The effects of forced interpass cooling on the material properties of wire arc additively manufactured Ti6Al4V alloy
To achieve improved microstructure and mechanical properties, an innovative wire arc additive manufacturing (WAAM) process with forced interpass cooling using compressed CO2 was employed in this study to fabricate Ti6Al4V thin-walled structures. The effects of various interpass temperatures and rapi...
Saved in:
Published in: | Journal of materials processing technology Vol. 258; pp. 97 - 105 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Amsterdam
Elsevier B.V
01-08-2018
Elsevier BV |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | To achieve improved microstructure and mechanical properties, an innovative wire arc additive manufacturing (WAAM) process with forced interpass cooling using compressed CO2 was employed in this study to fabricate Ti6Al4V thin-walled structures. The effects of various interpass temperatures and rapid forced cooling on deposition geometry, surface oxidation, microstructural evolution, and mechanical properties of the fabricated part were investigated by laser profilometry, optical microscopy (OM), scanning electron microscopy (SEM), hardness testing and mechanical tensile testing. Results show that the microstructural evolution and mechanical properties of the deposited metal are not greatly affected by an increasing interpass temperature, however, the deposited wall tends to be widened, flattened and exhibit increased surface oxidation through visible coloration. When rapid forced cooling using CO2 is used between deposited layers, slightly higher hardness values and increased strength can be obtained. This is mainly attributed to the combined effects of less surface oxide and high density dislocation caused by the generation of large amounts of fine-grained acicular α within the microstructure. Furthermore, forced interpass cooling not only improves deposition properties, but also promotes geometrical repeatability and also improved manufacturing efficiency through the reduction of dwell time between deposited layers. |
---|---|
AbstractList | To achieve improved microstructure and mechanical properties, an innovative wire arc additive manufacturing (WAAM) process with forced interpass cooling using compressed CO2 was employed in this study to fabricate Ti6Al4V thin-walled structures. The effects of various interpass temperatures and rapid forced cooling on deposition geometry, surface oxidation, microstructural evolution, and mechanical properties of the fabricated part were investigated by laser profilometry, optical microscopy (OM), scanning electron microscopy (SEM), hardness testing and mechanical tensile testing. Results show that the microstructural evolution and mechanical properties of the deposited metal are not greatly affected by an increasing interpass temperature, however, the deposited wall tends to be widened, flattened and exhibit increased surface oxidation through visible coloration. When rapid forced cooling using CO2 is used between deposited layers, slightly higher hardness values and increased strength can be obtained. This is mainly attributed to the combined effects of less surface oxide and high density dislocation caused by the generation of large amounts of fine-grained acicular α within the microstructure. Furthermore, forced interpass cooling not only improves deposition properties, but also promotes geometrical repeatability and also improved manufacturing efficiency through the reduction of dwell time between deposited layers. |
