_11_1 e_1_2_19_36_1 e_1_2_19_57_1 e_1_2_19_13_1 e_1_2_19_34_1 e_1_2_19_55_1 Carpenter C. L. (e_1_2_19_9_1) 1990; 265 Bobich J. A. (e_1_2_19_4_1) 2004; 6 e_1_2_19_29_1 e_1_2_19_27_1 e_1_2_19_48_1 e_1_2_19_21_1 e_1_2_19_42_1 e_1_2_19_40_1 e_1_2_19_25_1 e_1_2_19_46_1 e_1_2_19_63_1 e_1_2_19_23_1 e_1_2_19_44_1 Ermilov A. N. (e_1_2_19_14_1) 2001; 276 e_1_2_19_8_1 Scalettar B. A. (e_1_2_19_47_1) 2002; 115 e_1_2_19_6_1 e_1_2_19_2_1 e_1_2_19_16_1 e_1_2_19_39_1 e_1_2_19_18_1 e_1_2_19_37_1 e_1_2_19_31_1 e_1_2_19_54_1 e_1_2_19_52_1 e_1_2_19_12_1 e_1_2_19_35_1 e_1_2_19_58_1 e_1_2_19_33_1 e_1_2_19_56_1 e_1_2_19_50_1 |
References_xml | – volume: 275 start-page: 24 341 year: 2000 end-page: 24 347 article-title: Overexpression of frequenin, a modulator of phosphatidylinositol‐kinase, inhibits biosynthetic delivery of an apical protein in polarized Madin‐Darby canine kidney cells publication-title: J. Biol. Chem. – volume: 1 start-page: 234 year: 1999 end-page: 241 article-title: Yeast homologue of neuronal frequenin is a regulator of phosphatidylinositol‐4‐OH kinase publication-title: Nat. Cell Biol. – volume: 6 start-page: 1031 year: 2003 end-page: 1038 article-title: Acute changes in short‐term plasticity at synapases with elevated levels of neuronal calcium sensor‐1 publication-title: Nat. Neurosci. – volume: 276 start-page: 48 143 year: 2001 end-page: 48 148 article-title: Instead of binding calcium, one of the EF‐hand structures in guanylyl cyclase activating protein‐2 is required for targeting photoreceptor guanylyl cyclase publication-title: J. Biol. Chem. – volume: 16 start-page: 97 year: 1995 end-page: 104 article-title: Subcellular distribution of α‐actinin in chick brain publication-title: Neurosci. Res. Commun. – volume: 275 start-page: 17 878 year: 2000 end-page: 17 885 article-title: A pleckstrin homology domain specific for phosphatidylinositol 4,5‐bisphosphate (PtdIns‐4,5‐P ) and fused to green fluorescent protein indentifies plasma membrane PtdIns‐4,5‐P as being important in exocytosis publication-title: J. Biol. Chem. – year: 1989 – volume: 269 start-page: 32 807 year: 1994 end-page: 32 813 article-title: Cation binding and conformational changes in VILIP and NCS‐1, two neuron‐specific calcium‐binding proteins publication-title: J. Biol. Chem. – volume: 27 start-page: 203 year: 2004 end-page: 209 article-title: Neuronal Ca ‐sensor proteins: multitalented regulators of neuronal function publication-title: TINS – volume: 107 start-page: 39 year: 2001 end-page: 46 article-title: A double‐labeled preparation for simultaneous measurement of [ H]‐noradrenaline and [ C]‐glutamate exocytosis from nerve endings publication-title: J. Neurosci. Meth. – volume: 30 start-page: 241 year: 2001 end-page: 248 article-title: Ca signaling via the neuronal calcium sensor‐1 regulates associative learning and memory in publication-title: Neuron – volume: 24 start-page: 1680 year: 2004 end-page: 1688 article-title: Minimum essential factors required for vesicle mobilization at hippocampal synapses publication-title: J. Neurosci. – volume: 276 start-page: 40 183 year: 2001 end-page: 40 189 article-title: Interaction of neuronal calcium sensor‐1 (NCS‐1) with phosphatidylinositol 4‐kinase β stimulates lipid kinase activity and affects membrane trafficking in COS‐7 cells publication-title: J. Biol. Chem. – volume: 39 start-page: 12 149 year: 2000 end-page: 12 161 article-title: