Two-phase multi-model automatic brain tumour diagnosis system from magnetic resonance images using convolutional neural networks

Brain tumour is a serious disease, and the number of people who are dying due to brain tumours is increasing. Manual tumour diagnosis from magnetic resonance images (MRIs) is a time consuming process and is insufficient for accurately detecting, localizing, and classifying the tumour type. This rese...

Full description

Saved in:
Bibliographic Details
Published in:EURASIP journal on image and video processing Vol. 2018; no. 1; pp. 1 - 10
Main Authors: Abd-Ellah, Mahmoud Khaled, Awad, Ali Ismail, Khalaf, Ashraf A. M., Hamed, Hesham F. A.
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 30-09-2018
Springer Nature B.V
SpringerOpen
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Brain tumour is a serious disease, and the number of people who are dying due to brain tumours is increasing. Manual tumour diagnosis from magnetic resonance images (MRIs) is a time consuming process and is insufficient for accurately detecting, localizing, and classifying the tumour type. This research proposes a novel two-phase multi-model automatic diagnosis system for brain tumour detection and localization. In the first phase, the system structure consists of preprocessing, feature extraction using a convolutional neural network (CNN), and feature classification using the error-correcting output codes support vector machine (ECOC-SVM) approach. The purpose of the first system phase is to detect brain tumour by classifying the MRIs into normal and abnormal images. The aim of the second system phase is to localize the tumour within the abnormal MRIs using a fully designed five-layer region-based convolutional neural network (R-CNN). The performance of the first phase was assessed using three CNN models, namely, AlexNet, Visual Geometry Group (VGG)-16, and VGG-19, and a maximum detection accuracy of 99.55% was achieved with AlexNet using 349 images extracted from the standard Reference Image Database to Evaluate Response (RIDER) Neuro MRI database. The brain tumour localization phase was evaluated using 804 3D MRIs from the Brain Tumor Segmentation (BraTS) 2013 database, and a DICE score of 0.87 was achieved. The empirical work proved the outstanding performance of the proposed deep learning-based system in tumour detection compared to other non-deep-learning approaches in the literature. The obtained results also demonstrate the superiority of the proposed system concerning both tumour detection and localization.
AbstractList Brain tumour is a serious disease, and the number of people who are dying due to brain tumours is increasing. Manual tumour diagnosis from magnetic resonance images (MRIs) is a time consuming process and is insufficient for accurately detecting, localizing, and classifying the tumour type. This research proposes a novel two-phase multi-model automatic diagnosis system for brain tumour detection and localization. In the first phase, the system structure consists of preprocessing, feature extraction using a convolutional neural network (CNN), and feature classification using the error-correcting output codes support vector machine (ECOC-SVM) approach. The purpose of the first system phase is to detect brain tumour by classifying the MRIs into normal and abnormal images. The aim of the second system phase is to localize the tumour within the abnormal MRIs using a fully designed five-layer region-based convolutional neural network (R-CNN). The performance of the first phase was assessed using three CNN models, namely, AlexNet, Visual Geometry Group (VGG)-16, and VGG-19, and a maximum detection accuracy of 99.55% was achieved with AlexNet using 349 images extracted from the standard Reference Image Database to Evaluate Response (RIDER) Neuro MRI database. The brain tumour localization phase was evaluated using 804 3D MRIs from the Brain Tumor Segmentation (BraTS) 2013 database, and a DICE score of 0.87 was achieved. The empirical work proved the outstanding performance of the proposed deep learning-based system in tumour detection compared to other non-deep-learning approaches in the literature. The obtained results also demonstrate the superiority of the proposed system concerning both tumour detection and localization.
Abstract Brain tumour is a serious disease, and the number of people who are dying due to brain tumours is increasing. Manual tumour diagnosis from magnetic resonance images (MRIs) is a time consuming process and is insufficient for accurately detecting, localizing, and classifying the tumour type. This research proposes a novel two-phase multi-model automatic diagnosis system for brain tumour detection and localization. In the first phase, the system structure consists of preprocessing, feature extraction using a convolutional neural network (CNN), and feature classification using the error-correcting output codes support vector machine (ECOC-SVM) approach. The purpose of the first system phase is to detect brain tumour by classifying the MRIs into normal and abnormal images. The aim of the second system phase is to localize the tumour within the abnormal MRIs using a fully designed five-layer region-based convolutional neural network (R-CNN). The performance of the first phase was assessed using three CNN models, namely, AlexNet, Visual Geometry Group (VGG)-16, and VGG-19, and a maximum detection accuracy of 99.55% was achieved with AlexNet using 349 images extracted from the standard Reference Image Database to Evaluate Response (RIDER) Neuro MRI database. The brain tumour localization phase was evaluated using 804 3D MRIs from the Brain Tumor Segmentation (BraTS) 2013 database, and a DICE score of 0.87 was achieved. The empirical work proved the outstanding performance of the proposed deep learning-based system in tumour detection compared to other non-deep-learning approaches in the literature. The obtained results also demonstrate the superiority of the proposed system concerning both tumour detection and localization.
ArticleNumber 97
Author Abd-Ellah, Mahmoud Khaled
Khalaf, Ashraf A. M.
Hamed, Hesham F. A.