Author | Li, Huijun Cuiuri, Dominic Pan, Zengxi Ding, Donghong Fei, Zhenyu Wu, Bintao |
Author_xml | – sequence: 1 givenname: Bintao surname: Wu fullname: Wu, Bintao organization: School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia – sequence: 2 givenname: Zengxi surname: Pan fullname: Pan, Zengxi email: zengxi@uow.edu.au organization: School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia – sequence: 3 givenname: Donghong surname: Ding fullname: Ding, Donghong organization: School of Mechatronic Engineering, Foshan University, Foshan Guangdong, 528000, China – sequence: 4 givenname: Dominic surname: Cuiuri fullname: Cuiuri, Dominic organization: School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia – sequence: 5 givenname: Huijun surname: Li fullname: Li, Huijun organization: School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia – sequence: 6 givenname: Zhenyu surname: Fei fullname: Fei, Zhenyu organization: School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW, 2522, Australia |
BookMark | eNqFkE1PJCEURclEk2k__gPJrKvmQVEFLNU4o4mJm9YtoanHDJWy6AFa0_9-aNvEpSs25977OGfkZIkLEkIZtAzY8HNqpxdbtikWdC0HplroWuDiG1kxJbtGSClOyAo0Fw2wbvhOznKeAJgEpVakrP8iRe_RlUyjpz4mhyMNS8G0tTlTF-Mclj80LrRUtG5hCnamdXGLqQR8j72FhNQmR-04hhJecd5XdNl568ou1cJ1GK5m8UztPMf9BTn1ds54-fGek6dft-ubu-bh8ff9zdVD48TAS2PBCsalUnqQTttOgdCuH_lGc8Y23Ftle6n1RlrwXSc0uh68lJteoxh6id05-XHsrcf-22EuZoq7tNRJw0EelPQ9r5Q6Ui7FnBN6s03hxaa9YWAOjs1kPh2bg2MDnamOa_T6GMX6i9eAyWQXcKkGqw9XzBjD1yX_AeO6jSM |
CitedBy_id | crossref_primary_10_1016_j_addma_2019_03_029 crossref_primary_10_1016_j_addma_2018_08_004 crossref_primary_10_1007_s11665_022_06973_4 crossref_primary_10_1016_j_addma_2022_102723 crossref_primary_10_1007_s00170_019_04589_y crossref_primary_10_1016_j_jmapro_2021_08_018 crossref_primary_10_1089_3dp_2019_0061 crossref_primary_10_3390_met13030526 crossref_primary_10_1007_s00170_021_07358_y crossref_primary_10_1016_j_matchemphys_2022_126988 crossref_primary_10_1002_adem_202001036 crossref_primary_10_3390_jmmp7030097 crossref_primary_10_1016_j_jmapro_2018_08_001 crossref_primary_10_1089_3dp_2022_0339 crossref_primary_10_2320_matertrans_MT_M2021031 crossref_primary_10_1016_j_addma_2020_101121 crossref_primary_10_1177_14644207231183096 crossref_primary_10_1007_s11015_023_01502_7 crossref_primary_10_1016_j_jmatprotec_2019_116268 crossref_primary_10_1016_j_infrared_2021_103860 crossref_primary_10_1016_j_addma_2020_101505 crossref_primary_10_3390_ma17102325 crossref_primary_10_1016_j_jmapro_2021_11_047 crossref_primary_10_2139_ssrn_4123947 crossref_primary_10_1016_j_mtcomm_2022_103739 crossref_primary_10_1016_j_mtcomm_2024_108628 crossref_primary_10_3390_pr11020612 crossref_primary_10_1016_j_matpr_2020_08_030 crossref_primary_10_1080_13621718_2019_1580439 crossref_primary_10_1063_5_0065583 crossref_primary_10_1007_s40032_022_00868_y crossref_primary_10_1016_j_cirpj_2023_08_013 crossref_primary_10_1051_matecconf_201926905001 crossref_primary_10_1016_j_jmrt_2023_05_163 crossref_primary_10_1007_s11665_022_07128_1 crossref_primary_10_1016_j_addma_2023_103954 crossref_primary_10_1016_j_matdes_2021_109471 crossref_primary_10_1016_j_addma_2020_101578 crossref_primary_10_1002_srin_202000523 crossref_primary_10_1016_j_jmapro_2022_02_008 crossref_primary_10_1016_j_surfcoat_2020_125439 crossref_primary_10_1080_02670836_2022_2110223 crossref_primary_10_3390_met12020212 crossref_primary_10_1007_s40194_024_01692_x crossref_primary_10_1590_0104_9224_si25_01 crossref_primary_10_1016_j_matchar_2021_111158 crossref_primary_10_1007_s11665_024_09148_5 crossref_primary_10_35193_bseufbd_1092574 