Structure and calcium‐binding properties of Frq1, a novel calcium sensor in the yeast publication-title: Biochemistry – volume: 92 start-page: 8001 year: 1995 end-page: 8005 article-title: Molecular cloning and functional characterization of the Ca ‐binding protein frequenin publication-title: Proc. Natl Acad. Sci. USA – volume: 93 start-page: 9253 year: 1996 end-page: 9258 article-title: Direct modulation of calmodulin targets by the neuronal calcium sensor NCS‐1 publication-title: Proc. Natl Acad. Sci. USA – volume: 3 start-page: 179 year: 1974 end-page: 186 article-title: Evidence for membrane cholesterol as the common binding site for cereolysin, streptolysin O and saponin publication-title: Mol. Cell. Biochem. – volume: 6 start-page: 243 year: 2004 end-page: 255 article-title: Incubation of nerve endings with a physiological concentration of Aβ activates Ca 2.2 (N‐type)‐voltage operated calcium channels and acutely increases glutamate and noradrenaline release publication-title: J. Alzheimer's Dis. – volume: 441 start-page: 59 year: 1988 end-page: 71 article-title: A rapid Percoll gradient procedure for isolation of synaptosomes directly from a S1 fraction: homogeneity and morphology of subcellular fractions publication-title: Brain Res. – volume: 419 start-page: 947 year: 2002 end-page: 952 article-title: Dual regulation of voltage‐gated calcium channels by PtdIns(4,5)P publication-title: Nature – volume: 268 start-page: 15 year: 1990 end-page: 25 article-title: Evidence that the inositol phospholipids are necessary for exocytosis. Loss of inositol phospholipids and inhibition of secretion in permeabilized cells caused by a bacterial phospholipase C and removal of ATP publication-title: Biochem. J. – volume: 276 start-page: 11 949 year: 2001 end-page: 11 955 article-title: Immunochemical localization and crystal structure of human frequenin (neuronal calcium sensor 1) publication-title: J. Biol. Chem. – volume: 277 start-page: 22 025 year: 2002 end-page: 22 034 article-title: Membrane association domains in Ca ‐dependent activator protein for secretion mediate plasma membrane and dense‐core vesicle binding required for Ca ‐dependent exocytosis publication-title: J. Biol. Chem. – volume: 277 start-page: 2012 year: 2002 end-page: 2018 article-title: Multiple roles for phosphatidylinositol 4‐kinase in biosynthetic transport in polarized Madin‐Darby canine kidney cells publication-title: J. Biol. Chem. – volume: 295 start-page: 395 year: 1999 end-page: 407 article-title: Cellular and subcellular distribution of the calcium‐binding protein NCS‐1 in the central nervous system of the rat publication-title: Cell Tiss. Res. – volume: 278 start-page: 7019 year: 2003 end-page: 7026 article-title: Down‐regulation of voltage‐gated Ca channels by neuronal calcium sensor‐1 is β subunit specific publication-title: J. Biol. Chem. – volume: 278 start-page: 49 589 year: 2003 end-page: 49 599 article-title: Conservation of regulatory function in calcium‐binding proteins. Human frequenin (neuronal calcium sensor‐1) associates productively with yeast phosphatidylinositol 4‐kinase isoform, Pik1 publication-title: J. Biol. Chem. – volume: 278 start-page: 6075 year: 2003 end-page: 6084 article-title: Phosphatidylinositol 4‐OH kinase is a downstream target of neuronal calcium sensor‐1 in enhancing exocytosis in neuroendocrine cells publication-title: J. Biol. Chem. – volume: 277 start-page: 27 494 year: 2002 end-page: 27 500 article-title: NCS‐1 inhibits insulin‐stimulated GLUT4 translocation in 3T3L1 adipocytes through a phosphatidylinositol 4‐kinase‐dependent pathway publication-title: J. Biol. Chem. – volume: 14 start-page: 231 year: 1998 end-page: 264 article-title: Phosphoinositide lipids as signaling molecules: common themes for signal transduction, cytoskeletal regulation and membrane trafficking publication-title: Annu. Rev. Cell Dev. Biol. – volume: 274 start-page: 30 258 year: 1999 end-page: 30 265 article-title: Neuronal calcium sensor 1. Characterization of the myristoylated protein, its cellular effects in permeabilized adrenal chromaffin cells, Ca ‐independent associations, and interaction with binding proteins, suggesting a role in rapid Ca signal transduction publication-title: J. Biol. Chem. – volume: 32 start-page: 99 year: 2001 end-page: 112 article-title: Ca binding protein frequenin mediates GDNF‐induced potentiation of Ca channels and neurotransmitter release publication-title: Neuron – volume: 100 start-page: 3995 year: 2003 end-page: 4000 article-title: Phosphatidylinositol 4‐kinase type II alpha is responsible for the phosphatidylinositol 4‐kinase activity associated with synaptic vesicles publication-title: Proc. Natl Acad. Sci. USA – volume: 227 start-page: 680 year: 1970 end-page: 685 article-title: Cleavage of structural proteins during the assembly of the head of bacteriophage T4 publication-title: Nature – volume: 13 start-page: 493 year: 2001 end-page: 499 article-title: PI(4,5)P regulation of surface membrane traffic publication-title: Curr. Opin. Cell Biol. – volume: 1641 start-page: 157 year: 2003 end-page: 165 article-title: Tuning exocytosis for speed; fast and slow modes publication-title: Biochim. Biophys. Acta. – volume: 45 start-page: 633 year: 2004 end-page: 640 article-title: ADP‐ribosylation factor6 regulates both [ H]‐noradrenaline and [ C]‐glutamate exocytosis through phosphatidylinositol 4,5‐bisphosphate publication-title: Neurochem. Int. – volume: 171 start-page: 5320 year: 2003 end-page: 5327 article-title: Neuronal calcium sensor‐1 and phosphatidylinositol 4‐kinase β regulate IgE receptor‐triggered exocytosis in cultured mast cells publication-title: J. Immunol. – volume: 11 start-page: 15 year: 1993 end-page: 28 article-title: Frequenin – a novel calcium‐binding protein that modulates synaptic efficacy in the nervous system publication-title: Neuron – volume: 20 start-page: 2202 year: 2001 end-page: 2213 article-title: SNAREs are concentrated in cholesterol‐dependent clusters that define docking and fusion sites for exocytosis publication-title: EMBO J. – volume: 277 start-page: 14 227 year: 2002 end-page: 14 237 article-title: Differential use of myristoyl groups on neuronal calcium sensor proteins as a determinant of spatio‐temporal aspects of Ca signal transduction publication-title: J. Biol. Chem. – volume: 115 start-page: 2399 year: 2002 end-page: 2412 article-title: Neuronal calcium sensor‐1 binds to regulated secretory organelles and functions in basal and stimulated exocytosis in PC12 cells publication-title: J. Cell Sci. – volume: 221 start-page: 149 year: 1993 end-page: 157 article-title: Calculation and control of free divalent cations in solutions used for membrane fusion studies publication-title: Meth. Enzymol. – volume: 21 start-page: 