Awad, Ali Ismail
Author_xml – sequence: 1
  givenname: Mahmoud Khaled
  surname: Abd-Ellah
  fullname: Abd-Ellah, Mahmoud Khaled
  organization: Electronic and Communication Department, Al-Madina Higher Institute for Engineering and Technology
– sequence: 2
  givenname: Ali Ismail
  orcidid: 0000-0002-3800-0757
  surname: Awad
  fullname: Awad, Ali Ismail
  email: ali.awad@ltu.se
  organization: Department of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Faculty of Engineering, Al-Azhar University
– sequence: 3
  givenname: Ashraf A. M.
  surname: Khalaf
  fullname: Khalaf, Ashraf A. M.
  organization: Faculty of Engineering, Minia University, Minia, Egypt
– sequence: 4
  givenname: Hesham F. A.
  surname: Hamed
  fullname: Hamed, Hesham F. A.
  organization: Faculty of Engineering, Minia University, Minia, Egypt
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-71054$$DView record from Swedish Publication Index
BookMark eNp1kUtv1TAQhSNUJNrCD2BniS0BTxw_sqwKhUqV2BS2lp3YF18S--IHV93x03FuKh4LVmMdH38znnPRnPngTdO8BPwGQLC3CQjrcYtBtJiQru2fNOfABG9pJ-Dsr_Oz5iKlPcaUUtKdNz_vj6E9fFXJoKXM2bVLmMyMVMlhUdmNSEflPMplCSWiyamdD8kllB5SNguyMSxoqaJZvdGk4JUfDXJVMwmV5PwOjcH_CHPJrl7OyJsSTyUfQ_yWnjdPrZqTefFYL5vPN-_vrz-2d58-3F5f3bVjz7rcKuATNh0XA9eCTAYzjYd-IpxjYgVozAZuaY9hsFrzkYFSgk3GdoKRXgkgl83txp2C2stDrBPGBxmUkychxJ1UsX5iNlKzyqtNqB3GXhshBsKm0XKglumBr6zXGysdzaHof2jv3JerE23ORXLAtK_2V5v9EMP3YlKW-7rMuoskO4CeMhCCVBdsrjGGlKKxv7GA5Zqx3DKWNWO5ZixXcvc4SPX6nYl_yP9_9Au-8q37
CitedBy_id crossref_primary_10_1007_s11042_019_07988_1
crossref_primary_10_1109_ACCESS_2020_3033480
crossref_primary_10_1109_TMI_2020_3045295
crossref_primary_10_1007_s11042_022_12213_7
crossref_primary_10_1109_ACCESS_2024_3394541
crossref_primary_10_1016_j_patrec_2019_11_016
crossref_primary_10_1007_s12553_020_00514_6
crossref_primary_10_1002_ima_22615
crossref_primary_10_1007_s11042_021_10927_8
crossref_primary_10_1109_ACCESS_2021_3107371
crossref_primary_10_1007_s40747_021_00563_y
crossref_primary_10_1016_j_cogsys_2019_09_007
crossref_primary_10_1016_j_jneumeth_2019_108520
crossref_primary_10_1016_j_bbe_2021_08_011
crossref_primary_10_1186_s40537_021_00444_8
crossref_primary_10_2174_2213275912666190809111928
crossref_primary_10_15622_ia_22_3_3
crossref_primary_10_3390_s22082976
crossref_primary_10_1016_j_cmpb_2021_106188
crossref_primary_10_1007_s11042_023_17738_z
crossref_primary_10_1007_s10278_019_00276_2
crossref_primary_10_1007_s00500_021_06574_8
crossref_primary_10_1080_03772063_2022_2083027
crossref_primary_10_1155_2019_6212759
crossref_primary_10_1109_ACCESS_2022_3184113
crossref_primary_10_1142_S0219467822500231
crossref_primary_10_1016_j_cmpb_2022_106635
crossref_primary_10_1002_ima_22433
crossref_primary_10_1007_s11814_023_1452_9
crossref_primary_10_1155_2022_2155132
crossref_primary_10_1109_ACCESS_2021_3131713
crossref_primary_10_1007_s10278_020_00367_5
crossref_primary_10_1093_noajnl_vdac081
crossref_primary_10_2174_1872212117666220823100209
crossref_primary_10_1016_j_asoc_2024_111709
crossref_primary_10_1109_ACCESS_2020_2994388
crossref_primary_10_1136_bmjopen_2020_042660
crossref_primary_10_1109_ACCESS_2023_3294562
crossref_primary_10_1007_s11517_024_03064_5
crossref_primary_10_1049_iet_ipr_2020_0908
crossref_primary_10_3390_app12062900
crossref_primary_10_1016_j_compbiomed_2024_108412
crossref_primary_10_1063_5_0138021
crossref_primary_10_3390_app9030470
crossref_primary_10_1109_TNNLS_2021_3105384
crossref_primary_10_1186_s12911_023_02114_6
crossref_primary_10_3390_cancers15164172
crossref_primary_10_1007_s00500_020_05493_4
crossref_primary_10_2174_1573405617666211215111937
crossref_primary_10_1016_j_mri_2020_12_017
crossref_primary_10_1007_s40846_021_00620_4
crossref_primary_10_32604_cmc_2022_024103
crossref_primary_10_1007_s00521_023_09346_7
crossref_primary_10_1016_j_eswa_2023_122159
crossref_primary_10_1109_ACCESS_2024_3379136
crossref_primary_10_1007_s10845_020_01540_x
crossref_primary_10_1016_j_compbiomed_2022_105273
crossref_primary_10_1109_ACCESS_2019_2920005
Cites_doi 10.1162/neco.2006.18.7.1527
10.1016/j.media.2016.05.004
10.1016/j.media.2016.06.037
10.7763/IJCTE.2010.V2.207
10.1016/j.neucom.2011.12.066
10.1155/2016/8356294
10.1109/ISCAS.2010.5537907
10.1007/978-3-319-44672-1_13
10.1109/CSNT.2013.123
10.1613/jair.105
10.1007/s11760-013-0456-z
10.1109/TMI.2016.2538465
10.1109/SOCC.2016.7905501
10.4103/0256-4602.81244
10.1049/iet-cvi.2015.0408
10.1109/TITS.2017.2749965
