The effects of forced interpass cooling on the material properties of wire arc additively manufactured Ti6Al4V alloy

To achieve improved microstructure and mechanical properties, an innovative wire arc additive manufacturing (WAAM) process with forced interpass cooling using compressed CO2 was employed in this study to fabricate Ti6Al4V thin-walled structures. The effects of various interpass temperatures and rapi...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials processing technology Vol. 258; pp. 97 - 105
Main Authors: Wu, Bintao, Pan, Zengxi, Ding, Donghong, Cuiuri, Dominic, Li, Huijun, Fei, Zhenyu
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01-08-2018
Elsevier BV
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract To achieve improved microstructure and mechanical properties, an innovative wire arc additive manufacturing (WAAM) process with forced interpass cooling using compressed CO2 was employed in this study to fabricate Ti6Al4V thin-walled structures. The effects of various interpass temperatures and rapid forced cooling on deposition geometry, surface oxidation, microstructural evolution, and mechanical properties of the fabricated part were investigated by laser profilometry, optical microscopy (OM), scanning electron microscopy (SEM), hardness testing and mechanical tensile testing. Results show that the microstructural evolution and mechanical properties of the deposited metal are not greatly affected by an increasing interpass temperature, however, the deposited wall tends to be widened, flattened and exhibit increased surface oxidation through visible coloration. When rapid forced cooling using CO2 is used between deposited layers, slightly higher hardness values and increased strength can be obtained. This is mainly attributed to the combined effects of less surface oxide and high density dislocation caused by the generation of large amounts of fine-grained acicular α within the microstructure. Furthermore, forced interpass cooling not only improves deposition properties, but also promotes geometrical repeatability and also improved manufacturing efficiency through the reduction of dwell time between deposited layers.
AbstractList To achieve improved microstructure and mechanical properties, an innovative wire arc additive manufacturing (WAAM) process with forced interpass cooling using compressed CO2 was employed in this study to fabricate Ti6Al4V thin-walled structures. The effects of various interpass temperatures and rapid forced cooling on deposition geometry, surface oxidation, microstructural evolution, and mechanical properties of the fabricated part were investigated by laser profilometry, optical microscopy (OM), scanning electron microscopy (SEM), hardness testing and mechanical tensile testing. Results show that the microstructural evolution and mechanical properties of the deposited metal are not greatly affected by an increasing interpass temperature, however, the deposited wall tends to be widened, flattened and exhibit increased surface oxidation through visible coloration. When rapid forced cooling using CO2 is used between deposited layers, slightly higher hardness values and increased strength can be obtained. This is mainly attributed to the combined effects of less surface oxide and high density dislocation caused by the generation of large amounts of fine-grained acicular α within the microstructure. Furthermore, forced interpass cooling not only improves deposition properties, but also promotes geometrical repeatability and also improved manufacturing efficiency through the reduction of dwell time between deposited layers.
