Toward an Interactive Reinforcement Based Learning Framework for Human Robot Collaborative Assembly Processes
As manufacturing demographics change from mass production to mass customization, advances in human-robot interaction in industries have taken many forms. However, the topic of reducing the programming effort required by an expert using natural modes of communication is still open. To answer this cha...
Saved in:
Published in: | Frontiers in robotics and AI Vol. 5; p. 126 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
Frontiers Media S.A
22-11-2018
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | As manufacturing demographics change from mass production to mass customization, advances in human-robot interaction in industries have taken many forms. However, the topic of reducing the programming effort required by an expert using natural modes of communication is still open. To answer this challenge, we propose an approach based on Interactive Reinforcement Learning that learns a complete collaborative assembly process. The learning approach is done in two steps. First step consists of modeling simple tasks that compose the assembly process, using task based formalism. The robotic system then uses these modeled simple tasks and proposes to the user a set of possible actions at each step of the assembly process via a GUI. The user then "interacts" with the robotic system by selecting an option from the given choice. The robot records the action chosen and performs it, progressing the assembly process. Thereby, the user teaches the system which task to perform when. In order to reduce the number of actions proposed, the system considers additional information such as user and robot capabilities and object affordances. These set of action proposals are further reduced by modeling the proposed actions into a goal based hierarchy and by including action prerequisites. The learning framework highlights its ability to learn a complicated human robot collaborative assembly process in a user intuitive fashion. The framework also allows different users to teach different assembly processes to the robot. |
---|---|
AbstractList | As manufacturing demographics change from mass production to mass customization, advances in human-robot interaction in industries have taken many forms. However, the topic of reducing the programming effort required by an expert using natural modes of communication is still open. To answer this challenge, we propose an approach based on Interactive Reinforcement Learning that learns a complete collaborative assembly process. The learning approach is done in two steps. First step consists of modeling simple tasks that compose the assembly process, using task based formalism. The robotic system then uses these modeled simple tasks and proposes to the user a set of possible actions at each step of the assembly process via a GUI. The user then "interacts" with the robotic system by selecting an option from the given choice. The robot records the action chosen and performs it, progressing the assembly process. Thereby, the user teaches the system which task to perform when. In order to reduce the number of actions proposed, the system considers additional information such as user and robot capabilities and object affordances. These set of action proposals are further reduced by modeling the proposed actions into a goal based hierarchy and by including action prerequisites. The learning framework highlights its ability to learn a complicated human robot collaborative assembly process in a user intuitive fashion. The framework also allows different users to teach different assembly processes to the robot. |