10.1109/TASE.2015.2499244
10.1016/j.media.2017.01.008
10.1016/j.cmpb.2016.10.007
10.1016/j.eswa.2014.01.021
10.1016/j.compmedimag.2010.07.003
10.1049/iet-cvi.2015.0175
10.1007/978-3-319-75928-9_86
10.1016/j.procs.2016.09.407
10.1080/02564602.2015.1027307
10.1007/978-3-319-13359-1_50
10.1007/978-3-319-55524-9_8
10.1109/EMBC.2015.7318458
10.1007/978-3-319-55524-9_11
10.1109/ENBENG.2017.7889452
10.1007/978-3-319-09879-1_16
10.1109/ICM.2016.7847911
ContentType Journal Article
Copyright The Author(s) 2018
EURASIP Journal on Image and Video Processing is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: EURASIP Journal on Image and Video Processing is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
JQ2
L7M
L~C
L~D
P5Z
P62
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
ADTPV
AOWAS
DOA
DOI 10.1186/s13640-018-0332-4
DatabaseName SpringerOpen (Open Access)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
SwePub
SwePub Articles
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
Computer and Information Systems Abstracts Professional
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
Advanced Technologies Database with Aerospace
DatabaseTitleList
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1687-5281
EndPage 10
ExternalDocumentID oai_doaj_org_article_b61b083d5f9c4be88936dcf715f6b971
oai_DiVA_org_ltu_71054
10_1186_s13640_018_0332_4
GroupedDBID -A0
0R~
29J
2WC
4.4
40G
5VS
8FE
8FG
8R4
8R5
AAJSJ
AAKKN
AAPBV
AAYZJ
ABPTK
ACACY
ACGFS
ACM
ADBBV
ADINQ
AENEX
AERSA
AFGXO
AFKRA
AFNRJ
AHBXF
AHBYD
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ARAPS
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
E3Z
EBS
ECE
EJD
GROUPED_DOAJ
HCIFZ
HZ~
I-F
IAO
IN-
IPNFZ
ITG
ITH
KQ8
M~E
OK1
P2P
P62
PIMPY
PROAC
Q2X
RHU
RIG
RSV
SEG
SOJ
U2A
AAYXX
ABEEZ
ACULB
CITATION
EBLON
7SC
7SP
8FD
ABUWG
AZQEC
DWQXO
JQ2
L7M
L~C
L~D
PQEST
PQQKQ
PQUKI
PRINS
2VQ
ADTPV
AHSBF
AOWAS
C1A
H13
IL9
ITC
O9-
ID FETCH-LOGICAL-c462t-a17d0e27897b83de06b094d37703f81b0697f54019fbb7c61aa86def28634a813
IEDL.DBID C24
ISSN 1687-5281
1687-5176
IngestDate Tue Oct 22 15:07:24 EDT 2024
Sat Jun 29 09:15:01 EDT 2024
Thu Oct 10 18:51:30 EDT 2024
Fri Aug 23 00:38:01 EDT 2024
Sat Dec 16 12:01:49 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Convolutional neural networks (CNNs)
MRI segmentation
Tumour detection and localization
Brain tumour diagnosis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-a17d0e27897b83de06b094d37703f81b0697f54019fbb7c61aa86def28634a813
ORCID 0000-0002-3800-0757
OpenAccessLink http://link.springer.com/10.1186/s13640-018-0332-4
PQID 2114561883
PQPubID 237295
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_b61b083d5f9c4be88936dcf715f6b971
swepub_primary_oai_DiVA_org_ltu_71054
proquest_journals_2114561883
crossref_primary_10_1186_s13640_018_0332_4
springer_journals_10_1186_s13640_018_0332_4
PublicationCentury 2000
PublicationDate 2018-09-30
PublicationDateYYYYMMDD 2018-09-30
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-30
  day: 30
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle EURASIP journal on image and video processing
PublicationTitleAbbrev J Image Video Proc
PublicationYear 2018
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References Reverdy, Leonard (CR46) 2016; 13
Madabhushi, Lee (CR6) 2016; 33
Patil, Udupi (CR21) 2013; 3
Gao, Hui, Tian (CR27) 2017; 138
Gonzalez, Woods (CR36) 2006
El-Dahshan, Mohsen, Revett, Salem (CR2) 2014; 41
Yan, Xie, Yang, Yin, Zhang, Dai (CR13) 2018; 19
CR19
Da, Zhang, Sang (CR26) 2015
CR17
Deepa, Devi (CR25) 2012
CR38
Lakshmi Devasena, Hemalatha (CR20) 2013; 3
CR37
Yuan (CR48) 2016
Krizhevsky, Sutskever, Hinton (CR12) 2012
CR33
Işin, Direkoğlu, Şah (CR35) 2016; 102
Windeatt, Ardeshir (CR40) 2003
Hinton, Osindero, Teh (CR9) 2006; 18
Abd-Ellah, Awad, Khalaf, Hamed, Li, Nykänen, Suomi, Wickramasinghe, Widén, Zhan (CR18) 2016
CR32
Logeswari, Karnan (CR1) 2010; 2
CR31
CR30
Arakeri, Reddy (CR22) 2015; 9
Jayadevappa, Srinivas Kumar, Murty (CR3) 2011; 28
Şentaş, Tashiev, Küçükayvaz, Kul, Eken, Sayar, Becerikli, Barolli, Xhafa, Javaid, Spaho, Kolici (CR14) 2018
LeCun, Kavukcuoglu, Farabet (CR15) 2010
Yan, Coenen, Zhang (CR10) 2016; 10
Suk, Lee, Shen (CR11) 2017; 37
Hemanth, Vijila, Selvakumar, Anitha (CR8) 2014; 130
Dietterich, Bakiri (CR39) 1995; 2
Dandıl, Çakıroğlu, Ekşi (CR23) 2015
CR47
Deng, Guo, Zhou, Chen (CR44) 2015; PP
CR43
CR42
Goswami, Bhaiya (CR24) 2013
CR41
