Two-phase multi-model automatic brain tumour diagnosis system from magnetic resonance images using convolutional neural networks
Brain tumour is a serious disease, and the number of people who are dying due to brain tumours is increasing. Manual tumour diagnosis from magnetic resonance images (MRIs) is a time consuming process and is insufficient for accurately detecting, localizing, and classifying the tumour type. This rese...
Saved in:
Published in: | EURASIP journal on image and video processing Vol. 2018; no. 1; pp. 1 - 10 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
Cham
Springer International Publishing
30-09-2018
Springer Nature B.V SpringerOpen |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Brain tumour is a serious disease, and the number of people who are dying due to brain tumours is increasing. Manual tumour diagnosis from magnetic resonance images (MRIs) is a time consuming process and is insufficient for accurately detecting, localizing, and classifying the tumour type. This research proposes a novel two-phase multi-model automatic diagnosis system for brain tumour detection and localization. In the first phase, the system structure consists of preprocessing, feature extraction using a convolutional neural network (CNN), and feature classification using the error-correcting output codes support vector machine (ECOC-SVM) approach. The purpose of the first system phase is to detect brain tumour by classifying the MRIs into normal and abnormal images. The aim of the second system phase is to localize the tumour within the abnormal MRIs using a fully designed five-layer region-based convolutional neural network (R-CNN). The performance of the first phase was assessed using three CNN models, namely, AlexNet, Visual Geometry Group (VGG)-16, and VGG-19, and a maximum detection accuracy of 99.55% was achieved with AlexNet using 349 images extracted from the standard Reference Image Database to Evaluate Response (RIDER) Neuro MRI database. The brain tumour localization phase was evaluated using 804 3D MRIs from the Brain Tumor Segmentation (BraTS) 2013 database, and a DICE score of 0.87 was achieved. The empirical work proved the outstanding performance of the proposed deep learning-based system in tumour detection compared to other non-deep-learning approaches in the literature. The obtained results also demonstrate the superiority of the proposed system concerning both tumour detection and localization. |
---|---|
AbstractList | Brain tumour is a serious disease, and the number of people who are dying due to brain tumours is increasing. Manual tumour diagnosis from magnetic resonance images (MRIs) is a time consuming process and is insufficient for accurately detecting, localizing, and classifying the tumour type. This research proposes a novel two-phase multi-model automatic diagnosis system for brain tumour detection and localization. In the first phase, the system structure consists of preprocessing, feature extraction using a convolutional neural network (CNN), and feature classification using the error-correcting output codes support vector machine (ECOC-SVM) approach. The purpose of the first system phase is to detect brain tumour by classifying the MRIs into normal and abnormal images. The aim of the second system phase is to localize the tumour within the abnormal MRIs using a fully designed five-layer region-based convolutional neural network (R-CNN). The performance of the first phase was assessed using three CNN models, namely, AlexNet, Visual Geometry Group (VGG)-16, and VGG-19, and a maximum detection accuracy of 99.55% was achieved with AlexNet using 349 images extracted from the standard Reference Image Database to Evaluate Response (RIDER) Neuro MRI database. The brain tumour localization phase was evaluated using 804 3D MRIs from the Brain Tumor Segmentation (BraTS) 2013 database, and a DICE score of 0.87 was achieved. The empirical work proved the outstanding performance of the proposed deep learning-based system in tumour detection compared to other non-deep-learning approaches in the literature. The obtained results also demonstrate the superiority of the proposed system concerning both tumour detection and localization. Abstract Brain tumour is a serious disease, and the number of people who are dying due to brain tumours is increasing. Manual tumour diagnosis from magnetic resonance images (MRIs) is a time consuming process and is insufficient for accurately detecting, localizing, and classifying the tumour type. This research proposes a novel two-phase multi-model automatic diagnosis system for brain tumour detection and localization. In the first phase, the system structure consists