Author | Pichler, Andreas Maddukuri, Sriniwas Eitzinger, Christian Rinner, Bernhard Plasch, Matthias Akkaladevi, Sharath Chandra |
AuthorAffiliation | 2 Institute of Networked and Embedded Systems, Alpen-Adria-Universität Klagenfurt , Klagenfurt , Austria 1 Profactor GmbH , Steyr-Gleink, Steyr , Austria |
AuthorAffiliation_xml | – name: 1 Profactor GmbH , Steyr-Gleink, Steyr , Austria – name: 2 Institute of Networked and Embedded Systems, Alpen-Adria-Universität Klagenfurt , Klagenfurt , Austria |
Author_xml | – sequence: 1 givenname: Sharath Chandra surname: Akkaladevi fullname: Akkaladevi, Sharath Chandra organization: Institute of Networked and Embedded Systems, Alpen-Adria-Universität Klagenfurt, Klagenfurt, Austria – sequence: 2 givenname: Matthias surname: Plasch fullname: Plasch, Matthias organization: Profactor GmbH, Steyr-Gleink, Steyr, Austria – sequence: 3 givenname: Sriniwas surname: Maddukuri fullname: Maddukuri, Sriniwas organization: Profactor GmbH, Steyr-Gleink, Steyr, Austria – sequence: 4 givenname: Christian surname: Eitzinger fullname: Eitzinger, Christian organization: Profactor GmbH, Steyr-Gleink, Steyr, Austria – sequence: 5 givenname: Andreas surname: Pichler fullname: Pichler, Andreas organization: Profactor GmbH, Steyr-Gleink, Steyr, Austria – sequence: 6 givenname: Bernhard surname: Rinner fullname: Rinner, Bernhard organization: Institute of Networked and Embedded Systems, Alpen-Adria-Universität Klagenfurt, Klagenfurt, Austria |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33501005$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkUtPGzEUha0KVChl31XlZTdJ_Rp7vKlEIx6RIhUhurb8uJMOnbGpPQHx73ESimBl-_qc79r3fEIHMUVA6Aslc85b_b3LyU1zRmg7J4Qy-QEdM6blTFMhDt7sj9BpKXekappWcKU-oiPOG0IJaY7ReJsebQ7YRryME2Trp_4B8A30sUvZwwhxwj9tgYBXYHPs4xpfZDvCY8p_cZXgq81YzTfJpQkv0jBYl7LdQc5KgdENT_g6Jw_1UD6jw84OBU5f1hP0--L8dnE1W_26XC7OVjMvJJtmSlAuLWl86EByTwJIpYPiWkPjpOCho9x7DZo7RYKuv2FSUNo41TrJNfATtNxzQ7J35j73o81PJtne7Aopr43NU-8HMBQsl6wTrG2cABtaSrn2TvjQ2I42rLJ-7Fn3GzdC8HUg2Q7voO9vYv_HrNODUS2RhLcV8O0FkNO_DZTJjH3xUCcVIW2KYaKlUijCt73IXupzKiVD99qGErMN3exCN9vQzS70avn69nmvhv8R82f-BKxb |
CitedBy_id | crossref_primary_10_1038_s41598_021_99428_0 crossref_primary_10_1109_TMECH_2020_3039017 crossref_primary_10_1016_j_cie_2024_110106 crossref_primary_10_3390_app11094269 crossref_primary_10_1007_s00170_021_07265_2 crossref_primary_10_1007_s00502_019_00740_5 crossref_primary_10_1007_s00502_019_00741_4 crossref_primary_10_1016_j_asoc_2023_110547 crossref_primary_10_1016_j_jmsy_2021_02_014 crossref_primary_10_3390_robotics11060126 crossref_primary_10_1007_s10845_024_02439_7 crossref_primary_10_1016_j_rcim_2022_102517 |
Cites_doi | 10.1109/IROS.2018.8593842 10.5772/5702 10.1016/j.robot.2008.10.024 10.1007/978-3-540-30301-5_60 10.1142/S0219843608001303 10.1163/156855305323383811 10.1109/COASE.2016.7743419 10.1007/s10846-010-9422-y 10.1007/978-3-319-02675-6_46 10.1007/BF00992698 10.1007/BF00114730 10.1145/860575.860614 10.1016/j.promfg.2017.07.139 10.1145/1597735.1597738 10.1109/ETFA.2015.7301453 10.1007/s00502-017-0514-2 10.1561/1100000005 10.1109/70.964670 10.1109/70.508440 10.1177/0278364913481635 10.1016/j.rcim.2015.04.002 |
ContentType | Journal Article |