Author Li, Huijun
Cuiuri, Dominic
Pan, Zengxi
Ding, Donghong
Fei, Zhenyu
Wu, Bintao
Author_xml – sequence: 1
  givenname: Bintao
  surname: Wu
  fullname: Wu, Bintao
  organization: School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
– sequence: 2
  givenname: Zengxi
  surname: Pan
  fullname: Pan, Zengxi
  email: zengxi@uow.edu.au
  organization: School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
– sequence: 3
  givenname: Donghong
  surname: Ding
  fullname: Ding, Donghong
  organization: School of Mechatronic Engineering, Foshan University, Foshan Guangdong, 528000, China
– sequence: 4
  givenname: Dominic
  surname: Cuiuri
  fullname: Cuiuri, Dominic
  organization: School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
– sequence: 5
  givenname: Huijun
  surname: Li
  fullname: Li, Huijun
  organization: School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
– sequence: 6
  givenname: Zhenyu
  surname: Fei
  fullname: Fei, Zhenyu
  organization: School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia
BookMark eNqFkE1PJCEURclEk2k__gPJrKvmQVEFLNU4o4mJm9YtoanHDJWy6AFa0_9-aNvEpSs25977OGfkZIkLEkIZtAzY8HNqpxdbtikWdC0HplroWuDiG1kxJbtGSClOyAo0Fw2wbvhOznKeAJgEpVakrP8iRe_RlUyjpz4mhyMNS8G0tTlTF-Mclj80LrRUtG5hCnamdXGLqQR8j72FhNQmR-04hhJecd5XdNl568ou1cJ1GK5m8UztPMf9BTn1ds54-fGek6dft-ubu-bh8ff9zdVD48TAS2PBCsalUnqQTttOgdCuH_lGc8Y23Ftle6n1RlrwXSc0uh68lJteoxh6id05-XHsrcf-22EuZoq7tNRJw0EelPQ9r5Q6Ui7FnBN6s03hxaa9YWAOjs1kPh2bg2MDnamOa_T6GMX6i9eAyWQXcKkGqw9XzBjD1yX_AeO6jSM
CitedBy_id crossref_primary_10_1016_j_addma_2019_03_029
crossref_primary_10_1016_j_addma_2018_08_004
crossref_primary_10_1007_s11665_022_06973_4
crossref_primary_10_1016_j_addma_2022_102723
crossref_primary_10_1007_s00170_019_04589_y
crossref_primary_10_1016_j_jmapro_2021_08_018
crossref_primary_10_1089_3dp_2019_0061
crossref_primary_10_3390_met13030526
crossref_primary_10_1007_s00170_021_07358_y
crossref_primary_10_1016_j_matchemphys_2022_126988
crossref_primary_10_1002_adem_202001036
crossref_primary_10_3390_jmmp7030097
crossref_primary_10_1016_j_jmapro_2018_08_001
crossref_primary_10_1089_3dp_2022_0339
crossref_primary_10_2320_matertrans_MT_M2021031
crossref_primary_10_1016_j_addma_2020_101121
crossref_primary_10_1177_14644207231183096
crossref_primary_10_1007_s11015_023_01502_7
crossref_primary_10_1016_j_jmatprotec_2019_116268
crossref_primary_10_1016_j_infrared_2021_103860
crossref_primary_10_1016_j_addma_2020_101505
crossref_primary_10_3390_ma17102325
crossref_primary_10_1016_j_jmapro_2021_11_047
crossref_primary_10_2139_ssrn_4123947
crossref_primary_10_1016_j_mtcomm_2022_103739
crossref_primary_10_1016_j_mtcomm_2024_108628
crossref_primary_10_3390_pr11020612
crossref_primary_10_1016_j_matpr_2020_08_030
crossref_primary_10_1080_13621718_2019_1580439
crossref_primary_10_1063_5_0065583
crossref_primary_10_1007_s40032_022_00868_y
crossref_primary_10_1016_j_cirpj_2023_08_013
crossref_primary_10_1051_matecconf_201926905001
crossref_primary_10_1016_j_jmrt_2023_05_163
crossref_primary_10_1007_s11665_022_07128_1
crossref_primary_10_1016_j_addma_2023_103954
crossref_primary_10_1016_j_matdes_2021_109471
crossref_primary_10_1016_j_addma_2020_101578
crossref_primary_10_1002_srin_202000523
crossref_primary_10_1016_j_jmapro_2022_02_008
crossref_primary_10_1016_j_surfcoat_2020_125439
crossref_primary_10_1080_02670836_2022_2110223
crossref_primary_10_3390_met12020212
crossref_primary_10_1007_s40194_024_01692_x
crossref_primary_10_1590_0104_9224_si25_01
crossref_primary_10_1016_j_matchar_2021_111158
crossref_primary_10_1007_s11665_024_09148_5
crossref_primary_10_35193_bseufbd_1092574