of preprocessing, feature extraction using a convolutional neural network (CNN), and feature classification using the error-correcting output codes support vector machine (ECOC-SVM) approach. The purpose of the first system phase is to detect brain tumour by classifying the MRIs into normal and abnormal images. The aim of the second system phase is to localize the tumour within the abnormal MRIs using a fully designed five-layer region-based convolutional neural network (R-CNN). The performance of the first phase was assessed using three CNN models, namely, AlexNet, Visual Geometry Group (VGG)-16, and VGG-19, and a maximum detection accuracy of 99.55% was achieved with AlexNet using 349 images extracted from the standard Reference Image Database to Evaluate Response (RIDER) Neuro MRI database. The brain tumour localization phase was evaluated using 804 3D MRIs from the Brain Tumor Segmentation (BraTS) 2013 database, and a DICE score of 0.87 was achieved. The empirical work proved the outstanding performance of the proposed deep learning-based system in tumour detection compared to other non-deep-learning approaches in the literature. The obtained results also demonstrate the superiority of the proposed system concerning both tumour detection and localization. |
ArticleNumber | 97 |
Author | Abd-Ellah, Mahmoud Khaled Khalaf, Ashraf A. M. Hamed, Hesham F. A. Awad, Ali Ismail |
Author_xml | – sequence: 1 givenname: Mahmoud Khaled surname: Abd-Ellah fullname: Abd-Ellah, Mahmoud Khaled organization: Electronic and Communication Department, Al-Madina Higher Institute for Engineering and Technology – sequence: 2 givenname: Ali Ismail orcidid: 0000-0002-3800-0757 surname: Awad fullname: Awad, Ali Ismail email: ali.awad@ltu.se organization: Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Faculty of Engineering, Al-Azhar University – sequence: 3 givenname: Ashraf A. M. surname: Khalaf fullname: Khalaf, Ashraf A. M. organization: Faculty of Engineering, Minia University, Minia, Egypt – sequence: 4 givenname: Hesham F. A. surname: Hamed fullname: Hamed, Hesham F. A. organization: Faculty of Engineering, Minia University, Minia, Egypt |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-71054$$DView record from Swedish Publication Index |
BookMark | eNp1kUtv1TAQhSNUJNrCD2BniS0BTxw_sqwKhUqV2BS2lp3YF18S--IHV93x03FuKh4LVmMdH38znnPRnPngTdO8BPwGQLC3CQjrcYtBtJiQru2fNOfABG9pJ-Dsr_Oz5iKlPcaUUtKdNz_vj6E9fFXJoKXM2bVLmMyMVMlhUdmNSEflPMplCSWiyamdD8kllB5SNguyMSxoqaJZvdGk4JUfDXJVMwmV5PwOjcH_CHPJrl7OyJsSTyUfQ_yWnjdPrZqTefFYL5vPN-_vrz-2d58-3F5f3bVjz7rcKuATNh0XA9eCTAYzjYd-IpxjYgVozAZuaY9hsFrzkYFSgk3GdoKRXgkgl83txp2C2stDrBPGBxmUkychxJ1UsX5iNlKzyqtNqB3GXhshBsKm0XKglumBr6zXGysdzaHof2jv3JerE23ORXLAtK_2V5v9EMP3YlKW-7rMuoskO4CeMhCCVBdsrjGGlKKxv7GA5Zqx3DKWNWO5ZixXcvc4SPX6nYl_yP9_9Au-8q37 |
CitedBy_id | crossref_primary_10_1007_s11042_019_07988_1 crossref_primary_10_1109_ACCESS_2020_3033480 crossref_primary_10_1109_TMI_2020_3045295 crossref_primary_10_1007_s11042_022_12213_7 crossref_primary_10_1109_ACCESS_2024_3394541 crossref_primary_10_1016_j_patrec_2019_11_016 crossref_primary_10_1007_s12553_020_00514_6 crossref_primary_10_1002_ima_22615 crossref_primary_10_1007_s11042_021_10927_8 crossref_primary_10_1109_ACCESS_2021_3107371 crossref_primary_10_1007_s40747_021_00563_y crossref_primary_10_1016_j_cogsys_2019_09_007 crossref_primary_10_1016_j_jneumeth_2019_108520 crossref_primary_10_1016_j_bbe_2021_08_011 crossref_primary_10_1186_s40537_021_00444_8 crossref_primary_10_2174_2213275912666190809111928 crossref_primary_10_15622_ia_22_3_3 crossref_primary_10_3390_s22082976 crossref_primary_10_1016_j_cmpb_2021_106188 crossref_primary_10_1007_s11042_023_17738_z crossref_primary_10_1007_s10278_019_00276_2 crossref_primary_10_1007_s00500_021_06574_8 crossref_primary_10_1080_03772063_2022_2083027 crossref_primary_10_1155_2019_6212759 crossref_primary_10_1109_ACCESS_2022_3184113 crossref_primary_10_1142_S0219467822500231 crossref_primary_10_1016_j_cmpb_2022_106635 crossref_primary_10_1002_ima_22433 crossref_primary_10_1007_s11814_023_1452_9 crossref_primary_10_1155_2022_2155132 crossref_primary_10_1109_ACCESS_2021_3131713 crossref_primary_10_1007_s10278_020_00367_5 crossref_primary_10_1093_noajnl_vdac081 crossref_primary_10_2174_1872212117666220823100209 crossref_primary_10_1016_j_asoc_2024_111709 crossref_primary_10_1109_ACCESS_2020_2994388 crossref_primary_10_1136_bmjopen_2020_042660 crossref_primary_10_1109_ACCESS_2023_3294562 crossref_primary_10_1007_s11517_024_03064_5 crossref_primary_10_1049_iet_ipr_2020_0908 crossref_primary_10_3390_app12062900 crossref_primary_10_1016_j_compbiomed_2024_108412 crossref_primary_10_1063_5_0138021 crossref_primary_10_3390_app9030470 crossref_primary_10_1109_TNNLS_2021_3105384 crossref_primary_10_1186_s12911_023_02114_6 crossref_primary_10_3390_cancers15164172 crossref_primary_10_1007_s00500_020_05493_4 crossref_primary_10_2174_1573405617666211215111937 crossref_primary_10_1016_j_mri_2020_12_017 crossref_primary_10_1007_s40846_021_00620_4 crossref_primary_10_32604_cmc_2022_024103 crossref_primary_10_1007_s00521_023_09346_7 crossref_primary_10_1016_j_eswa_2023_122159 crossref_primary_10_1109_ACCESS_2024_3379136 crossref_primary_10_1007_s10845_020_01540_x crossref_primary_10_1016_j_compbiomed_2022_105273 crossref_primary_10_1109_ACCESS_2019_2920005 |