147 year: 1998 end-page: 154 article-title: Differential regulation of exocytosis by calcium and CAPS in semi‐intact synaptosomes publication-title: Neuron – volume: 44 start-page: 243 year: 2004 end-page: 250 article-title: Phosphatidylinositol 4,5‐bisphosphate promotes both [ H]‐noradrenaline and [ C]‐glutamate exocytosis from nerve endings publication-title: Neurochem. Int. – volume: 374 start-page: 173 year: 1995 end-page: 177 article-title: ATP‐dependent inositide phosphorylation required for Ca ‐activated secretion publication-title: Nature – volume: 474 start-page: 223 year: 1994 end-page: 232 article-title: Implication of frequenin in the facilitation of transmitter release in publication-title: J. Physiol. – volume: 5 start-page: 255 year: 2004 end-page: 264 article-title: Lipid rafts and the regulation of exocytosis publication-title: Traffic – volume: 98 start-page: 12 808 year: 2001 end-page: 12 813 article-title: A role for frequenin, a Ca ‐binding protein, as a regulator of Kv4 K ‐currents publication-title: Proc. Natl Acad. Sci. USA – volume: 32 start-page: 9 year: 2001 end-page: 12 article-title: Phosphoinositides as key regulators of synaptic function publication-title: Neuron – volume: 278 start-page: 52 802 year: 2003 end-page: 52 809 article-title: A family of Ca ‐dependent activator proteins for secretion. Comparative analysis of structure expression, localization, and function publication-title: J. Biol. Chem. – volume: 277 start-page: 30 315 year: 2002 end-page: 30 324 article-title: Mechanisms underlying the neuronal calcium sensor‐1‐evoked enhancement of exocytosis in PC12 cells publication-title: J. Biol. Chem. – volume: 115 start-page: 3909 year: 2002 end-page: 3922 article-title: Neuronal calcium sensor 1 and phosphatidylinositol 4‐OH kinase beta interact in neuronal cells and are translocated to membranes during nucleotide‐evoked exocytosis publication-title: J. Cell Sci. – volume: 295 start-page: 2276 year: 2002 end-page: 2279 article-title: Neuronal calcium sensor 1 and activity‐dependent facilitation of P/Q‐type calcium currents at presynaptic nerve terminals publication-title: Science – volume: 22 start-page: 2427 year: 2002 end-page: 2433 article-title: Alterations in exocytosis induced by neuronal Ca sensor‐1 in bovine chromaffin cells publication-title: J. Neurosci. – volume: 31 start-page: 828 year: 2003 end-page: 832 article-title: Neuronal calcium sensor‐1: a multifunctional regulator of secretion publication-title: Biochem. Soc. Trans. – volume: 154 start-page: 355 year: 2001 end-page: 368 article-title: Regulation of presynaptic phosphatidylinositol 4,5‐bisphosphate by neuronal activity publication-title: J. Cell Biol. – volume: 273 start-page: 22 768 year: 1998 end-page: 22 772 article-title: Neuronal Ca sensor 1, the mammalian homologue of frequenin, is expressed in chromaffin and PC12 cells and regulates neurosecretion from dense‐core granules publication-title: J. Biol. Chem. – volume: 353 start-page: 1 year: 2001 end-page: 12 article-title: The neuronal calcium sensor family of Ca ‐binding proteins publication-title: Biochem. J. – volume: 265 start-page: 19 704 year: 1990 end-page: 19 711 article-title: Purification and characterization of phosphoinositide 3‐kinase from rat liver publication-title: J. Biol. Chem. – volume: 14 start-page: 434 year: 2002 end-page: 447 article-title: Phosphoinositides and