Havaei, Davy, Warde-Farley, Biard, Courville, Bengio, Pal, Jodoin, Larochelle (CR29) 2017; 35
Xu, Jia, Ai, Zhang, Lai, Chang (CR28) 2015
Yazdani, Yusof, Karimian, Pashna, Hematian (CR4) 2015; 32
Jiang, Trundle, Ren (CR7) 2010; 34
Girshick (CR45) 2015
Lei, Li, Zhang, Guo, Tu (CR16) 2016; 10
Zhao, Jia (CR5) 2016; 2016
Pereira, Pinto, Alves, Silva (CR34) 2016; 35
332_CR19
M. P. Arakeri (332_CR22) 2015; 9
S. N. Deepa (332_CR25) 2012
G. E. Hinton (332_CR9) 2006; 18
332_CR17
F. Deng (332_CR44) 2015; PP
332_CR37
S. Goswami (332_CR24) 2013
332_CR38
A. Krizhevsky (332_CR12) 2012
D. J. Hemanth (332_CR8) 2014; 130
A. Şentaş (332_CR14) 2018
Liya Zhao (332_CR5) 2016; 2016
Y. LeCun (332_CR15) 2010
T. G. Dietterich (332_CR39) 1995; 2
E. Dandıl (332_CR23) 2015
X. W. Gao (332_CR27) 2017; 138
332_CR47
M. K. Abd-Ellah (332_CR18) 2016
C. Lakshmi Devasena (332_CR20) 2013; 3
332_CR42
B. Yuan (332_CR48) 2016
332_CR43
T. Windeatt (332_CR40) 2003
332_CR41
A. Madabhushi (332_CR6) 2016; 33
Sergio Pereira (332_CR34) 2016; 35
A. Işin (332_CR35) 2016; 102
E. -S. A. El-Dahshan (332_CR2) 2014; 41
S. Patil (332_CR21) 2013; 3
Y. Xu (332_CR28) 2015
D. Jayadevappa (332_CR3) 2011; 28
J. Jiang (332_CR7) 2010; 34
C. Yan (332_CR10) 2016; 10
R. Girshick (332_CR45) 2015
S. Yazdani (332_CR4) 2015; 32
C. Da (332_CR26) 2015
Chenggang Yan (332_CR13) 2018; 19
332_CR33
H. -I. Suk (332_CR11) 2017; 37
J. Lei (332_CR16) 2016; 10
P. Reverdy (332_CR46) 2016; 13
332_CR31
332_CR32
R. C. Gonzalez (332_CR36) 2006
T. Logeswari (332_CR1) 2010; 2
M. Havaei (332_CR29) 2017; 35
332_CR30
References_xml – volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  end-page: 1554
  ident: CR9
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
  contributor:
    fullname: Teh
– volume: 35
  start-page: 18
  year: 2017
  end-page: 31
  ident: CR29
  article-title: Brain tumor segmentation with deep neural networks
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.05.004
  contributor:
    fullname: Larochelle
– ident: CR43
– ident: CR47
– volume: 33
  start-page: 170
  year: 2016
  end-page: 175
  ident: CR6
  article-title: Image analysis and machine learning in digital pathology: challenges and opportunities
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.06.037
  contributor:
    fullname: Lee
– volume: 2
  start-page: 591
  issue: 4
  year: 2010
  ident: CR1
  article-title: An improved implementation of brain tumor detection using segmentation based on hierarchical self organizing map
  publication-title: Int. J. Comput. Theory Eng.
  doi: 10.7763/IJCTE.2010.V2.207
  contributor:
    fullname: Karnan
– ident: CR37
– volume: 130
  start-page: 98
  year: 2014
  end-page: 107
  ident: CR8
  article-title: Performance improved iteration-free artificial neural networks for abnormal magnetic resonance brain image classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.12.066
  contributor:
    fullname: Anitha
– ident: CR30
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 7
  ident: CR5
  article-title: Multiscale CNNs for Brain Tumor Segmentation and Diagnosis
  publication-title: Computational and Mathematical Methods in Medicine
  doi: 10.1155/2016/8356294
  contributor:
    fullname: Jia
– start-page: 253
  year: 2010
  end-page: 256
  ident: CR15
  article-title: Convolutional networks and applications in vision
  publication-title: Proceedings of 2010 IEEE International Symposium on Circuits and Systems
  doi: 10.1109/ISCAS.2010.5537907
  contributor:
    fullname: Farabet
– start-page: 151
  year: 2016
  end-page: 160
  ident: CR18
  article-title: Classification of brain tumor MRIs using a kernel support vector machine
  publication-title: Building Sustainable Health Ecosystems: 6th International Conference on Well-Being in the Information Society, WIS 2016, Tampere, Finland, September 16-18, 2016, Proceedings
  doi: 10.1007/978-3-319-44672-1_13
  contributor:
    fullname: Zhan
– ident: CR33
– start-page: 573
  year: 2013
  end-page: 577
  ident: CR24
  article-title: Brain tumor detection using unsupervised learning based neural network
  publication-title: 2013 International Conference on Communication Systems and Network Technologies
  doi: 10.1109/CSNT.2013.123
  contributor:
    fullname: Bhaiya
– volume: PP
  start-page: 1
  issue: 99
  year: 2015
  end-page: 11
  ident: CR44
  article-title: Sensor multifault diagnosis with improved support vector machines
  publication-title: IEEE Trans. Autom. Sci. Eng.