Cites_doi | 10.1162/neco.2006.18.7.1527 10.1016/j.media.2016.05.004 10.1016/j.media.2016.06.037 10.7763/IJCTE.2010.V2.207 10.1016/j.neucom.2011.12.066 10.1155/2016/8356294 10.1109/ISCAS.2010.5537907 10.1007/978-3-319-44672-1_13 10.1109/CSNT.2013.123 10.1613/jair.105 10.1007/s11760-013-0456-z 10.1109/TMI.2016.2538465 10.1109/SOCC.2016.7905501 10.4103/0256-4602.81244 10.1049/iet-cvi.2015.0408 10.1109/TITS.2017.2749965 10.1109/TASE.2015.2499244 10.1016/j.media.2017.01.008 10.1016/j.cmpb.2016.10.007 10.1016/j.eswa.2014.01.021 10.1016/j.compmedimag.2010.07.003 10.1049/iet-cvi.2015.0175 10.1007/978-3-319-75928-9_86 10.1016/j.procs.2016.09.407 10.1080/02564602.2015.1027307 10.1007/978-3-319-13359-1_50 10.1007/978-3-319-55524-9_8 10.1109/EMBC.2015.7318458 10.1007/978-3-319-55524-9_11 10.1109/ENBENG.2017.7889452 10.1007/978-3-319-09879-1_16 10.1109/ICM.2016.7847911 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 EURASIP Journal on Image and Video Processing is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2018 – notice: EURASIP Journal on Image and Video Processing is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 7SC 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ JQ2 L7M L~C L~D P5Z P62 PIMPY PQEST PQQKQ PQUKI PRINS ADTPV AOWAS DOA |
DOI | 10.1186/s13640-018-0332-4 |
DatabaseName | SpringerOpen (Open Access) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China SwePub SwePub Articles Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China Computer and Information Systems Abstracts Professional ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest One Academic Advanced Technologies Database with Aerospace |
DatabaseTitleList | Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1687-5281 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_b61b083d5f9c4be88936dcf715f6b971 oai_DiVA_org_ltu_71054 10_1186_s13640_018_0332_4 |
GroupedDBID | -A0 0R~ 29J 2WC 4.4 40G 5VS 8FE 8FG 8R4 8R5 AAJSJ AAKKN AAPBV AAYZJ ABPTK ACACY ACGFS ACM ADBBV ADINQ AENEX AERSA AFGXO AFKRA AFNRJ AHBXF AHBYD AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP ARAPS BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 E3Z EBS ECE EJD GROUPED_DOAJ HCIFZ HZ~ I-F IAO IN- IPNFZ ITG ITH KQ8 M~E OK1 P2P P62 PIMPY PROAC Q2X RHU RIG RSV SEG SOJ U2A AAYXX ABEEZ ACULB CITATION EBLON 7SC 7SP 8FD ABUWG AZQEC DWQXO JQ2 L7M L~C L~D PQEST PQQKQ PQUKI PRINS 2VQ ADTPV AHSBF AOWAS C1A H13 IL9 ITC O9- |
ID | FETCH-LOGICAL-c462t-a17d0e27897b83de06b094d37703f81b0697f54019fbb7c61aa86def28634a813 |
IEDL.DBID | C24 |
ISSN | 1687-5281 1687-5176 |
IngestDate | Tue Oct 22 15:07:24 EDT 2024 Sat Jun 29 09:15:01 EDT 2024 Thu Oct 10 18:51:30 EDT 2024 Fri Aug 23 00:38:01 EDT 2024 Sat Dec 16 12:01:49 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Convolutional neural networks (CNNs) MRI segmentation Tumour detection and localization Brain tumour diagnosis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-a17d0e27897b83de06b094d37703f81b0697f54019fbb7c61aa86def28634a813 |
ORCID | 0000-0002-3800-0757 |
OpenAccessLink | http://link.springer.com/10.1186/s13640-018-0332-4 |
PQID | 2114561883 |
PQPubID | 237295 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b61b083d5f9c4be88936dcf715f6b971 swepub_primary_oai_DiVA_org_ltu_71054 proquest_journals_2114561883 crossref_primary_10_1186_s13640_018_0332_4 springer_journals_10_1186_s13640_018_0332_4 |
PublicationCentury | 2000 |
PublicationDate | 2018-09-30 |
PublicationDateYYYYMMDD | 2018-09-30 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-30 day: 30 |
PublicationDecade | 2010 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: New York |
PublicationTitle | EURASIP journal on image and video processing |
PublicationTitleAbbrev | J Image Video Proc |
PublicationYear | 2018 |
Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