crossref_primary_10_1007_s11182_020_01877_z
crossref_primary_10_1016_j_jmapro_2022_09_037
crossref_primary_10_1016_j_jmatprotec_2022_117806
crossref_primary_10_1007_s00170_020_05958_8
crossref_primary_10_1016_j_jmrt_2023_09_020
crossref_primary_10_1007_s11182_020_02124_1
crossref_primary_10_1088_1361_6463_ac1e4a
crossref_primary_10_3390_met11020190
crossref_primary_10_1016_j_matpr_2020_02_551
crossref_primary_10_1007_s40194_019_00705_4
crossref_primary_10_1016_j_jmrt_2023_03_200
crossref_primary_10_1016_j_msea_2020_139020
crossref_primary_10_3390_met13081484
crossref_primary_10_1016_j_jmatprotec_2021_117196
crossref_primary_10_1016_S1003_6326_23_66389_7
crossref_primary_10_1016_j_msea_2019_138654
crossref_primary_10_2472_jsms_72_124
crossref_primary_10_1016_j_jmapro_2022_11_043
crossref_primary_10_1007_s11668_024_01860_7
crossref_primary_10_1080_10426914_2020_1843677
crossref_primary_10_1007_s00170_020_05201_4
crossref_primary_10_1016_j_jmatprotec_2022_117655
crossref_primary_10_1080_17452759_2023_2291471
crossref_primary_10_1016_j_jmrt_2023_07_147
crossref_primary_10_1016_j_jmapro_2021_05_022
crossref_primary_10_1080_13621718_2022_2045127
crossref_primary_10_3390_ma16227177
crossref_primary_10_1016_j_jmatprotec_2022_117651
crossref_primary_10_4028_www_scientific_net_KEM_813_241
crossref_primary_10_1007_s12008_024_01973_1
crossref_primary_10_1016_j_matdes_2018_10_038
crossref_primary_10_1016_j_pmatsci_2019_100590
crossref_primary_10_1016_j_jmatprotec_2019_116355
crossref_primary_10_1016_j_jallcom_2023_168729
crossref_primary_10_1016_j_msea_2023_145699
crossref_primary_10_1080_09506608_2021_1971427
crossref_primary_10_3390_met10091164
crossref_primary_10_3390_ma15155168
crossref_primary_10_3390_met11060877
crossref_primary_10_1016_j_jmatprotec_2020_116891
crossref_primary_10_3740_MRSK_2021_31_5_245
crossref_primary_10_1016_j_ijfatigue_2021_106268
crossref_primary_10_1016_j_jii_2021_100218
crossref_primary_10_1016_j_jmapro_2022_04_044
crossref_primary_10_37434_sem2021_01_05
crossref_primary_10_1016_j_mtla_2019_100397
crossref_primary_10_3390_jmmp7010045
crossref_primary_10_37434_as2023_11_01
crossref_primary_10_1016_j_msea_2020_140310
crossref_primary_10_3390_met10081004
crossref_primary_10_1016_j_jmrt_2020_11_012
crossref_primary_10_3390_ma12071121
crossref_primary_10_1016_j_msea_2021_142351
crossref_primary_10_1016_j_msea_2023_144599
crossref_primary_10_1108_RPJ_09_2019_0238
crossref_primary_10_1007_s12540_024_01724_7
crossref_primary_10_1016_j_jmapro_2020_01_051
crossref_primary_10_1007_s12540_022_01285_7
crossref_primary_10_1016_j_cirpj_2022_05_002
crossref_primary_10_1016_j_jmrt_2022_01_014
crossref_primary_10_1007_s12540_021_01015_5
crossref_primary_10_1016_j_jmapro_2021_02_021
crossref_primary_10_1016_j_msea_2020_140307
crossref_primary_10_1007_s11771_021_4683_0
crossref_primary_10_2139_ssrn_4055978
crossref_primary_10_1016_j_icheatmasstransfer_2023_107066
crossref_primary_10_1016_j_addma_2023_103476
crossref_primary_10_1016_j_jmatprotec_2022_117759
crossref_primary_10_1177_0954405420909182
crossref_primary_10_37434_tpwj2023_11_01
crossref_primary_10_1002_srin_202100175
crossref_primary_10_1007_s40684_020_00302_7
crossref_primary_10_1016_S1003_6326_23_66160_6
crossref_primary_10_1016_j_jmst_2024_03_054
crossref_primary_10_1007_s00170_023_11105_w
crossref_primary_10_1007_s10853_021_06012_y
crossref_primary_10_1007_s00170_024_13958_1
crossref_primary_10_1007_s00170_024_13978_x
crossref_primary_10_1108_RPJ_04_2020_0085
crossref_primary_10_1002_adem_202000728
crossref_primary_10_3390_met10010024
crossref_primary_10_1007_s40194_020_00930_2