Copyright | Copyright © 2018 Akkaladevi, Plasch, Maddukuri, Eitzinger, Pichler and Rinner. Copyright © 2018 Akkaladevi, Plasch, Maddukuri, Eitzinger, Pichler and Rinner. 2018 Akkaladevi, Plasch, Maddukuri, Eitzinger, Pichler and Rinner |
Copyright_xml | – notice: Copyright © 2018 Akkaladevi, Plasch, Maddukuri, Eitzinger, Pichler and Rinner. – notice: Copyright © 2018 Akkaladevi, Plasch, Maddukuri, Eitzinger, Pichler and Rinner. 2018 Akkaladevi, Plasch, Maddukuri, Eitzinger, Pichler and Rinner |
DBID | NPM AAYXX CITATION 7X8 5PM DOA |
DOI | 10.3389/frobt.2018.00126 |
DatabaseName | PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic |
DatabaseTitleList | PubMed |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2296-9144 |
EndPage | 126 |
ExternalDocumentID | oai_doaj_org_article_1ea362f4285b4ead81139cb4cd5af152 10_3389_frobt_2018_00126 33501005 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 9T4 AAFWJ ACGFS ACXDI ADBBV ALMA_UNASSIGNED_HOLDINGS BCNDV GROUPED_DOAJ IAO ICD IEA IPNFZ ISR KQ8 M~E NPM OK1 PGMZT RIG RPM AAYXX CITATION 7X8 5PM AFPKN |
ID | FETCH-LOGICAL-c462t-74136a05cdfe63c0de679d7399e5b643df13cc9e93b70d9335264115b78b639e3 |
IEDL.DBID | RPM |
ISSN | 2296-9144 |
IngestDate | Tue Oct 22 15:13:04 EDT 2024 Tue Sep 17 21:04:41 EDT 2024 Fri Oct 25 03:11:57 EDT 2024 Fri Nov 22 00:38:00 EST 2024 Wed Oct 16 00:46:18 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | interactive reinforcement learning knowledge modeling cognition reasoning human robot collaboration |
Language | English |
License | Copyright © 2018 Akkaladevi, Plasch, Maddukuri, Eitzinger, Pichler and Rinner. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-74136a05cdfe63c0de679d7399e5b643df13cc9e93b70d9335264115b78b639e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Malte Schilling, Bielefeld University, Germany These author have contributed equally to this work Reviewed by: Eiji Uchibe, Advanced Telecommunications Research Institute International (ATR), Japan; Erwei Yin, China Astronaut Research and Training Center, China This article was submitted to Robotic Control Systems, a section of the journal Frontiers in Robotics and AI |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806038/ |
PMID | 33501005 |
PQID | 2481647032 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_1ea362f4285b4ead81139cb4cd5af152 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7806038 proquest_miscellaneous_2481647032 crossref_primary_10_3389_frobt_2018_00126 pubmed_primary_33501005 |
PublicationCentury | 2000 |
PublicationDate | 2018-11-22 |
PublicationDateYYYYMMDD | 2018-11-22 |
PublicationDate_xml | – month: 11 year: 2018 text: 2018-11-22 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in robotics and AI |
PublicationTitleAlternate | Front Robot AI |
PublicationYear | 2018 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Steinmetz (B34) 2016 Bruyninckx (B11) 1996; 12 Watkins (B41) 1992; 8 Kuhlmann (B22) 2004 Goodrich (B15) 2007; 1 Pichler (B30) 2017; 11 Bauer (B9) 2008; 5 Ko (B21) 2015 Knox (B20) 2013 Pedersen (B28) 2016; 37 Suay (B36) 2011 Knox (B19) 2009 Maclin (B23) 1996; 22 Stenmark (B35) 2016 Billard (B10) 2008 Mosemann (B25) 2001; 17 Sutton (B37) 1998 Rozo (B31) 2013 Holz (B17) 2015 B33 Akkaladevi (B7) Akkaladevi (B5) Akkaladevi (B3) Akkaladevi (B4) 2018 Akkaladevi (B1) Argall (B8) 2009; 57 Dautenhahn (B12) 2007; 4 Finkemeyer (B14) 2005; 19 Pedersen (B27) 2015 Akkaladevi (B2) 2015 Akkaladevi (B6); 134 Thomaz (B39) 2006 Kartoun (B18) 2010; 60 Peng (B29) 2016 Griffith (B16) 2013 Moreno (B24) 2004 Dean-Leon (B13) 2016 Rozo (B32) 2014 Nicolescu (B26) 2003 Tenorth (B38) 2013; 32 B40 |