the golgi complex publication-title: Curr. Opin. Cell Biol. – volume: 276 start-page: 44 804 year: 2001 end-page: 44 811 article-title: Voltage‐independent inhibition of P/Q‐type Ca channels in adrenal chromaffin cells via a neuronal Ca sensor‐1‐dependent pathway involves Src family tyrosine kinase publication-title: J. Biol. Chem. – volume: 265 start-page: 19 704 year: 1990 ident: e_1_2_19_9_1 article-title: Purification and characterization of phosphoinositide 3‐kinase from rat liver publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(17)45429-9 contributor: fullname: Carpenter C. L. – ident: e_1_2_19_57_1 doi: 10.1074/jbc.M103262200 – ident: e_1_2_19_43_1 doi: 10.1074/jbc.M204702200 – ident: e_1_2_19_19_1 doi: 10.1038/374173a0 – ident: e_1_2_19_11_1 doi: 10.1016/S0955-0674(02)00357-5 – ident: e_1_2_19_46_1 doi: 10.1111/j.1600-0854.2004.0162.x – ident: e_1_2_19_35_1 doi: 10.1074/jbc.M203669200 – ident: e_1_2_19_2_1 doi: 10.1021/bi0012890 – ident: e_1_2_19_40_1 doi: 10.1016/S0896-6273(01)00455-X – ident: e_1_2_19_26_1 doi: 10.1093/emboj/20.9.2202 – ident: e_1_2_19_52_1 doi: 10.1074/jbc.M309017200 – ident: e_1_2_19_22_1 doi: 10.1074/jbc.M000925200 – ident: e_1_2_19_53_1 doi: 10.1016/S0896-6273(00)80522-X – ident: e_1_2_19_32_1 doi: 10.1074/jbc.273.35.22768 – volume: 16 start-page: 97 year: 1995 ident: e_1_2_19_61_1 article-title: Subcellular distribution of α‐actinin in chick brain publication-title: Neurosci. Res. Commun. contributor: fullname: Zheng X. – volume-title: Solid‐Phase Peptide Synthesis: a Practical Approach year: 1989 ident: e_1_2_19_3_1 contributor: fullname: Atherton E. – ident: e_1_2_19_23_1 doi: 10.4049/jimmunol.171.10.5320 – ident: e_1_2_19_55_1 doi: 10.1126/science.1068278 – volume: 6 start-page: 243 year: 2004 ident: e_1_2_19_4_1 article-title: Incubation of nerve endings with a physiological concentration of Aβ1−42 activates CaV2.2 (N‐type)‐voltage operated calcium channels and acutely increases glutamate and noradrenaline release publication-title: J. Alzheimer's Dis. doi: 10.3233/JAD-2004-6305 contributor: fullname: Bobich J. A. – ident: e_1_2_19_49_1 doi: 10.1007/BF01686643 – ident: e_1_2_19_15_1 doi: 10.1016/0076-6879(93)21014-Y – ident: e_1_2_19_6_1 doi: 10.1074/jbc.M108571200 – ident: e_1_2_19_31_1 doi: 10.1016/S0165-0270(01)00350-8 – ident: e_1_2_19_62_1 doi: 10.1016/j.neuint.2004.03.028 – ident: e_1_2_19_25_1 doi: 10.1111/j.1462-5822.2007.00901.x – ident: e_1_2_19_56_1 doi: 10.1016/S0896-6273(01)00434-2 – ident: e_1_2_19_59_1 doi: 10.1038/nature01118 – ident: e_1_2_19_54_1 doi: 10.1242/jcs.00072 – ident: e_1_2_19_20_1 doi: 10.1038/12058 – ident: e_1_2_19_37_1 doi: 10.1073/pnas.221168498 – ident: e_1_2_19_51_1 doi: 10.1074/jbc.M304727200 – ident: e_1_2_19_8_1 doi: 10.1016/j.tins.2004.01.010 – volume: 276 start-page: 48 143 year: 2001 ident: e_1_2_19_14_1 article-title: Instead of binding calcium, one of the EF‐hand structures in guanylyl cyclase activating protein‐2 is required for targeting photoreceptor guanylyl cyclase publication-title: J. Biol. Chem. doi: 10.1074/jbc.M107539200 contributor: fullname: Ermilov A. N. – ident: e_1_2_19_30_1 doi: 10.1007/s004410051246 – ident: e_1_2_19_44_1 doi: 10.1113/jphysiol.1994.sp020015 – ident: e_1_2_19_12_1 doi: 10.1016/0006-8993(88)91383-2 – ident: e_1_2_19_29_1 doi: 10.1016/S0167-4889(03)00093-4 – ident: e_1_2_19_60_1 doi: 10.1074/jbc.M104048200 – ident: e_1_2_19_50_1 