crossref_primary_10_1016_j_procir_2022_09_185
crossref_primary_10_1007_s11831_020_09511_4
crossref_primary_10_1016_j_jmapro_2020_05_053
crossref_primary_10_1016_j_jmapro_2024_05_059
crossref_primary_10_1016_j_jmatprotec_2019_05_003
crossref_primary_10_1016_j_addma_2022_103245
crossref_primary_10_1016_j_addma_2019_03_003
crossref_primary_10_1080_10426914_2020_1779936
crossref_primary_10_1016_j_matdes_2022_110731
crossref_primary_10_1016_j_jmrt_2023_01_139
crossref_primary_10_1007_s10845_020_01634_6
crossref_primary_10_1016_j_jclepro_2023_136071
crossref_primary_10_1016_j_matchar_2024_113653
crossref_primary_10_1007_s11665_021_05871_5
crossref_primary_10_1002_adem_202300618
crossref_primary_10_1016_j_jmapro_2020_11_046
crossref_primary_10_1007_s11740_022_01138_7
crossref_primary_10_1115_1_4055569
crossref_primary_10_1016_j_mtcomm_2023_107213
crossref_primary_10_3390_coatings11091141
crossref_primary_10_1016_j_addma_2018_06_020
crossref_primary_10_3390_met13040641
crossref_primary_10_1016_j_jmatprotec_2020_116723
crossref_primary_10_1080_0951192X_2022_2162588
crossref_primary_10_1007_s43452_023_00633_7
crossref_primary_10_1080_10426914_2020_1732414
crossref_primary_10_1016_j_msea_2024_146144
Cites_doi 10.1179/1743284715Y.0000000073
10.1016/j.msea.2015.10.068
10.1002/mawe.19770080503
10.1016/j.jmatprotec.2016.06.034
10.1016/j.jmatprotec.2017.07.037
10.1016/j.actamat.2015.06.036
10.1016/j.jmatprotec.2011.01.018
10.3139/146.110217
10.1007/s11661-017-4164-0
10.1016/j.msea.2011.10.095
10.1016/j.matdes.2009.11.032
10.1177/0954405413482122
10.1146/annurev-matsci-070115-031816
10.1016/j.actamat.2016.07.019
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier BV Aug 2018
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier BV Aug 2018
DBID AAYXX
CITATION
7SR
8BQ
8FD
H8D
JG9
L7M
DOI 10.1016/j.jmatprotec.2018.03.024
DatabaseName CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Aerospace Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Aerospace Database
Engineered Materials Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4774
EndPage 105
ExternalDocumentID 10_1016_j_jmatprotec_2018_03_024
S0924013618301298
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
D-I
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SSM
SST
SSZ
T5K
WUQ
XFK
~02
~G-
AAXKI
AAYXX
AFJKZ
AKRWK
CITATION
7SR
8BQ
8FD
H8D
JG9
L7M
ID FETCH-LOGICAL-c462t-a0a412788967c9a38049c5d2b9211b2fa8a5799b7a0f3349ec50f77b59e4657e3
ISSN 0924-0136
IngestDate Thu Oct 10 19:12:59 EDT 2024
Thu Sep 26 17:59:55 EDT 2024
Fri Feb 23 02:34:00 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Wire arc additive manufacturing (WAAM)
Interpass temperature
Ti6Al4V
CO2 gas interpass cooling
Material properties
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c462t-a0a412788967c9a38049c5d2b9211b2fa8a5799b7a0f3349ec50f77b59e4657e3
OpenAccessLink https://ro.uow.edu.au/cgi/viewcontent.cgi?article=2388&context=eispapers1
PQID 2070924552
PQPubID 2045449
PageCount 9
ParticipantIDs proquest_journals_2070924552
crossref_primary_10_1016_j_jmatprotec_2018_03_024
elsevier_sciencedirect_doi_10_1016_j_jmatprotec_2018_03_024
PublicationCentury 2000
PublicationDate August 2018
2018-08-00
20180801
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of materials processing technology
PublicationYear 2018
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Baufeld, Brandl, Van der Biest (bib0015) 2011; 211
Pan, Ding, Wu, Cuiuri, Li, Norrish (bib0065) 2018; vol. 1
Baufeld, Biest, Gault (bib0005) 2009; 100
Foster, Beese, Keist, McHale, Palmer (bib0035) 2017; 48
Suryakumar, Karunakaran, Chandrasekhar, Somashekara (bib0070) 2013; 227