References | Reverdy, Leonard (CR46) 2016; 13 Madabhushi, Lee (CR6) 2016; 33 Patil, Udupi (CR21) 2013; 3 Gao, Hui, Tian (CR27) 2017; 138 Gonzalez, Woods (CR36) 2006 El-Dahshan, Mohsen, Revett, Salem (CR2) 2014; 41 Yan, Xie, Yang, Yin, Zhang, Dai (CR13) 2018; 19 CR19 Da, Zhang, Sang (CR26) 2015 CR17 Deepa, Devi (CR25) 2012 CR38 Lakshmi Devasena, Hemalatha (CR20) 2013; 3 CR37 Yuan (CR48) 2016 Krizhevsky, Sutskever, Hinton (CR12) 2012 CR33 Işin, Direkoğlu, Şah (CR35) 2016; 102 Windeatt, Ardeshir (CR40) 2003 Hinton, Osindero, Teh (CR9) 2006; 18 Abd-Ellah, Awad, Khalaf, Hamed, Li, Nykänen, Suomi, Wickramasinghe, Widén, Zhan (CR18) 2016 CR32 Logeswari, Karnan (CR1) 2010; 2 CR31 CR30 Arakeri, Reddy (CR22) 2015; 9 Jayadevappa, Srinivas Kumar, Murty (CR3) 2011; 28 Şentaş, Tashiev, Küçükayvaz, Kul, Eken, Sayar, Becerikli, Barolli, Xhafa, Javaid, Spaho, Kolici (CR14) 2018 LeCun, Kavukcuoglu, Farabet (CR15) 2010 Yan, Coenen, Zhang (CR10) 2016; 10 Suk, Lee, Shen (CR11) 2017; 37 Hemanth, Vijila, Selvakumar, Anitha (CR8) 2014; 130 Dietterich, Bakiri (CR39) 1995; 2 Dandıl, Çakıroğlu, Ekşi (CR23) 2015 CR47 Deng, Guo, Zhou, Chen (CR44) 2015; PP CR43 CR42 Goswami, Bhaiya (CR24) 2013 CR41 Havaei, Davy, Warde-Farley, Biard, Courville, Bengio, Pal, Jodoin, Larochelle (CR29) 2017; 35 Xu, Jia, Ai, Zhang, Lai, Chang (CR28) 2015 Yazdani, Yusof, Karimian, Pashna, Hematian (CR4) 2015; 32 Jiang, Trundle, Ren (CR7) 2010; 34 Girshick (CR45) 2015 Lei, Li, Zhang, Guo, Tu (CR16) 2016; 10 Zhao, Jia (CR5) 2016; 2016 Pereira, Pinto, Alves, Silva (CR34) 2016; 35 332_CR19 M. P. Arakeri (332_CR22) 2015; 9 S. N. Deepa (332_CR25) 2012 G. E. Hinton (332_CR9) 2006; 18 332_CR17 F. Deng (332_CR44) 2015; PP 332_CR37 S. Goswami (332_CR24) 2013 332_CR38 A. Krizhevsky (332_CR12) 2012 D. J. Hemanth (332_CR8) 2014; 130 A. Şentaş (332_CR14) 2018 Liya Zhao (332_CR5) 2016; 2016 Y. LeCun (332_CR15) 2010 T. G. Dietterich (332_CR39) 1995; 2 E. Dandıl (332_CR23) 2015 X. W. Gao (332_CR27) 2017; 138 332_CR47 M. K. Abd-Ellah (332_CR18) 2016 C. Lakshmi Devasena (332_CR20) 2013; 3 332_CR42 B. Yuan (332_CR48) 2016 332_CR43 T. Windeatt (332_CR40) 2003 332_CR41 A. Madabhushi (332_CR6) 2016; 33 Sergio Pereira (332_CR34) 2016; 35 A. Işin (332_CR35) 2016; 102 E. -S. A. El-Dahshan (332_CR2) 2014; 41 S. Patil (332_CR21) 2013; 3 Y. Xu (332_CR28) 2015 D. Jayadevappa (332_CR3) 2011; 28 J. Jiang (332_CR7) 2010; 34 C. Yan (332_CR10) 2016; 10 R. Girshick (332_CR45) 2015 S. Yazdani (332_CR4) 2015; 32 C. Da (332_CR26) 2015 Chenggang Yan (332_CR13) 2018; 19 332_CR33 H. -I. Suk (332_CR11) 2017; 37 J. Lei (332_CR16) 2016; 10 P. Reverdy (332_CR46) 2016; 13 332_CR31 332_CR32 R. C. Gonzalez (332_CR36) 2006 T. Logeswari (332_CR1) 2010; 2 M. Havaei (332_CR29) 2017; 35 332_CR30 |
References_xml | – volume: 18 start-page: 1527 issue: 7 year: 2006 end-page: 1554 ident: CR9 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 contributor: fullname: Teh – volume: 35 start-page: 18 year: 2017 end-page: 31 ident: CR29 article-title: Brain tumor segmentation with deep neural networks publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.05.004 contributor: fullname: Larochelle – ident: CR43 – ident: CR47 – volume: 33 start-page: 170 year: 2016 end-page: 175 ident: CR6 article-title: Image analysis and machine learning in digital pathology: challenges and opportunities publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.06.037 contributor: fullname: Lee – volume: 2 start-page: 591 issue: 4 year: 2010 ident: CR1 article-title: An improved implementation of brain tumor detection using segmentation based on hierarchical self organizing map publication-title: Int. J. Comput. Theory Eng. doi: 10.7763/IJCTE.2010.V2.207 contributor: fullname: Karnan – ident: CR37 – volume: 130 start-page: 98 year: 2014 end-page: 107 ident: CR8 article-title: Performance improved iteration-free artificial neural networks for abnormal magnetic resonance brain image classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.12.066 contributor: fullname: Anitha – ident: CR30 – volume: 2016 start-page: 1 year: 2016 end-page: 7 ident: CR5 article-title: Multiscale CNNs for Brain Tumor Segmentation and Diagnosis publication-title: Computational and Mathematical Methods in Medicine doi: 10.1155/2016/8356294 contributor: fullname: Jia – start-page: 253 year: 2010 end-page: 256 ident: CR15 article-title: Convolutional networks and applications in vision publication-title: Proceedings of 2010 IEEE International Symposium on Circuits and Systems doi: 10.1109/ISCAS.2010.5537907 contributor: fullname: Farabet – start-page: 151 year: 2016 end-page: 160 ident: CR18 article-title: Classification of brain tumor MRIs using a kernel support vector machine publication-title: Building Sustainable Health Ecosystems: 6th International Conference on Well-Being in the Information Society, WIS 2016, Tampere, Finland, September 16-18, 2016, Proceedings doi: 10.1007/978-3-319-44672-1_13 contributor: fullname: Zhan – ident: CR33 – start-page: 573 year: 2013 end-page: 577 ident: CR24 article-title: Brain tumor detection using unsupervised learning based neural network publication-title: 2013 International Conference on Communication Systems and Network Technologies doi: 10.1109/CSNT.2013.123 contributor: fullname: Bhaiya – volume: PP start-page: 1 issue: 99 year: 2015 end-page: 11 ident: CR44 article-title: Sensor multifault diagnosis with improved support vector machines publication-title: IEEE Trans. Autom. Sci. Eng. contributor: fullname: Chen – year: 2015 ident: CR45 publication-title: Fast R-CNN. International Conference on Computer Vision (ICCV), Santiago, Chile, 11–18 December, 2015 contributor: fullname: Girshick – ident: CR42 – start-page: 157 year: 2015 end-page: 166 ident: CR23 article-title: Computer-aided diagnosis of malign and benign brain tumors on MR images publication-title: ICT Innovations 2014 contributor: fullname: Ekşi – start-page: 947 year: 2015 end-page: 951 ident: CR28 article-title: Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation publication-title: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, 19–24 April, 2015 contributor: fullname: Chang – volume: 2 start-page: 263 year: 1995 end-page: 286 ident: CR39 article-title: Solving multiclass learning problems via error-correcting output codes publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.105 contributor: fullname: Bakiri – ident: CR19 – volume: 9 start-page: 409 issue: 2 year: 2015 end-page: 425 ident: CR22 article-title: Computer-aided diagnosis system for tissue characterization of brain tumor on magnetic resonance images publication-title: Sig. Image Video Process. doi: 10.1007/s11760-013-0456-z contributor: fullname: Reddy – volume: 35 start-page: 1240 issue: 5 year: 2016 end-page: 1251 ident: CR34 article-title: Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2016.2538465 contributor: fullname: Silva – start-page: 1097 year: 2012 end-page: 1105 ident: CR12 article-title: ImageNet Classification with Deep Convolutional Neural Networks publication-title: Proceedings of the 25th International Conference on Neural Information Processing Systems – Volume 1 contributor: fullname: Hinton – start-page: 323 year: 2016 end-page: 326 ident: CR48 article-title: Efficient hardware architecture of softmax layer in deep neural network publication-title: 2016 29th IEEE International System-on-Chip Conference (SOCC) doi: 10.1109/SOCC.2016.7905501 contributor: fullname: Yuan – volume: 28 start-page: 248 issue: 3 year: 2011 end-page: 255 ident: CR3 article-title: Medical image segmentation algorithms using deformable models: a review publication-title: IETE Tech. Rev. doi: 10.4103/0256-4602.81244 contributor: fullname: Murty – ident: CR38 – volume: 10 start-page: 537 year: 2016 end-page: 5447 ident: CR16 article-title: Continuous action segmentation and recognition using hybrid convolutional neural network-hidden Markov model model publication-title: IET Comput. Vision doi: 10.1049/iet-cvi.2015.0408 contributor: fullname: Tu – start-page: 653 year: 2015 end-page: 662 ident: CR26 article-title: Brain CT image classification with deep neural networks publication-title: Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems contributor: fullname: Sang – volume: 19 start-page: 284 issue: 1 year: 2018 end-page: 295 ident: CR13 article-title: Supervised Hash Coding With Deep Neural Network for Environment Perception of Intelligent Vehicles publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2017.2749965 contributor: fullname: Dai – volume: 13 start-page: 54 issue: 1 year: 2016 end-page: 67 ident: CR46 article-title: Parameter estimation in softmax decision-making models with linear objective functions publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2015.2499244 contributor: fullname: Leonard – ident: CR17 – ident: CR31 – volume: 37 start-page: 101 year: 2017 end-page: 113 ident: CR11 article-title: Deep ensemble learning of sparse regression models for brain disease diagnosis publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.01.008 contributor: fullname: Shen – volume: 3 start-page: 117 issue: 3 year: 2013 end-page: 128 ident: CR20 article-title: Efficient computer aided diagnosis of abnormal parts detection in magnetic resonance images using hybrid abnormality detection algorithm publication-title: Cent. Eur. J. Comput. Sci. contributor: fullname: Hemalatha – ident: CR32 – start-page: 165 year: 2003 end-page: 168 ident: CR40 article-title: Boosted ECOC ensembles for face recognition publication-title: 2003 International Conference on Visual Information Engineering, VIE 2003 contributor: fullname: Ardeshir – volume: 138 start-page: 49 year: 