crossref_primary_10_1007_s11182_020_01877_z crossref_primary_10_1016_j_jmapro_2022_09_037 crossref_primary_10_1016_j_jmatprotec_2022_117806 crossref_primary_10_1007_s00170_020_05958_8 crossref_primary_10_1016_j_jmrt_2023_09_020 crossref_primary_10_1007_s11182_020_02124_1 crossref_primary_10_1088_1361_6463_ac1e4a crossref_primary_10_3390_met11020190 crossref_primary_10_1016_j_matpr_2020_02_551 crossref_primary_10_1007_s40194_019_00705_4 crossref_primary_10_1016_j_jmrt_2023_03_200 crossref_primary_10_1016_j_msea_2020_139020 crossref_primary_10_3390_met13081484 crossref_primary_10_1016_j_jmatprotec_2021_117196 crossref_primary_10_1016_S1003_6326_23_66389_7 crossref_primary_10_1016_j_msea_2019_138654 crossref_primary_10_2472_jsms_72_124 crossref_primary_10_1016_j_jmapro_2022_11_043 crossref_primary_10_1007_s11668_024_01860_7 crossref_primary_10_1080_10426914_2020_1843677 crossref_primary_10_1007_s00170_020_05201_4 crossref_primary_10_1016_j_jmatprotec_2022_117655 crossref_primary_10_1080_17452759_2023_2291471 crossref_primary_10_1016_j_jmrt_2023_07_147 crossref_primary_10_1016_j_jmapro_2021_05_022 crossref_primary_10_1080_13621718_2022_2045127 crossref_primary_10_3390_ma16227177 crossref_primary_10_1016_j_jmatprotec_2022_117651 crossref_primary_10_4028_www_scientific_net_KEM_813_241 crossref_primary_10_1007_s12008_024_01973_1 crossref_primary_10_1016_j_matdes_2018_10_038 crossref_primary_10_1016_j_pmatsci_2019_100590 crossref_primary_10_1016_j_jmatprotec_2019_116355 crossref_primary_10_1016_j_jallcom_2023_168729 crossref_primary_10_1016_j_msea_2023_145699 crossref_primary_10_1080_09506608_2021_1971427 crossref_primary_10_3390_met10091164 crossref_primary_10_3390_ma15155168 crossref_primary_10_3390_met11060877 crossref_primary_10_1016_j_jmatprotec_2020_116891 crossref_primary_10_3740_MRSK_2021_31_5_245 crossref_primary_10_1016_j_ijfatigue_2021_106268 crossref_primary_10_1016_j_jii_2021_100218 crossref_primary_10_1016_j_jmapro_2022_04_044 crossref_primary_10_37434_sem2021_01_05 crossref_primary_10_1016_j_mtla_2019_100397 crossref_primary_10_3390_jmmp7010045 crossref_primary_10_37434_as2023_11_01 crossref_primary_10_1016_j_msea_2020_140310 crossref_primary_10_3390_met10081004 crossref_primary_10_1016_j_jmrt_2020_11_012 crossref_primary_10_3390_ma12071121 crossref_primary_10_1016_j_msea_2021_142351 crossref_primary_10_1016_j_msea_2023_144599 crossref_primary_10_1108_RPJ_09_2019_0238 crossref_primary_10_1007_s12540_024_01724_7 crossref_primary_10_1016_j_jmapro_2020_01_051 crossref_primary_10_1007_s12540_022_01285_7 crossref_primary_10_1016_j_cirpj_2022_05_002 crossref_primary_10_1016_j_jmrt_2022_01_014 crossref_primary_10_1007_s12540_021_01015_5 crossref_primary_10_1016_j_jmapro_2021_02_021 crossref_primary_10_1016_j_msea_2020_140307 crossref_primary_10_1007_s11771_021_4683_0 crossref_primary_10_2139_ssrn_4055978 crossref_primary_10_1016_j_icheatmasstransfer_2023_107066 crossref_primary_10_1016_j_addma_2023_103476 crossref_primary_10_1016_j_jmatprotec_2022_117759 crossref_primary_10_1177_0954405420909182 crossref_primary_10_37434_tpwj2023_11_01 crossref_primary_10_1002_srin_202100175 crossref_primary_10_1007_s40684_020_00302_7 crossref_primary_10_1016_S1003_6326_23_66160_6 crossref_primary_10_1016_j_jmst_2024_03_054 crossref_primary_10_1007_s00170_023_11105_w crossref_primary_10_1007_s10853_021_06012_y crossref_primary_10_1007_s00170_024_13958_1 crossref_primary_10_1007_s00170_024_13978_x crossref_primary_10_1108_RPJ_04_2020_0085 crossref_primary_10_1002_adem_202000728 crossref_primary_10_3390_met10010024 crossref_primary_10_1007_s40194_020_00930_2 