Welsch, Boyer, Collings (bib0080) 1993
Wu, Ding, Pan, Cuiuri, Li, Han, Fei (bib0095) 2017; 250
Welsch, Bunk, Kellerer (bib0085) 1977; 8
Williams, Martina, Addison, Ding, Pardal, Colegrove (bib0090) 2016; 32
Charles (bib0025) 2016
Herzog, Seyda, Wycisk, Emmelmann (bib0045) 2016; 117
Hong, Shin (bib0055) 2016; 237
Baufeld, Biest, Gault (bib0010) 2010; 31
Henckell, Günther, Ali, Bergmann, Scholz, Forêt (bib0040) 2017
Mower, Long (bib0060) 2016; 651
Tan, Kok, Tan, Descoins, Mangelinck, Tor, Leong, Chua (bib0075) 2015; 97
Collins, Brice, Samimi, Ghamarian, Fraser (bib0030) 2016; 46
Holder, Larkin, Li, Kuzmikova, Pan, Norrish (bib0050) 2011
Brandl, Schoberth, Leyens (bib0020) 2012; 532
Mower (10.1016/j.jmatprotec.2018.03.024_bib0060) 2016; 651
Holder (10.1016/j.jmatprotec.2018.03.024_bib0050) 2011
Suryakumar (10.1016/j.jmatprotec.2018.03.024_bib0070) 2013; 227
Pan (10.1016/j.jmatprotec.2018.03.024_bib0065) 2018; vol. 1
Collins (10.1016/j.jmatprotec.2018.03.024_bib0030) 2016; 46
Baufeld (10.1016/j.jmatprotec.2018.03.024_bib0015) 2011; 211
Charles (10.1016/j.jmatprotec.2018.03.024_bib0025) 2016
Welsch (10.1016/j.jmatprotec.2018.03.024_bib0080) 1993
Wu (10.1016/j.jmatprotec.2018.03.024_bib0095) 2017; 250
Hong (10.1016/j.jmatprotec.2018.03.024_bib0055) 2016; 237
Williams (10.1016/j.jmatprotec.2018.03.024_bib0090) 2016; 32
Brandl (10.1016/j.jmatprotec.2018.03.024_bib0020) 2012; 532
Foster (10.1016/j.jmatprotec.2018.03.024_bib0035) 2017; 48
Henckell (10.1016/j.jmatprotec.2018.03.024_bib0040) 2017
Welsch (10.1016/j.jmatprotec.2018.03.024_bib0085) 1977; 8
Herzog (10.1016/j.jmatprotec.2018.03.024_bib0045) 2016; 117
Baufeld (10.1016/j.jmatprotec.2018.03.024_bib0010) 2010; 31
Tan (10.1016/j.jmatprotec.2018.03.024_bib0075) 2015; 97
Baufeld (10.1016/j.jmatprotec.2018.03.024_bib0005) 2009; 100
References_xml – year: 1993
  ident: bib0080
  article-title: Materials Properties Handbook: Titanium Alloys
  contributor:
    fullname: Collings
– volume: 532
  start-page: 295
  year: 2012
  end-page: 307
  ident: bib0020
  article-title: Morphology, microstructure, and hardness of titanium (Ti-6Al-4V) blocks deposited by wire-feed additive layer manufacturing (ALM)
  publication-title: Mater. Sci. Eng., A
  contributor:
    fullname: Leyens
– volume: 32
  start-page: 641
  year: 2016
  end-page: 647
  ident: bib0090
  article-title: Wire + arc additive manufacturing
  publication-title: Mater. Sci. Technol.
  contributor:
    fullname: Colegrove
– volume: 237
  start-page: 420
  year: 2016
  end-page: 429
  ident: bib0055
  article-title: Analysis of microstructure and mechanical properties change in laser welding of Ti6Al4V with a multiphysics prediction model
  publication-title: J. Mater. Process Technol.
  contributor:
    fullname: Shin
– volume: 250
  start-page: 304
  year: 2017
  end-page: 312
  ident: bib0095
  article-title: Effects of heat accumulation on the arc characteristics and metal transfer behavior in wire arc additive manufacturing of Ti6Al4V
  publication-title: J. Mater. Process Technol.
  contributor:
    fullname: Fei
– volume: 651
  start-page: 198
  year: 2016
  end-page: 213
  ident: bib0060
  article-title: Mechanical behavior of additive manufactured, powder-bed laser-fused materials
  publication-title: Mater. Sci. Eng. A
  contributor:
    fullname: Long
– year: 2016
  ident: bib0025
  article-title: Microstructure Model for Ti-6Al-4V Used in Simulation of Additive Manufacturing
  contributor:
    fullname: Charles
– volume: 117
  start-page: 371
  year: 2016
  end-page: 392
  ident: bib0045
  article-title: Additive manufacturing of metals
  publication-title: Acta. Mater.