  contributor:
    fullname: Chen
– year: 2015
  ident: CR45
  publication-title: Fast R-CNN. International Conference on Computer Vision (ICCV), Santiago, Chile, 11–18 December, 2015
  contributor:
    fullname: Girshick
– ident: CR42
– start-page: 157
  year: 2015
  end-page: 166
  ident: CR23
  article-title: Computer-aided diagnosis of malign and benign brain tumors on MR images
  publication-title: ICT Innovations 2014
  contributor:
    fullname: Ekşi
– start-page: 947
  year: 2015
  end-page: 951
  ident: CR28
  article-title: Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation
  publication-title: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, 19–24 April, 2015
  contributor:
    fullname: Chang
– volume: 2
  start-page: 263
  year: 1995
  end-page: 286
  ident: CR39
  article-title: Solving multiclass learning problems via error-correcting output codes
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.105
  contributor:
    fullname: Bakiri
– ident: CR19
– volume: 9
  start-page: 409
  issue: 2
  year: 2015
  end-page: 425
  ident: CR22
  article-title: Computer-aided diagnosis system for tissue characterization of brain tumor on magnetic resonance images
  publication-title: Sig. Image Video Process.
  doi: 10.1007/s11760-013-0456-z
  contributor:
    fullname: Reddy
– volume: 35
  start-page: 1240
  issue: 5
  year: 2016
  end-page: 1251
  ident: CR34
  article-title: Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2016.2538465
  contributor:
    fullname: Silva
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: CR12
  article-title: ImageNet Classification with Deep Convolutional Neural Networks
  publication-title: Proceedings of the 25th International Conference on Neural Information Processing Systems – Volume 1
  contributor:
    fullname: Hinton
– start-page: 323
  year: 2016
  end-page: 326
  ident: CR48
  article-title: Efficient hardware architecture of softmax layer in deep neural network
  publication-title: 2016 29th IEEE International System-on-Chip Conference (SOCC)
  doi: 10.1109/SOCC.2016.7905501
  contributor:
    fullname: Yuan
– volume: 28
  start-page: 248
  issue: 3
  year: 2011
  end-page: 255
  ident: CR3
  article-title: Medical image segmentation algorithms using deformable models: a review
  publication-title: IETE Tech. Rev.
  doi: 10.4103/0256-4602.81244
  contributor:
    fullname: Murty
– ident: CR38
– volume: 10
  start-page: 537
  year: 2016
  end-page: 5447
  ident: CR16
  article-title: Continuous action segmentation and recognition using hybrid convolutional neural network-hidden Markov model model
  publication-title: IET Comput. Vision
  doi: 10.1049/iet-cvi.2015.0408
  contributor:
    fullname: Tu
– start-page: 653
  year: 2015
  end-page: 662
  ident: CR26
  article-title: Brain CT image classification with deep neural networks
  publication-title: Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems
  contributor:
    fullname: Sang
– volume: 19
  start-page: 284
  issue: 1
  year: 2018
  end-page: 295
  ident: CR13
  article-title: Supervised Hash Coding With Deep Neural Network for Environment Perception of Intelligent Vehicles
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2017.2749965
  contributor:
    fullname: Dai
– volume: 13
  start-page: 54
  issue: 1
  year: 2016
  end-page: 67
  ident: CR46
  article-title: Parameter estimation in softmax decision-making models with linear objective functions
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2015.2499244
  contributor:
    fullname: Leonard
– ident: CR17
– ident: CR31
– volume: 37
  start-page: 101
  year: 2017
  end-page: 113
  ident: CR11
  article-title: Deep ensemble learning of sparse regression models for brain disease diagnosis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.01.008
  contributor:
    fullname: Shen
– volume: 3
  start-page: 117
  issue: 3
  year: 2013
  end-page: 128
  ident: CR20
  article-title: Efficient computer aided diagnosis of abnormal parts detection in magnetic resonance images using hybrid abnormality detection algorithm
  publication-title: Cent. Eur. J. Comput. Sci.
  contributor:
    fullname: Hemalatha
– ident: CR32
– start-page: 165
  year: 2003
  end-page: 168
  ident: CR40
  article-title: Boosted ECOC ensembles for face recognition
  publication-title: 2003 International Conference on Visual Information Engineering, VIE 2003
  contributor:
    fullname: Ardeshir
– volume: 138
  start-page: 49
  year: 2017
  end-page: 56
  ident: CR27
  article-title: Classification of CT brain images based on deep learning networks
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2016.10.007
  contributor:
    fullname: Tian
– volume: 3
  start-page: 61
  year: 2013
  end-page: 66
  ident: CR21
  article-title: A computer aided diagnostic system for classification of brain tumors using texture features and probabilistic neural network
  publication-title: Int. J. Comput. Sci. Eng. Inf. Technol. Res.
  contributor:
    fullname: Udupi
– volume: 41
  start-page: 5526
  issue: 11
  year: 2014
  end-page: 5545
  ident: CR2
  article-title: Computer-aided diagnosis of human brain tumor through MRI: A survey and a new algorithm
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.01.021
  contributor:
    fullname: Salem
– volume: 34
  start-page: 617
  issue: 8
  year: 2010
  end-page: 631
  ident: CR7
  article-title: Medical image analysis with artificial neural networks
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2010.07.003
  contributor:
    fullname: Ren
– year: 2006
  ident: CR36
  publication-title: Digital Image Processing, 3rd edn.