References_xml | – volume-title: Proceedings of IEEE International Conference on Intelligent Robots (IROS) year: 2018 ident: B4 article-title: “Towards a context enhanced framework for multi object tracking in human robot collaboration,” doi: 10.1109/IROS.2018.8593842 contributor: fullname: Akkaladevi – start-page: 61 volume-title: Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction ident: B5 article-title: “Context enhanced multi-object tracker for human robot collaboration,” contributor: fullname: Akkaladevi – start-page: 3 volume-title: Proceedings European Starting AI Researcher Symposium, Vol. 284 ident: B7 article-title: “Human robot collaboration to reach a common goal in an assembly process,” contributor: fullname: Akkaladevi – volume: 4 start-page: 103 year: 2007 ident: B12 article-title: Methodology and themes of human-robot interaction: a growing research field publication-title: Int. J. Adv. Rob. Syst. doi: 10.5772/5702 contributor: fullname: Dautenhahn – volume: 57 start-page: 469 year: 2009 ident: B8 article-title: A survey of robot learning from demonstration publication-title: Rob. Auton. Syst. doi: 10.1016/j.robot.2008.10.024 contributor: fullname: Argall – year: 2015 ident: B21 article-title: “Towards industrial robot learning from demonstration,” publication-title: Proceedings of the 3rd International Conference on Human-Agent Interaction. contributor: fullname: Ko – start-page: 1371 volume-title: Springer Handbook of Robotics year: 2008 ident: B10 article-title: “Robot programming by demonstration,” doi: 10.1007/978-3-540-30301-5_60 contributor: fullname: Billard – start-page: 75 volume-title: AAAI Fall Symposium Series: Artificial Intelligence for Human-Robot Interaction year: 2016 ident: B35 article-title: “From demonstrations to skills for high-level programming of industrial robots,” contributor: fullname: Stenmark – start-page: 957 volume-title: Proceedings of the 15th International Conference on Autonomous Agents and Multiagent System year: 2016 ident: B29 article-title: “A need for speed: adapting agent action speed to improve task learning from non-expert humans,” contributor: fullname: Peng – volume-title: Proceedings Towards Autonomous Robotics Systems year: 2004 ident: B24 article-title: “Using prior knowledge to improve reinforcement learning in mobile robotics,” contributor: fullname: Moreno – volume: 5 start-page: 47 year: 2008 ident: B9 article-title: Human-robot collaboration: a survey publication-title: Int. J. Hum. Rob. doi: 10.1142/S0219843608001303 contributor: fullname: Bauer – year: 2004 ident: B22 article-title: “Guiding a reinforcement learner with natural language advice: Initial results in RoboCup soccer,” publication-title: The AAAI-2004 Workshop on Supervisory Control of Learning and Adaptive Systems. contributor: fullname: Kuhlmann – ident: B33 – year: 2015 ident: B27 article-title: “Automated planning of industrial logistics on a skill-equipped robot,” publication-title: IROS 2015 workshop Task Planning for Intelligent Robots in Service and Manufacturing contributor: fullname: Pedersen – start-page: 3 volume-title: Proceedings 8th International Conference on Intelligent Human Computer Interaction ident: B3 article-title: “Towards learning to handle deviations using user preferences in a human robot collaboration scenario,” contributor: fullname: Akkaladevi – volume: 19 start-page: 591 year: 2005 ident: B14 