  contributor:
    fullname: Emmelmann
– volume: 211
  start-page: 1146
  year: 2011
  end-page: 1158
  ident: bib0015
  article-title: Wire based additive layer manufacturing: comparison of microstructure and mechanical properties of Ti-6Al-4V components fabricated by laser-beam deposition and shaped metal deposition
  publication-title: J. Mater. Process Technol.
  contributor:
    fullname: Van der Biest
– volume: 31
  start-page: S106
  year: 2010
  end-page: S111
  ident: bib0010
  article-title: Additive manufacturing of Ti–6Al–4V components by shaped metal deposition: microstructure and mechanical properties
  publication-title: Mater. Des.
  contributor:
    fullname: Gault
– year: 2011
  ident: bib0050
  article-title: Development of a DC-LSND welding process for GMAW on DH-36 steel
  publication-title: 56th WTIA Annual Conference
  contributor:
    fullname: Norrish
– year: 2017
  ident: bib0040
  article-title: The influence of gas cooling in context of wire arc additive manufacturing- a novel strategy of affecting grain structure and size
  publication-title: TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings
  contributor:
    fullname: Forêt
– volume: vol. 1
  start-page: 3
  year: 2018
  end-page: 24
  ident: bib0065
  article-title: Arc welding processes for additive manufacturing: a review
  publication-title: Transactions on Intelligent Welding Manufacturing
  contributor:
    fullname: Norrish
– volume: 8
  start-page: 141
  year: 1977
  end-page: 148
  ident: bib0085
  article-title: Einfluß von Spannungsfrei‐Glühung und Abkühlungsgeschwindigkeit auf Mikrostruktur und Festigkeit von TiAl6V4
  publication-title: Materialwissenschaft und Werkstofftechnik
  contributor:
    fullname: Kellerer
– volume: 100
  start-page: 1536
  year: 2009
  end-page: 1542
  ident: bib0005
  article-title: Microstructure of Ti-6Al-4V specimens produced by shaped metal deposition
  publication-title: Int. J. Mater. Res.
  contributor:
    fullname: Gault
– volume: 97
  start-page: 1
  year: 2015
  end-page: 16
  ident: bib0075
  article-title: Graded microstructure and mechanical properties of additive manufactured Ti–6Al–4V via electron beam melting
  publication-title: Acta Mater.
  contributor:
    fullname: Chua
– volume: 48
  start-page: 4411
  year: 2017
  end-page: 4422
  ident: bib0035
  article-title: Impact of interlayer dwell time on microstructure and mechanical properties of nickel and titanium alloys
  publication-title: Metall. Mater. Trans. A
  contributor:
    fullname: Palmer
– volume: 227
  start-page: 1138
  year: 2013
  end-page: 1147
  ident: bib0070
  article-title: A study of the mechanical properties of objects built through weld-deposition
  publication-title: Proc. Inst. Mech. Eng., B J. Eng. Manuf.
  contributor:
    fullname: Somashekara
– volume: 46
  start-page: 63
  year: 2016
  end-page: 91
  ident: bib0030
  article-title: Microstructural control of additively manufactured metallic materials
  publication-title: Annu. Rev. Mater. Res.
  contributor:
    fullname: Fraser
– year: 2016
  ident: 10.1016/j.jmatprotec.2018.03.024_bib0025
  contributor:
    fullname: Charles
– volume: 32
  start-page: 641
  year: 2016
  ident: 10.1016/j.jmatprotec.2018.03.024_bib0090
  article-title: Wire + arc additive manufacturing
  publication-title: Mater. Sci. Technol.
  doi: 10.1179/1743284715Y.0000000073
  contributor:
    fullname: Williams
– volume: 651
  start-page: 198
  year: 2016
  ident: 10.1016/j.jmatprotec.2018.03.024_bib0060
  article-title: Mechanical behavior of additive manufactured, powder-bed laser-fused materials
  publication-title: Mater. Sci. Eng. A
  doi: 10.1016/j.msea.2015.10.068
  contributor:
    fullname: Mower
– volume: 8
  start-page: 141
  year: 1977
  ident: 10.1016/j.jmatprotec.2018.03.024_bib0085
  article-title: Einfluß von Spannungsfrei‐Glühung und Abkühlungsgeschwindigkeit auf Mikrostruktur und Festigkeit von TiAl6V4
  publication-title: Materialwissenschaft und Werkstofftechnik
  doi: 10.1002/mawe.19770080503
  contributor:
    fullname: Welsch
– volume: 237
  start-page: 420
  year: 2016
  ident: 10.1016/j.jmatprotec.2018.03.024_bib0055
  article-title: Analysis of microstructure and mechanical properties change in laser welding of Ti6Al4V with a multiphysics prediction model
  publication-title: J. Mater. Process Technol.