  contributor:
    fullname: Woods
– volume: 10
  start-page: 103
  year: 2016
  end-page: 11411
  ident: CR10
  article-title: Driving posture recognition by convolutional neural networks
  publication-title: IET Comp. Vision
  doi: 10.1049/iet-cvi.2015.0175
  contributor:
    fullname: Zhang
– start-page: 934
  year: 2018
  end-page: 943
  ident: CR14
  article-title: Performance evaluation of support vector machine and convolutional neural network algorithms in real-time vehicle type classification
  publication-title: Advances in Internet, Data & Web Technologies
  doi: 10.1007/978-3-319-75928-9_86
  contributor:
    fullname: Kolici
– start-page: 1
  year: 2012
  end-page: 6
  ident: CR25
  article-title: Artificial neural networks design for classification of brain tumour
  publication-title: 2012 International Conference on Computer Communication and Informatics, ICCCI–2012, 10–12 January, 2012
  contributor:
    fullname: Devi
– volume: 102
  start-page: 317
  year: 2016
  end-page: 324
  ident: CR35
  article-title: Review of MRI-based brain tumor image segmentation using deep learning methods
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.09.407
  contributor:
    fullname: Şah
– ident: CR41
– volume: 32
  start-page: 413
  issue: 6
  year: 2015
  end-page: 427
  ident: CR4
  article-title: Image segmentation methods and applications in MRI brain images
  publication-title: IETE Tech. Rev.
  doi: 10.1080/02564602.2015.1027307
  contributor:
    fullname: Hematian
– start-page: 653
  volume-title: Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems
  year: 2015
  ident: 332_CR26
  doi: 10.1007/978-3-319-13359-1_50
  contributor:
    fullname: C. Da
– ident: 332_CR47
– volume-title: Fast R-CNN. International Conference on Computer Vision (ICCV), Santiago, Chile, 11–18 December, 2015
  year: 2015
  ident: 332_CR45
  contributor:
    fullname: R. Girshick
– start-page: 934
  volume-title: Advances in Internet, Data & Web Technologies
  year: 2018
  ident: 332_CR14
  doi: 10.1007/978-3-319-75928-9_86
  contributor:
    fullname: A. Şentaş
– ident: 332_CR32
  doi: 10.1007/978-3-319-55524-9_8
– volume: 41
  start-page: 5526
  issue: 11
  year: 2014
  ident: 332_CR2
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.01.021
  contributor:
    fullname: E. -S. A. El-Dahshan
– start-page: 947
  volume-title: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, 19–24 April, 2015
  year: 2015
  ident: 332_CR28
  contributor:
    fullname: Y. Xu
– volume-title: Digital Image Processing, 3rd edn.
  year: 2006
  ident: 332_CR36
  contributor:
    fullname: R. C. Gonzalez
– volume: 35
  start-page: 18
  year: 2017
  ident: 332_CR29
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.05.004
  contributor:
    fullname: M. Havaei
– volume: 34
  start-page: 617
  issue: 8
  year: 2010
  ident: 332_CR7
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2010.07.003
  contributor:
    fullname: J. Jiang
– volume: 19
  start-page: 284
  issue: 1
  year: 2018
  ident: 332_CR13
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2017.2749965
  contributor:
    fullname: Chenggang Yan
– start-page: 323
  volume-title: 2016 29th IEEE International System-on-Chip Conference (SOCC)
  year: 2016
  ident: 332_CR48
  doi: 10.1109/SOCC.2016.7905501
  contributor:
    fullname: B. Yuan
– ident: 332_CR37
  doi: 10.1109/EMBC.2015.7318458
– volume: 3
  start-page: 61
  year: 2013
  ident: 332_CR21
  publication-title: Int. J. Comput. Sci. Eng. Inf. Technol. Res.
  contributor:
    fullname: S. Patil
– volume: 28
  start-page: 248
  issue: 3
  year: 2011
  ident: 332_CR3
  publication-title: IETE Tech. Rev.
  doi: 10.4103/0256-4602.81244
  contributor:
    fullname: D. Jayadevappa
– volume: 33
  start-page: 170
  year: 2016
  ident: 332_CR6
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2016.06.037
  contributor:
    fullname: A. Madabhushi
– start-page: 165
  volume-title: 2003 International Conference on Visual Information Engineering, VIE 2003
  year: 2003
  ident: 332_CR40
  contributor:
    fullname: T. Windeatt
– volume: 2
  start-page: 263
  year: 1995
  ident: 332_CR39
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.105
  contributor:
    fullname: T. G. Dietterich
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 332_CR9
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
  contributor:
    fullname: G. E. Hinton
– volume: 2
  start-page: 591
  issue: 4
  year: 2010
  ident: 332_CR1
  publication-title: Int. J. Comput. Theory Eng.
  doi: 10.7763/IJCTE.2010.V2.207
  contributor:
    fullname: T. Logeswari
– ident: 332_CR30
  doi: 10.1007/978-3-319-55524-9_11
– start-page: 1
  volume-title: 2012 International Conference on Computer Communication and Informatics, ICCCI–2012, 10–12 January, 2012
  year: 2012
  ident: 332_CR25
  contributor:
    fullname: S. N. Deepa
– volume: 9
  start-page: 409
  issue: 2
  year: 2015
  ident: 332_CR22
  publication-title: Sig. Image Video Process.
  doi: 10.1007/s11760-013-0456-z
  contributor:
    fullname: M. P. Arakeri
– volume: 3
  start-page: 117
  issue: 3
  year: 2013
  ident: 332_CR20
  publication-title: Cent. Eur. J. Comput. Sci.
  contributor:
    fullname: C. Lakshmi Devasena
– volume: 13
  start-page: 54
  issue: 1
  year: 2016
  ident: 332_CR46
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2015.2499244
  contributor:
    fullname: P. Reverdy
– ident: 332_CR43
– ident: 332_CR41
– volume: 37
  start-page: 101
  year: 2017
  ident: 332_CR11
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.01.008
  contributor:
    fullname: H. -I. Suk
– volume: 130
  start-page: 98
  year: 2014
  ident: 332_CR8
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.12.066
  contributor:
    fullname: D. J. Hemanth
– volume: 102
  start-page: 317
  year: 2016
  ident: 332_CR35
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2016.09.407
  contributor:
    fullname: A. Işin
– start-page: 151
  volume-title: Building Sustainable Health Ecosystems: 6th International Conference on Well-Being in the Information Society, WIS 2016, Tampere, Finland, September 16-18, 2016, Proceedings
  year: 2016
  ident: 332_CR18
  doi: 10.1007/978-3-319-44672-1_13
  contributor:
    fullname: M. K. Abd-Ellah
– ident: 332_CR33
  doi: 10.1109/ENBENG.2017.7889452
– volume: PP
  start-page: 1
  issue: 99
  year: 2015
  ident: 332_CR44
  publication-title: IEEE Trans. Autom. Sci. Eng.