doi: 10.1038/nn1117 – ident: e_1_2_19_28_1 doi: 10.1016/S0955-0674(00)00241-6 – ident: e_1_2_19_24_1 doi: 10.1074/jbc.M201132200 – ident: e_1_2_19_38_1 doi: 10.1074/jbc.M111750200 – ident: e_1_2_19_58_1 doi: 10.1074/jbc.M000671200 – ident: e_1_2_19_21_1 doi: 10.1042/BST0310828 – ident: e_1_2_19_63_1 doi: 10.1016/S0197-0186(03)00149-9 – ident: e_1_2_19_39_1 doi: 10.1073/pnas.92.17.8001 – ident: e_1_2_19_16_1 doi: 10.1016/S0896-6273(01)00276-8 – ident: e_1_2_19_45_1 doi: 10.1074/jbc.M209537200 – ident: e_1_2_19_34_1 doi: 10.1083/jcb.200102098 – ident: e_1_2_19_7_1 doi: 10.1042/bj3530001 – ident: e_1_2_19_48_1 doi: 10.1073/pnas.93.17.9253 – ident: e_1_2_19_27_1 doi: 10.1146/annurev.cellbio.14.1.231 – ident: e_1_2_19_42_1 doi: 10.1016/0896-6273(93)90267-U – ident: e_1_2_19_18_1 doi: 10.1073/pnas.0230488100 – ident: e_1_2_19_33_1 doi: 10.1074/jbc.274.42.30258 – volume: 269 start-page: 32 807 year: 1994 ident: e_1_2_19_10_1 article-title: Cation binding and conformational changes in VILIP and NCS‐1, two neuron‐specific calcium‐binding proteins publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(20)30063-6 contributor: fullname: Cox J. A. – ident: e_1_2_19_17_1 doi: 10.1074/jbc.M201614200 – volume: 115 start-page: 2399 year: 2002 ident: e_1_2_19_47_1 article-title: Neuronal calcium sensor‐1 binds to regulated secretory organelles and functions in basal and stimulated exocytosis in PC12 cells publication-title: J. Cell Sci. doi: 10.1242/jcs.115.11.2399 contributor: fullname: Scalettar B. A. – ident: e_1_2_19_41_1 doi: 10.1523/JNEUROSCI.22-07-02427.2002 – ident: e_1_2_19_5_1 doi: 10.1074/jbc.M009373200 – ident: e_1_2_19_13_1 doi: 10.1042/bj2680015 – ident: e_1_2_19_36_1 doi: 10.1523/JNEUROSCI.3801-03.2004 |
SSID | ssj0016461 |
Score | 2.0259438 |
Snippet | This work tested the theory that neuronal calcium sensor‐1 (NCS‐1) has effects on neurotransmitter release beyond its actions on membrane channels. We used... This work tested the theory that neuronal calcium sensor-1 (NCS-1) has effects on neurotransmitter release beyond its actions on membrane channels. We used... |
SourceID | proquest crossref pubmed pascalfrancis wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 442 |
SubjectTerms | 1-Phosphatidylinositol 4-Kinase - chemistry 1-Phosphatidylinositol 4-Kinase - drug effects 1-Phosphatidylinositol 4-Kinase - metabolism Animals Antibodies - pharmacology Biological and medical sciences Calcium - chemistry Calcium - metabolism Calcium-Binding Proteins - chemistry Calcium-Binding Proteins - pharmacology Calcium-Binding Proteins - physiology Cell physiology Cerebral Cortex - chemistry Dose-Response Relationship, Drug Exocytosis - drug effects Exocytosis - physiology Female Fundamental and applied biological sciences. Psychology glutamate Male Molecular and cellular biology Nerve Endings - chemistry Nerve Endings - drug effects Nerve Endings - metabolism Nerve Tissue Proteins - chemistry Nerve Tissue Proteins - pharmacology Nerve Tissue Proteins - physiology neuronal calcium sensor‐1 Neuronal Calcium-Sensor Proteins Neurons - chemistry Neuropeptides Neurotransmitter Agents - chemistry Neurotransmitter Agents - metabolism neurotransmitter release norepinephrine Peptide Fragments - pharmacology Phosphatidylinositol 4,5-Diphosphate - biosynthesis Phosphatidylinositol 4,5-Diphosphate - chemistry phosphatidylinositol 4‐kinase Phosphatidylinositol Phosphates - biosynthesis Phosphatidylinositol Phosphates - chemistry Rats Rats, Sprague-Dawley Rats, Wistar Secretion. Exocytosis Subcellular Fractions - chemistry Subcellular Fractions - metabolism |