2017 end-page: 56 ident: CR27 article-title: Classification of CT brain images based on deep learning networks publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2016.10.007 contributor: fullname: Tian – volume: 3 start-page: 61 year: 2013 end-page: 66 ident: CR21 article-title: A computer aided diagnostic system for classification of brain tumors using texture features and probabilistic neural network publication-title: Int. J. Comput. Sci. Eng. Inf. Technol. Res. contributor: fullname: Udupi – volume: 41 start-page: 5526 issue: 11 year: 2014 end-page: 5545 ident: CR2 article-title: Computer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.01.021 contributor: fullname: Salem – volume: 34 start-page: 617 issue: 8 year: 2010 end-page: 631 ident: CR7 article-title: Medical image analysis with artificial neural networks publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2010.07.003 contributor: fullname: Ren – year: 2006 ident: CR36 publication-title: Digital Image Processing, 3rd edn. contributor: fullname: Woods – volume: 10 start-page: 103 year: 2016 end-page: 11411 ident: CR10 article-title: Driving posture recognition by convolutional neural networks publication-title: IET Comp. Vision doi: 10.1049/iet-cvi.2015.0175 contributor: fullname: Zhang – start-page: 934 year: 2018 end-page: 943 ident: CR14 article-title: Performance evaluation of support vector machine and convolutional neural network algorithms in real-time vehicle type classification publication-title: Advances in Internet, Data & Web Technologies doi: 10.1007/978-3-319-75928-9_86 contributor: fullname: Kolici – start-page: 1 year: 2012 end-page: 6 ident: CR25 article-title: Artificial neural networks design for classification of brain tumour publication-title: 2012 International Conference on Computer Communication and Informatics, ICCCI–2012, 10–12 January, 2012 contributor: fullname: Devi – volume: 102 start-page: 317 year: 2016 end-page: 324 ident: CR35 article-title: Review of MRI-based brain tumor image segmentation using deep learning methods publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2016.09.407 contributor: fullname: Şah – ident: CR41 – volume: 32 start-page: 413 issue: 6 year: 2015 end-page: 427 ident: CR4 article-title: Image segmentation methods and applications in MRI brain images publication-title: IETE Tech. Rev. doi: 10.1080/02564602.2015.1027307 contributor: fullname: Hematian – start-page: 653 volume-title: Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems year: 2015 ident: 332_CR26 doi: 10.1007/978-3-319-13359-1_50 contributor: fullname: C. Da – ident: 332_CR47 – volume-title: Fast R-CNN. International Conference on Computer Vision (ICCV), Santiago, Chile, 11–18 December, 2015 year: 2015 ident: 332_CR45 contributor: fullname: R. Girshick – start-page: 934 volume-title: Advances in Internet, Data & Web Technologies year: 2018 ident: 332_CR14 doi: 10.1007/978-3-319-75928-9_86 contributor: fullname: A. Şentaş – ident: 332_CR32 doi: 10.1007/978-3-319-55524-9_8 – volume: 41 start-page: 5526 issue: 11 year: 2014 ident: 332_CR2 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.01.021 contributor: fullname: E. -S. A. El-Dahshan – start-page: 947 volume-title: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, 19–24 April, 2015 year: 2015 ident: 332_CR28 contributor: fullname: Y. Xu – volume-title: Digital Image Processing, 3rd edn. year: 2006 ident: 332_CR36 contributor: fullname: R. C. Gonzalez – volume: 35 start-page: 18 year: 2017 ident: 332_CR29 publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.05.004 contributor: fullname: M. Havaei – volume: 34 start-page: 617 issue: 8 year: 2010 ident: 332_CR7 publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2010.07.003 contributor: fullname: J. Jiang – volume: 19 start-page: 284 issue: 1 year: 2018 ident: 332_CR13 publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2017.2749965 contributor: fullname: Chenggang Yan – start-page: 323 volume-title: 2016 29th IEEE International System-on-Chip Conference (SOCC) year: 2016 ident: 332_CR48 doi: 10.1109/SOCC.2016.7905501 contributor: fullname: B. Yuan – ident: 332_CR37 doi: 10.1109/EMBC.2015.7318458 – volume: 3 start-page: 61 year: 2013 ident: 332_CR21 publication-title: Int. J. Comput. Sci. Eng. Inf. Technol. Res. contributor: fullname: S. Patil – volume: 28 start-page: 248 issue: 3 year: 2011 ident: 332_CR3 publication-title: IETE Tech. Rev. doi: 10.4103/0256-4602.81244 contributor: fullname: D. Jayadevappa – volume: 33 start-page: 170 year: 2016 ident: 332_CR6 publication-title: Med. Image Anal. doi: 10.1016/j.media.2016.06.037 contributor: fullname: A. Madabhushi – start-page: 165 volume-title: 2003 International