  contributor:
    fullname: F. Deng
– volume: 10
  start-page: 537
  year: 2016
  ident: 332_CR16
  publication-title: IET Comput. Vision
  doi: 10.1049/iet-cvi.2015.0408
  contributor:
    fullname: J. Lei
– ident: 332_CR17
– start-page: 1097
  volume-title: Proceedings of the 25th International Conference on Neural Information Processing Systems – Volume 1
  year: 2012
  ident: 332_CR12
  contributor:
    fullname: A. Krizhevsky
– ident: 332_CR38
– start-page: 157
  volume-title: ICT Innovations 2014
  year: 2015
  ident: 332_CR23
  doi: 10.1007/978-3-319-09879-1_16
  contributor:
    fullname: E. Dandıl
– volume: 10
  start-page: 103
  year: 2016
  ident: 332_CR10
  publication-title: IET Comp. Vision
  doi: 10.1049/iet-cvi.2015.0175
  contributor:
    fullname: C. Yan
– ident: 332_CR31
– volume: 32
  start-page: 413
  issue: 6
  year: 2015
  ident: 332_CR4
  publication-title: IETE Tech. Rev.
  doi: 10.1080/02564602.2015.1027307
  contributor:
    fullname: S. Yazdani
– volume: 2016
  start-page: 1
  year: 2016
  ident: 332_CR5
  publication-title: Computational and Mathematical Methods in Medicine
  doi: 10.1155/2016/8356294
  contributor:
    fullname: Liya Zhao
– volume: 35
  start-page: 1240
  issue: 5
  year: 2016
  ident: 332_CR34
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2016.2538465
  contributor:
    fullname: Sergio Pereira
– start-page: 573
  volume-title: 2013 International Conference on Communication Systems and Network Technologies
  year: 2013
  ident: 332_CR24
  doi: 10.1109/CSNT.2013.123
  contributor:
    fullname: S. Goswami
– volume: 138
  start-page: 49
  year: 2017
  ident: 332_CR27
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2016.10.007
  contributor:
    fullname: X. W. Gao
– ident: 332_CR42
– start-page: 253
  volume-title: Proceedings of 2010 IEEE International Symposium on Circuits and Systems
  year: 2010
  ident: 332_CR15
  doi: 10.1109/ISCAS.2010.5537907
  contributor:
    fullname: Y. LeCun
– ident: 332_CR19
  doi: 10.1109/ICM.2016.7847911
SSID ssj0055532
ssib044603796
ssib044736454
ssib008501553
Score 2.4584713
Snippet Brain tumour is a serious disease, and the number of people who are dying due to brain tumours is increasing. Manual tumour diagnosis from magnetic resonance...
Abstract Brain tumour is a serious disease, and the number of people who are dying due to brain tumours is increasing. Manual tumour diagnosis from magnetic...
SourceID doaj
swepub
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Biometrics
Brain
Brain cancer
Brain tumour diagnosis
Convolutional neural networks (CNNs)
Diagnosis
Engineering
Error correction
Feature extraction
Image classification
Image detection
Image Processing and Computer Vision
Image segmentation
Information systems
Informationssystem
Localization
Machine learning
Magnetic resonance imaging
Medical imaging
MRI segmentation
Neural networks
Pattern Recognition
Signal,Image and Speech Processing
Support vector machines
Tumors
Tumour detection and localization
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09TxwxELUSqjSEJKAcgchF0oAszuv1x5Z8iipNCKKz7LVNToI7xO4qbX46M_beoaMgTaqVvFuMPGPPe9qZN4R80wkwNBeSiZCAoPDImRHeM-ma1Hrngk_Y73z5U_-4MWfnKJOzGvWFNWFFHrhs3JFX3ANMCDI1be2jgfyqQps0l0n5RhfiMzVLMlXuYCmlqMZ_mNyoo44LhWWMHNvJRMXqtSyUxfrXEObqp-gLAdGcdC62yOaIFulxsfIDeRPnH8n7ETnS8Vx2n8jfqz8L9vAbMhLNFYIsD7ihbugXWZKVepwEQfsBiP4jDaW8btbRouNMsceE3sMidjRSIOALlOGIdAZrsaNYG39LsT59jFMwCXUw8yNXkXfb5NfF-dXpJRtnK7C2VlXPHNdhGrENVnvY3ThVHoheEBpugARQdqoanQDN8SZ5r1vFnTMqxFQZJWpnuNghG_PFPH4mNJrQwi0g4ShHoFvShzo0tdfYGsV1chNysNxr-1AkNGymHkbZ4hgLjrHoGFtPyAl6Y_Uhql_nBYgJO8aE_VdMTMje0pd2PJKdBaaLYNEYMSGHS_8-v37Fou8lBNZsOptdH2eb7vrBAkqT9e7_sPwLeVflKMWClD2y0T8OcZ-87cLwNQf4EyilAR4