  doi: 10.1016/j.jmatprotec.2016.06.034
  contributor:
    fullname: Hong
– year: 2011
  ident: 10.1016/j.jmatprotec.2018.03.024_bib0050
  article-title: Development of a DC-LSND welding process for GMAW on DH-36 steel
  contributor:
    fullname: Holder
– year: 2017
  ident: 10.1016/j.jmatprotec.2018.03.024_bib0040
  article-title: The influence of gas cooling in context of wire arc additive manufacturing- a novel strategy of affecting grain structure and size
  contributor:
    fullname: Henckell
– volume: 250
  start-page: 304
  year: 2017
  ident: 10.1016/j.jmatprotec.2018.03.024_bib0095
  article-title: Effects of heat accumulation on the arc characteristics and metal transfer behavior in wire arc additive manufacturing of Ti6Al4V
  publication-title: J. Mater. Process Technol.
  doi: 10.1016/j.jmatprotec.2017.07.037
  contributor:
    fullname: Wu
– volume: 97
  start-page: 1
  year: 2015
  ident: 10.1016/j.jmatprotec.2018.03.024_bib0075
  article-title: Graded microstructure and mechanical properties of additive manufactured Ti–6Al–4V via electron beam melting
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2015.06.036
  contributor:
    fullname: Tan
– volume: 211
  start-page: 1146
  year: 2011
  ident: 10.1016/j.jmatprotec.2018.03.024_bib0015
  article-title: Wire based additive layer manufacturing: comparison of microstructure and mechanical properties of Ti-6Al-4V components fabricated by laser-beam deposition and shaped metal deposition
  publication-title: J. Mater. Process Technol.
  doi: 10.1016/j.jmatprotec.2011.01.018
  contributor:
    fullname: Baufeld
– year: 1993
  ident: 10.1016/j.jmatprotec.2018.03.024_bib0080
  contributor:
    fullname: Welsch
– volume: 100
  start-page: 1536
  year: 2009
  ident: 10.1016/j.jmatprotec.2018.03.024_bib0005
  article-title: Microstructure of Ti-6Al-4V specimens produced by shaped metal deposition
  publication-title: Int. J. Mater. Res.
  doi: 10.3139/146.110217
  contributor:
    fullname: Baufeld
– volume: 48
  start-page: 4411
  year: 2017
  ident: 10.1016/j.jmatprotec.2018.03.024_bib0035
  article-title: Impact of interlayer dwell time on microstructure and mechanical properties of nickel and titanium alloys
  publication-title: Metall. Mater. Trans. A
  doi: 10.1007/s11661-017-4164-0
  contributor:
    fullname: Foster
– volume: 532
  start-page: 295
  year: 2012
  ident: 10.1016/j.jmatprotec.2018.03.024_bib0020
  article-title: Morphology, microstructure, and hardness of titanium (Ti-6Al-4V) blocks deposited by wire-feed additive layer manufacturing (ALM)
  publication-title: Mater. Sci. Eng., A
  doi: 10.1016/j.msea.2011.10.095
  contributor:
    fullname: Brandl
– volume: 31
  start-page: S106
  issue: Suppl. 1
  year: 2010
  ident: 10.1016/j.jmatprotec.2018.03.024_bib0010
  article-title: Additive manufacturing of Ti–6Al–4V components by shaped metal deposition: microstructure and mechanical properties
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2009.11.032
  contributor:
    fullname: Baufeld
– volume: 227
  start-page: 1138
  year: 2013
  ident: 10.1016/j.jmatprotec.2018.03.024_bib0070
  article-title: A study of the mechanical properties of objects built through weld-deposition
  publication-title: Proc. Inst. Mech. Eng., B J. Eng. Manuf.
  doi: 10.1177/0954405413482122
  contributor:
    fullname: Suryakumar
– volume: 46
  start-page: 63
  year: 2016
  ident: 10.1016/j.jmatprotec.2018.03.024_bib0030
  article-title: Microstructural control of additively manufactured metallic materials
  publication-title: Annu. Rev. Mater. Res.