crossref_primary_10_1016_j_procir_2022_09_185 crossref_primary_10_1007_s11831_020_09511_4 crossref_primary_10_1016_j_jmapro_2020_05_053 crossref_primary_10_1016_j_jmapro_2024_05_059 crossref_primary_10_1016_j_jmatprotec_2019_05_003 crossref_primary_10_1016_j_addma_2022_103245 crossref_primary_10_1016_j_addma_2019_03_003 crossref_primary_10_1080_10426914_2020_1779936 crossref_primary_10_1016_j_matdes_2022_110731 crossref_primary_10_1016_j_jmrt_2023_01_139 crossref_primary_10_1007_s10845_020_01634_6 crossref_primary_10_1016_j_jclepro_2023_136071 crossref_primary_10_1016_j_matchar_2024_113653 crossref_primary_10_1007_s11665_021_05871_5 crossref_primary_10_1002_adem_202300618 crossref_primary_10_1016_j_jmapro_2020_11_046 crossref_primary_10_1007_s11740_022_01138_7 crossref_primary_10_1115_1_4055569 crossref_primary_10_1016_j_mtcomm_2023_107213 crossref_primary_10_3390_coatings11091141 crossref_primary_10_1016_j_addma_2018_06_020 crossref_primary_10_3390_met13040641 crossref_primary_10_1016_j_jmatprotec_2020_116723 crossref_primary_10_1080_0951192X_2022_2162588 crossref_primary_10_1007_s43452_023_00633_7 crossref_primary_10_1080_10426914_2020_1732414 crossref_primary_10_1016_j_msea_2024_146144 |
Cites_doi | 10.1179/1743284715Y.0000000073 10.1016/j.msea.2015.10.068 10.1002/mawe.19770080503 10.1016/j.jmatprotec.2016.06.034 10.1016/j.jmatprotec.2017.07.037 10.1016/j.actamat.2015.06.036 10.1016/j.jmatprotec.2011.01.018 10.3139/146.110217 10.1007/s11661-017-4164-0 10.1016/j.msea.2011.10.095 10.1016/j.matdes.2009.11.032 10.1177/0954405413482122 10.1146/annurev-matsci-070115-031816 10.1016/j.actamat.2016.07.019 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright Elsevier BV Aug 2018 |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright Elsevier BV Aug 2018 |
DBID | AAYXX CITATION 7SR 8BQ 8FD H8D JG9 L7M |
DOI | 10.1016/j.jmatprotec.2018.03.024 |
DatabaseName | CrossRef Engineered Materials Abstracts METADEX Technology Research Database Aerospace Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Materials Research Database Aerospace Database Engineered Materials Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4774 |
EndPage | 105 |
ExternalDocumentID | 10_1016_j_jmatprotec_2018_03_024 S0924013618301298 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFRF ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 D-I DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SMS SPC SPCBC SSM SST SSZ T5K WUQ XFK ~02 ~G- AAXKI AAYXX AFJKZ AKRWK CITATION 7SR 8BQ 8FD H8D JG9 L7M |
ID | FETCH-LOGICAL-c462t-a0a412788967c9a38049c5d2b9211b2fa8a5799b7a0f3349ec50f77b59e4657e3 |
ISSN | 0924-0136 |
IngestDate | Thu Oct 10 19:12:59 EDT 2024 Thu Sep 26 17:59:55 EDT 2024 Fri Feb 23 02:34:00 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Wire arc additive manufacturing (WAAM) Interpass temperature Ti6Al4V CO2 gas interpass cooling Material properties |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c462t-a0a412788967c9a38049c5d2b9211b2fa8a5799b7a0f3349ec50f77b59e4657e3 |
OpenAccessLink | https://ro.uow.edu.au/cgi/viewcontent.cgi?article=2388&context=eispapers1 |
PQID | 2070924552 |
PQPubID | 2045449 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2070924552 crossref_primary_10_1016_j_jmatprotec_2018_03_024 elsevier_sciencedirect_doi_10_1016_j_jmatprotec_2018_03_024 |
PublicationCentury | 2000 |
PublicationDate | August 2018 2018-08-00 20180801 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: August 2018 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Journal of materials processing technology |