  priority: 102
  providerName: Directory of Open Access Journals
Title Two-phase multi-model automatic brain tumour diagnosis system from magnetic resonance images using convolutional neural networks
URI https://link.springer.com/article/10.1186/s13640-018-0332-4
https://www.proquest.com/docview/2114561883
https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-71054
https://doaj.org/article/b61b083d5f9c4be88936dcf715f6b971
Volume 2018
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoucCBQgGxpVQ-wAVkWMfPHEsf6okLBXGz7Nguq9JN1STi2p_OjJNdWISQ4BTJSayRPTP-xp75TMhLkwFDc6GYiBkCFJ44syIEpnydm-B9DBnrnc8-mg9f7PEJ0uRU662L5eXb1YlkcdTFqq1-13GhMRORY0WYqJjcIncBO0jkyz_CCofR-yqlRDWdXv7xt431p9D0b2DL9XHob9ShZbk53fkfQR-SBxO4pIejNjwid9Jyl-xMQJNOZtztkvu_sBA-Jrfn31t2_RWWM1rSC1m5HYf6oW8LnysNeI0E7Ycr6J_GMTdv0dGRBJpigQq9gkYsh6QQvbfI4ZHoAtpSRzGx_oJicvuk5CAgkmiWR0lB756QT6cn50dnbLqYgTVSVz3z3MR5whpaE6yIaa4DRIlRGHAfGXDwXNcmAxTkdQ7BNJp7b3VMubJaSG-5eEq2l-0yPSM02diAC1HgBxLEaipEGWsZDNZVcZP9jLxeTZe7Hvk3XIlbrHbjSDsYaYcj7eSMvMcJXX-I1Nmlob25cJMluqBBQJBa5bqRIVkAbDo22XCVdagNn5H9lTq4yZ47B2EyIk1rxYy8WU37z9d_kejVqEUbMh0vPh8Wmb71gwOIp-TeP_X6nNyrin5h2so-2e5vhvSCbHVxOCjGcFB2Fn4A2sIIRQ
link.rule.ids 230,315,782,786,866,887,2108,27935,27936,41130,42199,52244
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB3RcgAOFAqIhQI-wAUUsY7jjxxLP7SI0gsL4mbFsV1WopuqScSVn86MkxQWISQ4RXJ2o5E9M34jz3sGeK4jYmguZCZ8xAKFB54Z4VwmqzLWrqq8i8R3XnzQp5_N4RHJ5IiJC5O63acjyZSpU1gb9brlQlErIidKmMizYguuFxhv5MoHRHEY0q-UUuTj8eUf_7axASWd_g1weXUe-pt2aNpvjnf-y9I7cHuEl2x_8Ie7cC2sd2FnhJpsDOR2F279okN4D74vvzXZxRfc0FhqMMzS_Tis6rsmKboyRxdJsK4_x-8zP3TnrVo2yEAzoqiwcxwkQiTD-r0hFY_AVjgWWkat9WeM2ttHN0cDSUYzPVITensfPh4fLQ8W2Xg1Q1YXKu-yims_D8Si1c4IH-bKYZ3ohcYEEhEJz1WpI4JBXkbndK14VRnlQ8yNEkVluHgA2-tmHR4CC8bXmEQkZoKA1Zp0vvBl4TQxq7iO1QxeTutlLwYFDpsqF6PsMNMWZ9rSTNtiBm9oRa9-SOLZaaC5PLNjLFqn0EC0WsayLlwwCNmUr6PmMipXaj6Dvckf7BjRrcVCmbCmMWIGr6Zl__n6Lxa9GNxow6bD1af9ZNPXrrcI8mTx6J---gxuLJbvT-zJ29N3j-FmnnyNmlj2YLu77MMT2Gp9_zRFxg9APwsq
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3faxQxEB5sBbEPVqviadU86Iuy9LLZ_NgnqV6PilIEq_gWNpukHti7o7tLX_3TncnuVk9EEJ8Wsj8YsjOTb8h8XwCe6YgYmguZCR-xQOGBZ0Y4l8mqjLWrKu8i8Z2PP-qTL2Z2RDI5r0YuTOp2H7cke04DqTQt24O1j32IG3XQcKGoLZETPUzkWbEF1wuO6Zh2a4nu0KdiKaXIh63MP762sRglzf4NoHm1N_qbjmhae-a7_231bbg1wE522PvJHbgWlnuwO0BQNgR4swc7v-gT3oXvp5erbP0VFzqWGg-zdG4Oq7p2lZRemaMDJljbneP3me-79hYN6-WhGVFX2DkOElGSYV2_InWPwBY4FhpGLfdnjNreB_dHA0leM11Sc3pzDz7Nj07fHGfDkQ1ZXai8zSqu_TQQu1Y7I3yYKof1oxcaE0tEhDxVpY4IEnkZndO14lVllA8xN0oUleHiPmwvV8vwAFgwvsbkIjFDBKzipPOFLwuniXHFdawm8GL8d3bdK3PYVNEYZfuZtjjTlmbaFhN4TX_36kES1U4Dq4szO8SodQoNRKtlLOvCBYNQTvk6ai6jcqXmE9gffcMOkd5YLKAJgxojJvBydIGft_9i0fPepTZsmi0-HyabvrWdRfAni4f_9NWncOPDbG7fvz159whu5snVqLdlH7bbiy48hq3Gd09SkPwAfZMT_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-phase+multi-model+automatic+brain+tumour+diagnosis+system+from+magnetic+resonance+images+using+convolutional+neural+networks&rft.jtitle=EURASIP+journal+on+image+and+video+processing&rft.au=Abd-Ellah%2C+Mahmoud+Khaled&rft.au=Awad%2C+Ali+Ismail&rft.au=Khalaf%2C+Ashraf+A.+M.&rft.au=Hamed%2C+Hesham+F.+A.&rft.date=2018-09-30&rft.pub=Springer+International+Publishing&rft.eissn=1687-5281&rft.volume=2018&rft.issue=1&rft_id=info:doi/10.1186%2Fs13640-018-0332-4&rft.externalDocID=10_1186_s13640_018_0332_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5281&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5281&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5281&client=summon