  doi: 10.1146/annurev-matsci-070115-031816
  contributor:
    fullname: Collins
– volume: 117
  start-page: 371
  year: 2016
  ident: 10.1016/j.jmatprotec.2018.03.024_bib0045
  article-title: Additive manufacturing of metals
  publication-title: Acta. Mater.
  doi: 10.1016/j.actamat.2016.07.019
  contributor:
    fullname: Herzog
– volume: vol. 1
  start-page: 3
  year: 2018
  ident: 10.1016/j.jmatprotec.2018.03.024_bib0065
  article-title: Arc welding processes for additive manufacturing: a review
  contributor:
    fullname: Pan
SSID ssj0017088
Score 2.6481256
Snippet To achieve improved microstructure and mechanical properties, an innovative wire arc additive manufacturing (WAAM) process with forced interpass cooling using...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 97
SubjectTerms Additive manufacturing
Carbon dioxide
CO2 gas interpass cooling
Cooling
Cooling effects
Deposition
Dislocation density
Dwell time
Evolution
Interpass temperature
Material properties
Mechanical properties
Microstructure
Optical microscopy
Optical properties
Oxidation
Scanning electron microscopy
Thin wall structures
Ti6Al4V
Titanium base alloys
Wire
Wire arc additive manufacturing (WAAM)
Title The effects of forced interpass cooling on the material properties of wire arc additively manufactured Ti6Al4V alloy
URI https://dx.doi.org/10.1016/j.jmatprotec.2018.03.024
https://www.proquest.com/docview/2070924552
Volume 258
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe67gIHxKcYDOTDblVQ7Di2I04VKxo77LKCJi6R8zVaTUlFGwn-e96znQ9WkIYmLlHlKo7r98vzr8-_90zISaSBJcBKGoDrKwIk8IERoQmEKaKSm4pnFYYGzi7VxZU-XYjFZNKd1DS0_VdLQxvYGjNn_8HafafQAJ_B5nAFq8P1znYfiTSAk-IO_8pqCw2Wom4am4HuNglmQFjtqFCotUGNtStCixWMZ5jGj3oj9Ig3P1Ho2mIeRIuS9eVKzm_Elxnu2_-2MzxiuF3f29nGpSPY1Kz9WH5rQQZDNM2wo2W94deyvv6x6sm2P3_ltKmvvzV-ybXy7lXrE-YbLJWSj0MZTPdCOh9f28uxcYFKjjoZVyal89nc1Xv3XtcpfP36zWwa9_7S4KIU63dr-PGuBgYK-7QtcevSuG8V3r7EJ-ODwethuE4fkEMO7iyeksP5p8XVeb9bpUJ7vmk_Uq8YczrCPz_vbzToFiGwLGf5mDzyxqNzh6snZFLWT8nDUdHKZ2QHCKMeYbSpqEMY7RFGPcJoU1NAGO1QQAeE4W2IMAoIowPC6Bhh1COMWoQ9J58_LpYfzgJ_dkeQC8l3gQmNYFxpnUiVJybS8E80jwueJZyxjFdGm1glSaZMWEWRSMo8DiulsjgphYxVGb0g07qpy5eEFlrERnJWhUD-ZZFkklVKyKQSUhoWhkeEdVOZblyJlrTTLq7TYfpTnP40jFKY_iPyvpvz1FNNRyFTgMsd7j7uzJT6V38L3ysEQBzzV_fq_DV5MLwbx2S6-96Wb8jBtmjfetz9AoK8tJM
link.rule.ids 315,782,786,27935,27936
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+forced+interpass+cooling+on+the+material+properties+of+wire+arc+additively+manufactured+Ti6Al4V+alloy&rft.jtitle=Journal+of+materials+processing+technology&rft.au=Wu%2C+Bintao&rft.au=Pan%2C+Zengxi&rft.au=Ding%2C+Donghong&rft.au=Cuiuri%2C+Dominic&rft.date=2018-08-01&rft.pub=Elsevier+B.V&rft.issn=0924-0136&rft.volume=258&rft.spage=97&rft.epage=105&rft_id=info:doi/10.1016%2Fj.jmatprotec.2018.03.024&rft.externalDocID=S0924013618301298
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-0136&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-0136&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-0136&client=summon