PublicationYear | 2018 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Baufeld, Brandl, Van der Biest (bib0015) 2011; 211 Pan, Ding, Wu, Cuiuri, Li, Norrish (bib0065) 2018; vol. 1 Baufeld, Biest, Gault (bib0005) 2009; 100 Foster, Beese, Keist, McHale, Palmer (bib0035) 2017; 48 Suryakumar, Karunakaran, Chandrasekhar, Somashekara (bib0070) 2013; 227 Welsch, Boyer, Collings (bib0080) 1993 Wu, Ding, Pan, Cuiuri, Li, Han, Fei (bib0095) 2017; 250 Welsch, Bunk, Kellerer (bib0085) 1977; 8 Williams, Martina, Addison, Ding, Pardal, Colegrove (bib0090) 2016; 32 Charles (bib0025) 2016 Herzog, Seyda, Wycisk, Emmelmann (bib0045) 2016; 117 Hong, Shin (bib0055) 2016; 237 Baufeld, Biest, Gault (bib0010) 2010; 31 Henckell, Günther, Ali, Bergmann, Scholz, Forêt (bib0040) 2017 Mower, Long (bib0060) 2016; 651 Tan, Kok, Tan, Descoins, Mangelinck, Tor, Leong, Chua (bib0075) 2015; 97 Collins, Brice, Samimi, Ghamarian, Fraser (bib0030) 2016; 46 Holder, Larkin, Li, Kuzmikova, Pan, Norrish (bib0050) 2011 Brandl, Schoberth, Leyens (bib0020) 2012; 532 Mower (10.1016/j.jmatprotec.2018.03.024_bib0060) 2016; 651 Holder (10.1016/j.jmatprotec.2018.03.024_bib0050) 2011 Suryakumar (10.1016/j.jmatprotec.2018.03.024_bib0070) 2013; 227 Pan (10.1016/j.jmatprotec.2018.03.024_bib0065) 2018; vol. 1 Collins (10.1016/j.jmatprotec.2018.03.024_bib0030) 2016; 46 Baufeld (10.1016/j.jmatprotec.2018.03.024_bib0015) 2011; 211 Charles (10.1016/j.jmatprotec.2018.03.024_bib0025) 2016 Welsch (10.1016/j.jmatprotec.2018.03.024_bib0080) 1993 Wu (10.1016/j.jmatprotec.2018.03.024_bib0095) 2017; 250 Hong (10.1016/j.jmatprotec.2018.03.024_bib0055) 2016; 237 Williams (10.1016/j.jmatprotec.2018.03.024_bib0090) 2016; 32 Brandl (10.1016/j.jmatprotec.2018.03.024_bib0020) 2012; 532 Foster (10.1016/j.jmatprotec.2018.03.024_bib0035) 2017; 48 Henckell (10.1016/j.jmatprotec.2018.03.024_bib0040) 2017 Welsch (10.1016/j.jmatprotec.2018.03.024_bib0085) 1977; 8 Herzog (10.1016/j.jmatprotec.2018.03.024_bib0045) 2016; 117 Baufeld (10.1016/j.jmatprotec.2018.03.024_bib0010) 2010; 31 Tan (10.1016/j.jmatprotec.2018.03.024_bib0075) 2015; 97 Baufeld (10.1016/j.jmatprotec.2018.03.024_bib0005) 2009; 100 |
References_xml | – year: 1993 ident: bib0080 article-title: Materials Properties Handbook: Titanium Alloys contributor: fullname: Collings – volume: 532 start-page: 295 year: 2012 end-page: 307 ident: bib0020 article-title: Morphology, microstructure, and hardness of titanium (Ti-6Al-4V) blocks deposited by wire-feed additive layer manufacturing (ALM) publication-title: Mater. Sci. Eng., A contributor: fullname: Leyens – volume: 32 start-page: 641 year: 2016 end-page: 647 ident: bib0090 article-title: Wire + arc additive manufacturing publication-title: Mater. Sci. Technol. contributor: fullname: Colegrove – volume: 237 start-page: 420 year: 2016 end-page: 429 ident: bib0055 article-title: Analysis of microstructure and mechanical properties change in laser welding of Ti6Al4V with a multiphysics prediction model publication-title: J. Mater. Process Technol. contributor: fullname: Shin – volume: 250 start-page: 304 year: 2017 end-page: 312 ident: bib0095 article-title: Effects of heat accumulation on the arc characteristics and metal transfer behavior in wire arc additive manufacturing of Ti6Al4V publication-title: J. Mater. Process Technol. contributor: fullname: Fei – volume: 651 start-page: 198 year: 2016 end-page: 213 ident: bib0060 article-title: Mechanical behavior of additive manufactured, powder-bed laser-fused materials publication-title: Mater. Sci. Eng. A contributor: fullname: Long – year: 2016 