article-title: Executing assembly tasks specified by manipulation primitive nets publication-title: Adv. Rob. doi: 10.1163/156855305323383811 contributor: fullname: Finkemeyer – start-page: 280 volume-title: 2016 IEEE International Conference on Automation Science and Engineering year: 2016 ident: B34 article-title: “Skill parametrization approaches and skill architecture for human-robot interaction,” doi: 10.1109/COASE.2016.7743419 contributor: fullname: Steinmetz – volume: 60 start-page: 217 year: 2010 ident: B18 article-title: A human-robot collaborative reinforcement learning algorithm publication-title: J. Intell. Rob. Syst. doi: 10.1007/s10846-010-9422-y contributor: fullname: Kartoun – start-page: 1 volume-title: IEEE International Symposium on Robot and Human Interactive Communication year: 2011 ident: B36 article-title: “Effect of human guidance and state space size on interactive reinforcement learning,” contributor: fullname: Suay – start-page: 619 volume-title: Proceedings of the 23rd IEEE International Symposium on Robot and Human Interactive Communication year: 2014 ident: B32 article-title: “Learning force and position constraints in human-robot cooperative transportation,” contributor: fullname: Rozo – start-page: 460 volume-title: International Conference on Social Robotics year: 2013 ident: B20 article-title: “Training a robot via human feedback: a case study,” doi: 10.1007/978-3-319-02675-6_46 contributor: fullname: Knox – volume: 8 start-page: 279 year: 1992 ident: B41 article-title: Q-learning publication-title: Mach. Learn. doi: 10.1007/BF00992698 contributor: fullname: Watkins – ident: B40 – volume: 22 start-page: 251 year: 1996 ident: B23 article-title: Creating advice-taking reinforcement learners publication-title: Mach. Learn. doi: 10.1007/BF00114730 contributor: fullname: Maclin – start-page: 6900 volume-title: Proceedings of the 42nd IEEE Annual Conference on Industrial Electronics Society (IECON) year: 2016 ident: B13 article-title: “Robotic technologies for fast deployment of industrial robot systems,” contributor: fullname: Dean-Leon – start-page: 2625 volume-title: Advances in Neural Information Processing Systems (NIPS) year: 2013 ident: B16 article-title: “Policy shaping: integrating human feedback with reinforcement learning,” contributor: fullname: Griffith – start-page: 5644 volume-title: Proceedings of IEEE International Conference on Robotics and Automation (ICRA) ident: B1 article-title: “Tracking multiple rigid symmetric and non-symmetric objects in real-time using depth data,” contributor: fullname: Akkaladevi – start-page: 241 volume-title: Proceedings of the Second International Joint Conference on Autonomous Agents and Multiagent Systems year: 2003 ident: B26 article-title: “Natural methods for robot task learning: Instructive demonstrations, generalization and practice,” doi: 10.1145/860575.860614 contributor: fullname: Nicolescu – volume: 11 start-page: 72 year: 2017 ident: B30 article-title: Towards shared autonomy for robotic tasks in manufacturing publication-title: Procedia Manufacturing doi: 10.1016/j.promfg.2017.07.139 contributor: fullname: Pichler – start-page: 9 volume-title: Proceedings of the Fifth International Conference on Knowledge Capture year: 2009 ident: B19 article-title: “Interactively shaping agents via human reinforcement: The TAMER framework,” doi: 10.1145/1597735.1597738 contributor: fullname: Knox – start-page: 1 volume-title: Proceedings of the 20th IEEE Conference