Conference on Visual Information Engineering, VIE 2003 year: 2003 ident: 332_CR40 contributor: fullname: T. Windeatt – volume: 2 start-page: 263 year: 1995 ident: 332_CR39 publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.105 contributor: fullname: T. G. Dietterich – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 332_CR9 publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 contributor: fullname: G. E. Hinton – volume: 2 start-page: 591 issue: 4 year: 2010 ident: 332_CR1 publication-title: Int. J. Comput. Theory Eng. doi: 10.7763/IJCTE.2010.V2.207 contributor: fullname: T. Logeswari – ident: 332_CR30 doi: 10.1007/978-3-319-55524-9_11 – start-page: 1 volume-title: 2012 International Conference on Computer Communication and Informatics, ICCCI–2012, 10–12 January, 2012 year: 2012 ident: 332_CR25 contributor: fullname: S. N. Deepa – volume: 9 start-page: 409 issue: 2 year: 2015 ident: 332_CR22 publication-title: Sig. Image Video Process. doi: 10.1007/s11760-013-0456-z contributor: fullname: M. P. Arakeri – volume: 3 start-page: 117 issue: 3 year: 2013 ident: 332_CR20 publication-title: Cent. Eur. J. Comput. Sci. contributor: fullname: C. Lakshmi Devasena – volume: 13 start-page: 54 issue: 1 year: 2016 ident: 332_CR46 publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2015.2499244 contributor: fullname: P. Reverdy – ident: 332_CR43 – ident: 332_CR41 – volume: 37 start-page: 101 year: 2017 ident: 332_CR11 publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.01.008 contributor: fullname: H. -I. Suk – volume: 130 start-page: 98 year: 2014 ident: 332_CR8 publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.12.066 contributor: fullname: D. J. Hemanth – volume: 102 start-page: 317 year: 2016 ident: 332_CR35 publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2016.09.407 contributor: fullname: A. Işin – start-page: 151 volume-title: Building Sustainable Health Ecosystems: 6th International Conference on Well-Being in the Information Society, WIS 2016, Tampere, Finland, September 16-18, 2016, Proceedings year: 2016 ident: 332_CR18 doi: 10.1007/978-3-319-44672-1_13 contributor: fullname: M. K. Abd-Ellah – ident: 332_CR33 doi: 10.1109/ENBENG.2017.7889452 – volume: PP start-page: 1 issue: 99 year: 2015 ident: 332_CR44 publication-title: IEEE Trans. Autom. Sci. Eng. contributor: fullname: F. Deng – volume: 10 start-page: 537 year: 2016 ident: 332_CR16 publication-title: IET Comput. Vision doi: 10.1049/iet-cvi.2015.0408 contributor: fullname: J. Lei – ident: 332_CR17 – start-page: 1097 volume-title: Proceedings of the 25th International Conference on Neural Information Processing Systems – Volume 1 year: 2012 ident: 332_CR12 contributor: fullname: A. Krizhevsky – ident: 332_CR38 – start-page: 157 volume-title: ICT Innovations 2014 year: 2015 ident: 332_CR23 doi: 10.1007/978-3-319-09879-1_16 contributor: fullname: E. Dandıl – volume: 10 start-page: 103 year: 2016 ident: 332_CR10 publication-title: IET Comp. Vision doi: 10.1049/iet-cvi.2015.0175 contributor: fullname: C. Yan – ident: 332_CR31 – volume: 32 start-page: 413 issue: 6 year: 2015 ident: 332_CR4 publication-title: IETE Tech. Rev. doi: 10.1080/02564602.2015.1027307 contributor: fullname: S. Yazdani – volume: 2016 start-page: 1 year: 2016 ident: 332_CR5 publication-title: Computational and Mathematical Methods in Medicine doi: 10.1155/2016/8356294 contributor: fullname: Liya Zhao – volume: 35 start-page: 1240 issue: 5 year: 2016 ident: 332_CR34 publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2016.2538465 contributor: fullname: Sergio Pereira – start-page: 573 volume-title: 2013 International Conference on Communication Systems and Network Technologies year: 2013 ident: 332_CR24 doi: 10.1109/CSNT.2013.123 contributor: fullname: S. Goswami – volume: 138 start-page: 49 year: 2017 ident: 332_CR27 publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2016.10.007 contributor: fullname: X. W. Gao – ident: 332_CR42 – start-page: 253 volume-title: Proceedings of 2010 IEEE International Symposium on Circuits and Systems year: 2010 ident: 332_CR15 doi: 10.1109/ISCAS.2010.5537907 contributor: fullname: Y. LeCun – ident: 332_CR19 doi: 10.1109/ICM.2016.7847911 |
SSID | ssj0055532 ssib044603796 ssib044736454 ssib008501553 |
Score | 2.4584713 |
Snippet | Brain tumour is a serious disease, and the number of people who are dying due to brain tumours is increasing. Manual tumour diagnosis from magnetic resonance... Abstract Brain tumour is a serious disease, and the number of people who are dying due to brain tumours is increasing. Manual tumour diagnosis from magnetic... |
