Nonspecific blockade of vascular free radical signals by methylated arginine analogues

Methylated arginine analogues are often used as probes of the effect of nitric oxide; however, their specificity is unclear and seems to be frequently overestimated. This study analyzed the effects of NG-methyl-L-arginine (L-NMMA) on the endothelium-dependent release of vascular superoxide radicals...

Full description

Saved in:
Bibliographic Details
Published in:Brazilian journal of medical and biological research Vol. 31; no. 6; pp. 749 - 755
Main Authors: Pedro, M A, Augusto, O, Barbeiro, H V, Carvalho, M H, da-Luz, P L, Laurindo, F R
Format: Journal Article
Language:English
Published: Brazil Associação Brasileira de Divulgação Científica 01-06-1998
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Methylated arginine analogues are often used as probes of the effect of nitric oxide; however, their specificity is unclear and seems to be frequently overestimated. This study analyzed the effects of NG-methyl-L-arginine (L-NMMA) on the endothelium-dependent release of vascular superoxide radicals triggered by increased flow. Plasma ascorbyl radical signals measured by direct electron paramagnetic resonance spectroscopy in 25 rabbits increased by 3.8 +/- 0.7 nmol/l vs baseline (28.7 +/- 1.4 nmol/l, P < 0.001) in response to papaverine-induced flow increases of 121 +/- 12%. In contrast, after similar papaverine-induced flow increases simultaneously with L-NMMA infusions, ascorbyl levels were not significantly changed compared to baseline. Similar results were obtained in isolated rabbit aortas perfused ex vivo with the spin trap alpha-phenyl-N-tert-butylnitrone (N = 22). However, in both preparations, this complete blockade was not reversed by co-infusion of excess L-arginine and was also obtained by N-methyl-D-arginine, thus indicating that it is not related to nitric oxide synthase. L-arginine alone was ineffective, as previously demonstrated for NG-methyl-L-arginine ester (L-NAME). In vitro, neither L-arginine nor its analogues scavenged superoxide radicals. This nonspecific activity of methylated arginine analogues underscores the need for careful controls in order to assess nitric oxide effects, particularly those related to interactions with active oxygen species.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0100-879X
1414-431X
0100-879X
1414-431X
DOI:10.1590/S0100-879X1998000600004