on Emerging Technologies and Factory Automation (ETFA) year: 2015 ident: B17 article-title: “A skill-based system for object perception and manipulation for automating kitting tasks,” doi: 10.1109/ETFA.2015.7301453 contributor: fullname: Holz – start-page: 1422 volume-title: Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence year: 2013 ident: B31 article-title: “Learning collaborative impedance-based robot behaviors,” contributor: fullname: Rozo – volume: 134 start-page: 312 ident: B6 article-title: Skill-based learning of an assembly processSkill-basiertes Lernen für Montageprozesse publication-title: e & i Elektrotechnik und Informationstechnik doi: 10.1007/s00502-017-0514-2 contributor: fullname: Akkaladevi – volume: 1 start-page: 203 year: 2007 ident: B15 article-title: Human-robot interaction: a survey publication-title: Foundations Trends Hum. Comp. Interact. doi: 10.1561/1100000005 contributor: fullname: Goodrich – volume: 17 start-page: 709 year: 2001 ident: B25 article-title: Automatic decomposition of planned assembly sequences into skill primitives publication-title: IEEE Trans. Robot. Automat. doi: 10.1109/70.964670 contributor: fullname: Mosemann – start-page: 352 volume-title: Proceedings of the 15th IEEE International Symposium on Robot and Human Interactive Communication year: 2006 ident: B39 article-title: “Reinforcement learning with human teachers: Understanding how people want to teach robots,” contributor: fullname: Thomaz – volume: 12 start-page: 581 year: 1996 ident: B11 article-title: Specification of force-controlled actions in the“ task frame formalism”-a synthesis publication-title: IEEE Trans. Robot. Automat. doi: 10.1109/70.508440 contributor: fullname: Bruyninckx – volume: 32 start-page: 566 year: 2013 ident: B38 article-title: KnowRob: a knowledge processing infrastructure for cognition enabled robots publication-title: Int. J. Rob. Res. doi: 10.1177/0278364913481635 contributor: fullname: Tenorth – start-page: 94 volume-title: Proceedings of IEEE International Conference on Computer Graphics, Vision and Information Security (CGVIS) year: 2015 ident: B2 article-title: “Action recognition for human robot interaction in industrial applications,” contributor: fullname: Akkaladevi – volume: 37 start-page: 282 year: 2016 ident: B28 article-title: Robot skills for manufacturing: from concept to industrial deployment publication-title: Rob. Comp. Integr. Manufact. doi: 10.1016/j.rcim.2015.04.002 contributor: fullname: Pedersen – volume-title: Reinforcement Learning: An introduction. year: 1998 ident: B37 contributor: fullname: Sutton |
SSID | ssj0001584377 |
Score | 2.2292938 |
Snippet | As manufacturing demographics change from mass production to mass customization, advances in human-robot interaction in industries have taken many forms.... |
SourceID | doaj pubmedcentral proquest crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 126 |
SubjectTerms | cognition human robot collaboration interactive reinforcement learning knowledge modeling reasoning Robotics and AI |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELbKnsoBUWjpFoqM1EsP0SaxYztH2O6KEwegUm-Wn4AECdrHgX_fGSe77CKkXnpNrMSZmYw_z-MzIT-UM84HKbMiRpZxxmVmIhNZxCyv8aqUDkMDlzfy6o_6NUGanPVRX1gT1tEDd4IbFcGAj42AkivL4bNVAZjFWe58ZSIsPsn75mJjM9X1ByvOpOzykrALq0dx1lqsnSywdrJALoWNdSjR9b-HMd-WSm6sPdN9steDRnreTfYT-RCaA7K7QSV4SJ5uU_0rNQ1NQT6T_Bi9DokZ1aUgIL2AJcvTnlL1jk5XhVkUhtAUzqfXrW0XdPxqHfAQTAw_2ccX2ncVhPln8ns6uR1fZv1RCpnjolxkgBuYMHnlfAyCudwHIWsvAZ2EygIo8bFgztWhZlbmvsZGLMEBLFqpLGCYwL6QQdM24SuhxuUmVo6JIlhuea2QQJ5HxlwpQuXDkPxcCVY_d4wZGnYaqASdlKBRCTopYUguUPLrcch1nS6ABejeAvS_LGBIzlZ60_BvYMLDNKFdznXJFdKl5QzGHHV6XL-KYUYVXNCQyC0Nb81l-07zcJ_4t6XKRc7Ut_8x-WPyEcWB3Y1leUIGi9kyfCc7c788TRb9FxIl_h4 priority: 102 providerName: Directory of Open Access Journals |