Title | Neuronal calcium sensor‐1 facilitates neuronal exocytosis through phosphatidylinositol 4‐kinase |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.1471-4159.2004.02897.x https://www.ncbi.nlm.nih.gov/pubmed/15659215 https://search.proquest.com/docview/67361980 |
Volume | 92 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR1dS9xAcNB7sSC1aqvRqvtQ-hbJJpts7lFOxQ-QQlvoW9jdbPBQk8P1wHvrT_A3-kuc2VxOT3woxZcQQmbJzsfOTOYL4FuSanyuTGhkSSU5kQyVTnVohRVRpfH8S6g4-eSnvPiTHx5Rm5yzrham7Q8x--FGkuHPaxJwpd0rIZfo_6A-9m7ePsXM5D7Zk-g0-GqO5McsoJCJjM8ahyOjzif1vLnQnKZaHimHSKvaaRdvmaPz1q1XT8cr77mxT_BxaqSyg5arVmHB1muwflCjg34zYd-ZTxv1_-PXYGnQjYxbB-NbfRAobsIMxzfMoZfc3D7-feCsUqbtCG4dq7v37H1jJneNGzo2nRjERpeNG10iw5QT3AvllDXXTOASV8MaVe5n-H189GtwEk6nOIRGZIkMKx4rbdAuiEuDhwOnnmmcwqlWaZmnUuvYJGWqrEbfxQquja1yEWuOWjPOjUm-QK9uarsJDKmn0eSwKpGxkJHtq0jKREVaZQoX1AHwjmLFqG3WUbx0ciQvCKs0elMUHqvFfQC7c6R9BqSQZip4AHsdrQtEJ8VTVG2bsfMpcbyfRwFstCzwDJtStJqnAWSe0v_8NcXZxYDutv4XcBs--OayPq_8K_Tubsd2BxZdOd71AoHXw9PzJ_HPC6g |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LTtwwcEThQKWq5VHaUB4-IG5BceLE4Yi2oOW1QgIkbpHtONoVJVkRVmJv_YR-Y7-EGWezdBEHVHGLoowVz8Mz43kB7ESxxvfK-EbmVJITSF_pWPtWWBEUGs-_iIqTu5eyd5P-PKQ2OadtLUzTH2J64UaS4c5rEnC6kH4h5RIdIFTIzs_bo6CZ3EODckEkyJdUzxFdTEMKiUj4tHU4supsWs-rK83oqk9DVSPaimbexWsG6ax96xTU0Zd33doSfJ7YqeygYaxlmLPlCqwelOij343ZLnOZo-5KfgUWO-3UuFUwrtsHgeIuzGB0x2p0lKv7v7__cFYo0zQFtzUr2-_sY2XGD1U9qNlkaBAb9qt62Eeeyce4GUorq34xgUvcDkrUul_h-ujwqtP1J4McfCOSSPoFD5U2aBqEucHzgVPbNE4RVau0TGOpdWiiPFZWo_tiBdfGFqkINUfFGabGRGswX1al_Q4MyafR6rAqkqGQgd1XgZSRCrRKFC6oPeAtybJh068j-9fPkTwjrNL0TZE5rGaPHmzN0PYZkKKaseAebLfEzhCdFFJRpa1GtcuK4_tp4MG3hgeeYWMKWPPYg8SR-s1_k530OvS0_r-A27DYvTo_y86Oe6c_4KPrNevSzDdg_uF-ZDfhQ52Ptpx0PAGMOg7X |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1RT9wwDLY2kLZJE2zAtsIGeZj2VtQ0aVMe0cGJsemEBJP2ViVpKk5AW1FO4t72E_Yb90uw0-vBIR6maW9VVUeN7cR27HwG-CwSg--1Da0q6EpOpEJtEhM66WRUGtz_BF1OPjpVo5_ZwSHB5Bz3d2E6fIj5gRutDL9f0wJvivLRIlcY_6A99mHeLuXM1C76k8sSvXLC0RfiZJ5RSGXK58jhqKmLVT1PjrRgql43ukWulV27i6f80UX31tun4er_nNkbWJl5qWy_U6u38MxVa7C-X2GEfjVlX5ivG_UH8mvwctD3jFsH67E-iBQnYceTK9ZimFxf__n1m7NS2w4S3LWs6r9zt7Wd3tTtuGWzlkGsOa_b5hw1ppjiXKiorL5kEoe4GFdoczfgx_DwbHAUzto4hFamQoUlj7Wx6BjEhcXdgRNoGqd8qtNGZYkyJraiSLQzGLw4yY11ZSZjw9Fsxpm14h0sVXXlPgBD6Rn0OZwWKpYqcns6UkroyOhU44AmAN5LLG86tI78YZSjeE5cpd6bMvdczW8D2F4Q7T0h5TQTyQPY6WWdIzspoaIrV09aXxPH97IogPedCtzTJpSu5kkAqZf0X_9Nfjwa0NPmvxLuwIuTg2H-_evo2xa88kCzvsb8IyzdXE_cJ3jeFpNtvzbuACqPDX0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neuronal+calcium+sensor%E2%80%901+facilitates+neuronal+exocytosis+through+phosphatidylinositol+4%E2%80%90kinase&rft.jtitle=Journal+of+neurochemistry&rft.au=Zheng%2C+Qian&rft.au=Bobich%2C+Joseph+A.&rft.au=Vidugiriene%2C+Jolanta&rft.au=McFadden%2C+Susanne+C.&rft.date=2005-02-01&rft.pub=Blackwell+Science+Ltd&rft.issn=0022-3042&rft.eissn=1471-4159&rft.volume=92&rft.issue=3&rft.spage=442&rft.epage=451&rft_id=info:doi/10.1111%2Fj.1471-4159.2004.02897.x&rft.externalDBID=10.1111%252Fj.1471-4159.2004.02897.x&rft.externalDocID=JNC2897 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-3042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-3042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-3042&client=summon |