ident: bib0025 article-title: Microstructure Model for Ti-6Al-4V Used in Simulation of Additive Manufacturing contributor: fullname: Charles – volume: 117 start-page: 371 year: 2016 end-page: 392 ident: bib0045 article-title: Additive manufacturing of metals publication-title: Acta. Mater. contributor: fullname: Emmelmann – volume: 211 start-page: 1146 year: 2011 end-page: 1158 ident: bib0015 article-title: Wire based additive layer manufacturing: comparison of microstructure and mechanical properties of Ti-6Al-4V components fabricated by laser-beam deposition and shaped metal deposition publication-title: J. Mater. Process Technol. contributor: fullname: Van der Biest – volume: 31 start-page: S106 year: 2010 end-page: S111 ident: bib0010 article-title: Additive manufacturing of Ti–6Al–4V components by shaped metal deposition: microstructure and mechanical properties publication-title: Mater. Des. contributor: fullname: Gault – year: 2011 ident: bib0050 article-title: Development of a DC-LSND welding process for GMAW on DH-36 steel publication-title: 56th WTIA Annual Conference contributor: fullname: Norrish – year: 2017 ident: bib0040 article-title: The influence of gas cooling in context of wire arc additive manufacturing- a novel strategy of affecting grain structure and size publication-title: TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings contributor: fullname: Forêt – volume: vol. 1 start-page: 3 year: 2018 end-page: 24 ident: bib0065 article-title: Arc welding processes for additive manufacturing: a review publication-title: Transactions on Intelligent Welding Manufacturing contributor: fullname: Norrish – volume: 8 start-page: 141 year: 1977 end-page: 148 ident: bib0085 article-title: Einfluß von Spannungsfrei‐Glühung und Abkühlungsgeschwindigkeit auf Mikrostruktur und Festigkeit von TiAl6V4 publication-title: Materialwissenschaft und Werkstofftechnik contributor: fullname: Kellerer – volume: 100 start-page: 1536 year: 2009 end-page: 1542 ident: bib0005 article-title: Microstructure of Ti-6Al-4V specimens produced by shaped metal deposition publication-title: Int. J. Mater. Res. contributor: fullname: Gault – volume: 97 start-page: 1 year: 2015 end-page: 16 ident: bib0075 article-title: Graded microstructure and mechanical properties of additive manufactured Ti–6Al–4V via electron beam melting publication-title: Acta Mater. contributor: fullname: Chua – volume: 48 start-page: 4411 year: 2017 end-page: 4422 ident: bib0035 article-title: Impact of interlayer dwell time on microstructure and mechanical properties of nickel and titanium alloys publication-title: Metall. Mater. Trans. A contributor: fullname: Palmer – volume: 227 start-page: 1138 year: 2013 end-page: 1147 ident: bib0070 article-title: A study of the mechanical properties of objects built through weld-deposition publication-title: Proc. Inst. Mech. Eng., B J. Eng. Manuf. contributor: fullname: Somashekara – volume: 46 start-page: 63 year: 2016 end-page: 91 ident: bib0030 article-title: Microstructural control of additively manufactured metallic materials publication-title: Annu. Rev. Mater. Res. contributor: fullname: Fraser – year: 2016 ident: 10.1016/j.jmatprotec.2018.03.024_bib0025 contributor: fullname: Charles – volume: 32 start-page: 641 year: 2016 ident: 10.1016/j.jmatprotec.2018.03.024_bib0090 article-title: Wire + arc additive manufacturing publication-title: Mater. Sci. Technol. doi: 10.1179/1743284715Y.0000000073 contributor: fullname: Williams – volume: 651 start-page: 198 year: 2016 ident: 10.1016/j.jmatprotec.2018.03.024_bib0060 