SourceID | doaj swepub proquest crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Artificial neural networks Biometrics Brain Brain cancer Brain tumour diagnosis Convolutional neural networks (CNNs) Diagnosis Engineering Error correction Feature extraction Image classification Image detection Image Processing and Computer Vision Image segmentation Information systems Informationssystem Localization Machine learning Magnetic resonance imaging Medical imaging MRI segmentation Neural networks Pattern Recognition Signal,Image and Speech Processing Support vector machines Tumors Tumour detection and localization |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09TxwxELUSqjSEJKAcgchF0oAszuv1x5Z8iipNCKKz7LVNToI7xO4qbX46M_beoaMgTaqVvFuMPGPPe9qZN4R80wkwNBeSiZCAoPDImRHeM-ma1Hrngk_Y73z5U_-4MWfnKJOzGvWFNWFFHrhs3JFX3ANMCDI1be2jgfyqQps0l0n5RhfiMzVLMlXuYCmlqMZ_mNyoo44LhWWMHNvJRMXqtSyUxfrXEObqp-gLAdGcdC62yOaIFulxsfIDeRPnH8n7ETnS8Vx2n8jfqz8L9vAbMhLNFYIsD7ihbugXWZKVepwEQfsBiP4jDaW8btbRouNMsceE3sMidjRSIOALlOGIdAZrsaNYG39LsT59jFMwCXUw8yNXkXfb5NfF-dXpJRtnK7C2VlXPHNdhGrENVnvY3ThVHoheEBpugARQdqoanQDN8SZ5r1vFnTMqxFQZJWpnuNghG_PFPH4mNJrQwi0g4ShHoFvShzo0tdfYGsV1chNysNxr-1AkNGymHkbZ4hgLjrHoGFtPyAl6Y_Uhql_nBYgJO8aE_VdMTMje0pd2PJKdBaaLYNEYMSGHS_8-v37Fou8lBNZsOptdH2eb7vrBAkqT9e7_sPwLeVflKMWClD2y0T8OcZ-87cLwNQf4EyilAR4 priority: 102 providerName: Directory of Open Access Journals |
Title | Two-phase multi-model automatic brain tumour diagnosis system from magnetic resonance images using convolutional neural networks |
URI | https://link.springer.com/article/10.1186/s13640-018-0332-4 https://www.proquest.com/docview/2114561883 https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-71054 https://doaj.org/article/b61b083d5f9c4be88936dcf715f6b971 |
Volume | 2018 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoucCBQgGxpVQ-wAVkWMfPHEsf6okLBXGz7Nguq9JN1STi2p_OjJNdWISQ4BTJSayRPTP-xp75TMhLkwFDc6GYiBkCFJ44syIEpnydm-B9DBnrnc8-mg9f7PEJ0uRU662L5eXb1YlkcdTFqq1-13GhMRORY0WYqJjcIncBO0jkyz_CCofR-yqlRDWdXv7xt431p9D0b2DL9XHob9ShZbk53fkfQR-SBxO4pIejNjwid9Jyl-xMQJNOZtztkvu_sBA-Jrfn31t2_RWWM1rSC1m5HYf6oW8LnysNeI0E7Ycr6J_GMTdv0dGRBJpigQq9gkYsh6QQvbfI4ZHoAtpSRzGx_oJicvuk5CAgkmiWR0lB756QT6cn50dnbLqYgTVSVz3z3MR5whpaE6yIaa4DRIlRGHAfGXDwXNcmAxTkdQ7BNJp7b3VMubJaSG-5eEq2l-0yPSM02diAC1HgBxLEaipEGWsZDNZVcZP9jLxeTZe7Hvk3XIlbrHbjSDsYaYcj7eSMvMcJXX-I1Nmlob25cJMluqBBQJBa5bqRIVkAbDo22XCVdagNn5H9lTq4yZ47B2EyIk1rxYy8WU37z9d_kejVqEUbMh0vPh8Wmb71gwOIp-TeP_X6nNyrin5h2so-2e5vhvSCbHVxOCjGcFB2Fn4A2sIIRQ |
link.rule.ids | 230,315,782,786,866,887,2108,27935,27936,41130,42199,52244 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB3RcgAOFAqIhQI-wAUUsY7jjxxLP7SI0gsL4mbFsV1WopuqScSVn86MkxQWISQ4RXJ2o5E9M34jz3sGeK4jYmguZCZ8xAKFB54Z4VwmqzLWrqq8i8R3XnzQp5_N4RHJ5IiJC5O63acjyZSpU1gb9brlQlErIidKmMizYguuFxhv5MoHRHEY0q-UUuTj8eUf_7axASWd_g1weXUe-pt2aNpvjnf-y9I7cHuEl2x_8Ie7cC2sd2FnhJpsDOR2F279okN4D74vvzXZxRfc0FhqMMzS_Tis6rsmKboyRxdJsK4_x-8zP3TnrVo2yEAzoqiwcxwkQiTD-r0hFY_AVjgWWkat9WeM2ttHN0cDSUYzPVITensfPh4fLQ8W2Xg1Q1YXKu-yims_D8Si1c4IH-bKYZ3ohcYEEhEJz1WpI4JBXkbndK14VRnlQ8yNEkVluHgA2-tmHR4CC8bXmEQkZoKA1Zp0vvBl4TQxq7iO1QxeTutlLwYFDpsqF6PsMNMWZ9rSTNtiBm9oRa9-SOLZaaC5PLNjLFqn0EC0WsayLlwwCNmUr6PmMipXaj6Dvckf7BjRrcVCmbCmMWIGr6Zl__n6Lxa9GNxow6bD1af9ZNPXrrcI8mTx6J---gxuLJbvT-zJ29N3j-FmnnyNmlj2YLu77MMT2Gp9_zRFxg9APwsq |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3faxQxEB5sBbEPVqviadU86Iuy9LLZ_NgnqV6PilIEq_gWNpukHti7o7tLX_3TncnuVk9EEJ8Wsj8YsjOTb8h8XwCe6YgYmguZCR-xQOGBZ0Y4l8mqjLWrKu8i8Z2PP-qTL2Z2RDI5r0YuTOp2H7cke04DqTQt24O1j32IG3XQcKGoLZETPUzkWbEF1wuO6Zh2a4nu0KdiKaXIh63MP762sRglzf4NoHm1N_qbjmhae-a7_231bbg1wE522PvJHbgWlnuwO0BQNgR4swc7v-gT3oXvp5erbP0VFzqWGg-zdG4Oq7p2lZRemaMDJljbneP3me-79hYN6-WhGVFX2DkOElGSYV2_InWPwBY4FhpGLfdnjNreB_dHA0leM11Sc3pzDz7Nj07fHGfDkQ1ZXai8zSqu_TQQu1Y7I3yYKof1oxcaE0tEhDxVpY4IEnkZndO14lVllA8xN0oUleHiPmwvV8vwAFgwvsbkIjFDBKzipPOFLwuniXHFdawm8GL8d3bdK3PYVNEYZfuZtjjTlmbaFhN4TX_36kES1U4Dq4szO8SodQoNRKtlLOvCBYNQTvk6ai6jcqXmE9gffcMOkd5YLKAJgxojJvBydIGft_9i0fPepTZsmi0-HyabvrWdRfAni4f_9NWncOPDbG7fvz159whu5snVqLdlH7bbiy48hq3Gd09SkPwAfZMT_A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-phase+multi-model+automatic+brain+tumour+diagnosis+system+from+magnetic+resonance+images+using+convolutional+neural+networks&rft.jtitle=EURASIP+journal+on+image+and+video+processing&rft.au=Abd-Ellah%2C+Mahmoud+Khaled&rft.au=Awad%2C+Ali+Ismail&rft.au=Khalaf%2C+Ashraf+A.+M.&rft.au=Hamed%2C+Hesham+F.+A.&rft.date=2018-09-30&rft.pub=Springer+International+Publishing&rft.eissn=1687-5281&rft.volume=2018&rft.issue=1&rft_id=info:doi/10.1186%2Fs13640-018-0332-4&rft.externalDocID=10_1186_s13640_018_0332_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5281&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5281&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5281&client=summon |