Title | Toward an Interactive Reinforcement Based Learning Framework for Human Robot Collaborative Assembly Processes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/33501005 https://search.proquest.com/docview/2481647032 https://pubmed.ncbi.nlm.nih.gov/PMC7806038 https://doaj.org/article/1ea362f4285b4ead81139cb4cd5af152 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT9wwFLY6nNpD1bK00wUZiUsPYZLYsZ1jmTLiAkIUJG6WV4rEJGiWQ_9933MSOlP1xDVxFvl7yfv8ls-EHCtnnA9SZkWMLOOMy8xEJrKIWV7jVSkdhgbOf8rLO_XjDGVyqqEXJhXtO_tw0jzOT5qHX6m28mnuJkOd2OTqYipVLnKmJiMyAm64sUTvWoMVZ1J2KUlYgNWTuGgtlk0WWDZZlLhrEcN8Wo571m14oyTa_z-m-W_B5IYHmr0jb3vqSL93r_ievArNLnmzISi4R-Y3qQqWmoamUJ9JfzN6HZI-qkuhQHoKjsvTXlj1ns6G8iwKQ2gK6tPr1rYrOv1rI3ATTA_P7eNv2vcWhOU-uZ2d3UzPs35DhcxxUa4yYA9MmLxyPgbBXO6DkLWXwFFCZYGa-Fgw5-pQMytzX2M7luBAGa1UFphMYAdkp2mb8JFQ43ITK8dEESy3vFYoI88jY64UofJhTL4NE6ufOt0MDesNxEMnPDTioRMeY3KKM_88DhWv04F2ca973HURDPjaCKulynIwf1UAd3WWO1-ZCCRkTI4G3DR8IZj2ME1o10tdcoWiaTmDMR86HJ8fNdjBmMgthLfeZfsMGGVS4e6N8NOLr_xMXuMcYGNjWX4hO6vFOnwlo6VfH6bIwGGy6z-paf8i |
link.rule.ids | 230,315,729,782,786,866,887,2106,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoOQAH3o_laSQuHNJ1Yid2jnTpahFthcoicbP8LJW6SbWPA_-eGScpu4hTr7HzkGcm841n5jMhH5QzzgcpszxGngkuZGYir7KIWV7jVSEdbg3MvsvTn-rzEdLklEMvTCrad_bioLlcHDQXv1Jt5dXCjYc6sfG3k4lUrGJcjffIbbBXxraC9K45WAkuZZeUhBCsHsdla7FwMsfCybzAc4s4ZtQYnlq35Y8Sbf__sOa_JZNbPmj64IZf_5Dc70En_dQNPyK3QvOY3NuiInxCFvNUP0tNQ9MmoUn_QXoWErOqS5uI9BBcnqc9Jes5nQ6FXRSm0JQOoGetbdd08le74CGYWF7Yy9-070oIq6fkx_RoPpll_VEMmRNVsc4Ad_DKsNL5GCrumA-VrL0EdBNKC6DGx5w7V4eaW8l8jY1clQCwaaWygIECf0b2m7YJLwg1jplYOl7lwQoraoUE9CJy7ooqlD6MyMdBIPqqY9zQEKmgHHWSo0Y56iTHETlEiV3PQ67sdKFdnut-zXUeDHjpCHFWaQUYjsoB9TornC9NBPgyIu8HeWuwLUyYmCa0m5UuhEK6NcZhzvNO_tevGvRnROSOZux8y-4IKETi7-4V4OWN73xH7szmJ8f6-Mvp11fkLq4HtkcWxWuyv15uwhuyt_Kbt8kq_gBWqhPE |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZokRAcKG-W8jASFw5pHnZi50i3XRUBVVWKxM3ys1TqJqt9HPj3zDjJsot6otdk8vKMM589nz8T8kFabZ0XIslDYAlnXCQ6sCoJWOXVThbC4tTAyXdx-lMeHaNMznqrr0jat-bqoLmeHjRXvyK3cja16cATS8--jYXMqozJdOZCukPuQp_Nio2BerdAWHImRFeYhGFYnYZ5a5A8mSN5Mi9w7yKGVbUMd67byElRuv8mvPkvbXIjD032bvEFj8jDHnzST53JY3LHN0_Igw1JwqdkehF5tFQ3NE4W6vg_pOc-KqzaOJlIDyH1OdpLs17SyUDwomBCY1mAnremXdLx3yiDm2CBeWquf9N-dYJfPCM_JscX45Ok35IhsbwqlgngD1bprLQu-IrZzPlK1E4AyvGlAXDjQs6srX3NjMhcjQu6Kg6g0whpAAt59pzsNm3jXxKqbaZDaVmVe8MNryUK0fPAmC0qXzo_Ih8Hp6hZp7yhYMSCvlTRlwp9qaIvR-QQvba2Q83seKCdX6q-3VXuNWTrAOOt0nDoQDIH9GsNt67UAWDMiLwffK6gj2HhRDe-XS1UwSXKrmUMbF50MbB-1BBDIyK2omPrXbbPQFBEHe8-CF7995XvyL2zo4n6-vn0yz65j82BqySL4jXZXc5X_g3ZWbjV29gx_gDv0RZE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+an+Interactive+Reinforcement+Based+Learning+Framework+for+Human+Robot+Collaborative+Assembly+Processes&rft.jtitle=Frontiers+in+robotics+and+AI&rft.au=Akkaladevi%2C+Sharath+Chandra&rft.au=Plasch%2C+Matthias&rft.au=Maddukuri%2C+Sriniwas&rft.au=Eitzinger%2C+Christian&rft.date=2018-11-22&rft.eissn=2296-9144&rft.volume=5&rft.spage=126&rft.epage=126&rft_id=info:doi/10.3389%2Ffrobt.2018.00126&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-9144&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-9144&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-9144&client=summon |