article-title: Mechanical behavior of additive manufactured, powder-bed laser-fused materials publication-title: Mater. Sci. Eng. A doi: 10.1016/j.msea.2015.10.068 contributor: fullname: Mower – volume: 8 start-page: 141 year: 1977 ident: 10.1016/j.jmatprotec.2018.03.024_bib0085 article-title: Einfluß von Spannungsfrei‐Glühung und Abkühlungsgeschwindigkeit auf Mikrostruktur und Festigkeit von TiAl6V4 publication-title: Materialwissenschaft und Werkstofftechnik doi: 10.1002/mawe.19770080503 contributor: fullname: Welsch – volume: 237 start-page: 420 year: 2016 ident: 10.1016/j.jmatprotec.2018.03.024_bib0055 article-title: Analysis of microstructure and mechanical properties change in laser welding of Ti6Al4V with a multiphysics prediction model publication-title: J. Mater. Process Technol. doi: 10.1016/j.jmatprotec.2016.06.034 contributor: fullname: Hong – year: 2011 ident: 10.1016/j.jmatprotec.2018.03.024_bib0050 article-title: Development of a DC-LSND welding process for GMAW on DH-36 steel contributor: fullname: Holder – year: 2017 ident: 10.1016/j.jmatprotec.2018.03.024_bib0040 article-title: The influence of gas cooling in context of wire arc additive manufacturing- a novel strategy of affecting grain structure and size contributor: fullname: Henckell – volume: 250 start-page: 304 year: 2017 ident: 10.1016/j.jmatprotec.2018.03.024_bib0095 article-title: Effects of heat accumulation on the arc characteristics and metal transfer behavior in wire arc additive manufacturing of Ti6Al4V publication-title: J. Mater. Process Technol. doi: 10.1016/j.jmatprotec.2017.07.037 contributor: fullname: Wu – volume: 97 start-page: 1 year: 2015 ident: 10.1016/j.jmatprotec.2018.03.024_bib0075 article-title: Graded microstructure and mechanical properties of additive manufactured Ti–6Al–4V via electron beam melting publication-title: Acta Mater. doi: 10.1016/j.actamat.2015.06.036 contributor: fullname: Tan – volume: 211 start-page: 1146 year: 2011 ident: 10.1016/j.jmatprotec.2018.03.024_bib0015 article-title: Wire based additive layer manufacturing: comparison of microstructure and mechanical properties of Ti-6Al-4V components fabricated by laser-beam deposition and shaped metal deposition publication-title: J. Mater. Process Technol. doi: 10.1016/j.jmatprotec.2011.01.018 contributor: fullname: Baufeld – year: 1993 ident: 10.1016/j.jmatprotec.2018.03.024_bib0080 contributor: fullname: Welsch – volume: 100 start-page: 1536 year: 2009 ident: 10.1016/j.jmatprotec.2018.03.024_bib0005 article-title: Microstructure of Ti-6Al-4V specimens produced by shaped metal deposition publication-title: Int. J. Mater. Res. doi: 10.3139/146.110217 contributor: fullname: Baufeld – volume: 48 start-page: 4411 year: 2017 ident: 10.1016/j.jmatprotec.2018.03.024_bib0035 article-title: Impact of interlayer dwell time on microstructure and mechanical properties of nickel and titanium alloys publication-title: Metall. Mater. Trans. A doi: 10.1007/s11661-017-4164-0 contributor: fullname: Foster – volume: 532 start-page: 295 year: 2012 ident: 10.1016/j.jmatprotec.2018.03.024_bib0020 article-title: Morphology, microstructure, and hardness of titanium (Ti-6Al-4V) blocks deposited by wire-feed additive layer manufacturing (ALM) publication-title: Mater. Sci. Eng., A doi: 10.1016/j.msea.2011.10.095 contributor: fullname: Brandl – volume: 31 start-page: S106 issue: Suppl. 1 year: 2010 ident: 10.1016/j.jmatprotec.2018.03.024_bib0010 article-title: Additive manufacturing of Ti–6Al–4V components by shaped metal deposition: microstructure and mechanical properties publication-title: Mater. Des. doi: 10.1016/j.matdes.2009.11.032 contributor: fullname: Baufeld – volume: 227 start-page: 1138 year: 2013 ident: 10.1016/j.jmatprotec.2018.03.024_bib0070 article-title: A study of the mechanical properties of objects built through weld-deposition publication-title: Proc. Inst. Mech. Eng., B J. Eng. Manuf. doi: 10.1177/0954405413482122 contributor: fullname: Suryakumar – volume: 46 start-page: 63 year: 2016 ident: 10.1016/j.jmatprotec.2018.03.024_bib0030 article-title: Microstructural control of additively manufactured metallic materials publication-title: Annu. Rev. Mater. Res. doi: 10.1146/annurev-matsci-070115-031816 contributor: fullname: Collins – volume: 117 start-page: 371 year: 2016 ident: 10.1016/j.jmatprotec.2018.03.024_bib0045 article-title: Additive manufacturing of metals publication-title: Acta. Mater. doi: 10.1016/j.actamat.2016.07.019 contributor: fullname: Herzog – volume: vol. 1 start-page: 3 year: 2018 ident: 10.1016/j.jmatprotec.2018.03.024_bib0065 article-title: Arc welding processes for additive manufacturing: a review contributor: fullname: Pan |
SSID | ssj0017088 |
Score | 2.6481256 |
Snippet | To achieve improved microstructure and mechanical properties, an innovative wire arc additive manufacturing (WAAM) process with forced interpass cooling using... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 97 |
SubjectTerms | Additive manufacturing Carbon dioxide CO2 gas interpass cooling Cooling Cooling effects Deposition Dislocation density Dwell time Evolution Interpass temperature Material properties Mechanical properties Microstructure Optical microscopy Optical properties Oxidation Scanning electron microscopy Thin wall structures Ti6Al4V Titanium base alloys Wire Wire arc additive manufacturing (WAAM) |
Title | The effects of forced interpass cooling on the material properties of wire arc additively manufactured Ti6Al4V alloy |
URI | https://dx.doi.org/10.1016/j.jmatprotec.2018.03.024 https://www.proquest.com/docview/2070924552 |
Volume | 258 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLe67gIHxKcYDOTDblVQ7Di2I04VKxo77LKCJi6R8zVaTUlFGwn-e96znQ9WkIYmLlHlKo7r98vzr8-_90zISaSBJcBKGoDrKwIk8IERoQmEKaKSm4pnFYYGzi7VxZU-XYjFZNKd1DS0_VdLQxvYGjNn_8HafafQAJ_B5nAFq8P1znYfiTSAk-IO_8pqCw2Wom4am4HuNglmQFjtqFCotUGNtStCixWMZ5jGj3oj9Ig3P1Ho2mIeRIuS9eVKzm_Elxnu2_-2MzxiuF3f29nGpSPY1Kz9WH5rQQZDNM2wo2W94deyvv6x6sm2P3_ltKmvvzV-ybXy7lXrE-YbLJWSj0MZTPdCOh9f28uxcYFKjjoZVyal89nc1Xv3XtcpfP36zWwa9_7S4KIU63dr-PGuBgYK-7QtcevSuG8V3r7EJ-ODwethuE4fkEMO7iyeksP5p8XVeb9bpUJ7vmk_Uq8YczrCPz_vbzToFiGwLGf5mDzyxqNzh6snZFLWT8nDUdHKZ2QHCKMeYbSpqEMY7RFGPcJoU1NAGO1QQAeE4W2IMAoIowPC6Bhh1COMWoQ9J58_LpYfzgJ_dkeQC8l3gQmNYFxpnUiVJybS8E80jwueJZyxjFdGm1glSaZMWEWRSMo8DiulsjgphYxVGb0g07qpy5eEFlrERnJWhUD-ZZFkklVKyKQSUhoWhkeEdVOZblyJlrTTLq7TYfpTnP40jFKY_iPyvpvz1FNNRyFTgMsd7j7uzJT6V38L3ysEQBzzV_fq_DV5MLwbx2S6-96Wb8jBtmjfetz9AoK8tJM |
link.rule.ids | 315,782,786,27935,27936 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+forced+interpass+cooling+on+the+material+properties+of+wire+arc+additively+manufactured+Ti6Al4V+alloy&rft.jtitle=Journal+of+materials+processing+technology&rft.au=Wu%2C+Bintao&rft.au=Pan%2C+Zengxi&rft.au=Ding%2C+Donghong&rft.au=Cuiuri%2C+Dominic&rft.date=2018-08-01&rft.pub=Elsevier+B.V&rft.issn=0924-0136&rft.volume=258&rft.spage=97&rft.epage=105&rft_id=info:doi/10.1016%2Fj.jmatprotec.2018.03.024&rft.externalDocID=S0924013618301298 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-0136&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-0136&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-0136&client=summon |