Toward an Interactive Reinforcement Based Learning Framework for Human Robot Collaborative Assembly Processes

As manufacturing demographics change from mass production to mass customization, advances in human-robot interaction in industries have taken many forms. However, the topic of reducing the programming effort required by an expert using natural modes of communication is still open. To answer this cha...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in robotics and AI Vol. 5; p. 126
Main Authors: Akkaladevi, Sharath Chandra, Plasch, Matthias, Maddukuri, Sriniwas, Eitzinger, Christian, Pichler, Andreas, Rinner, Bernhard
Format: Journal Article
Language:English
Published: Switzerland Frontiers Media S.A 22-11-2018
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract As manufacturing demographics change from mass production to mass customization, advances in human-robot interaction in industries have taken many forms. However, the topic of reducing the programming effort required by an expert using natural modes of communication is still open. To answer this challenge, we propose an approach based on Interactive Reinforcement Learning that learns a complete collaborative assembly process. The learning approach is done in two steps. First step consists of modeling simple tasks that compose the assembly process, using task based formalism. The robotic system then uses these modeled simple tasks and proposes to the user a set of possible actions at each step of the assembly process via a GUI. The user then "interacts" with the robotic system by selecting an option from the given choice. The robot records the action chosen and performs it, progressing the assembly process. Thereby, the user teaches the system which task to perform when. In order to reduce the number of actions proposed, the system considers additional information such as user and robot capabilities and object affordances. These set of action proposals are further reduced by modeling the proposed actions into a goal based hierarchy and by including action prerequisites. The learning framework highlights its ability to learn a complicated human robot collaborative assembly process in a user intuitive fashion. The framework also allows different users to teach different assembly processes to the robot.
AbstractList As manufacturing demographics change from mass production to mass customization, advances in human-robot interaction in industries have taken many forms. However, the topic of reducing the programming effort required by an expert using natural modes of communication is still open. To answer this challenge, we propose an approach based on Interactive Reinforcement Learning that learns a complete collaborative assembly process. The learning approach is done in two steps. First step consists of modeling simple tasks that compose the assembly process, using task based formalism. The robotic system then uses these modeled simple tasks and proposes to the user a set of possible actions at each step of the assembly process via a GUI. The user then "interacts" with the robotic system by selecting an option from the given choice. The robot records the action chosen and performs it, progressing the assembly process. Thereby, the user teaches the system which task to perform when. In order to reduce the number of actions proposed, the system considers additional information such as user and robot capabilities and object affordances. These set of action proposals are further reduced by modeling the proposed actions into a goal based hierarchy and by including action prerequisites. The learning framework highlights its ability to learn a complicated human robot collaborative assembly process in a user intuitive fashion. The framework also allows different users to teach different assembly processes to the robot.
Author Pichler, Andreas
Maddukuri, Sriniwas
Eitzinger, Christian
Rinner, Bernhard
Plasch, Matthias
Akkaladevi, Sharath Chandra
AuthorAffiliation 2 Institute of Networked and Embedded Systems, Alpen-Adria-Universität Klagenfurt , Klagenfurt , Austria
1 Profactor GmbH , Steyr-Gleink, Steyr , Austria
AuthorAffiliation_xml – name: 1 Profactor GmbH , Steyr-Gleink, Steyr , Austria
– name: 2 Institute of Networked and Embedded Systems, Alpen-Adria-Universität Klagenfurt , Klagenfurt , Austria
Author_xml – sequence: 1
  givenname: Sharath Chandra
  surname: Akkaladevi
  fullname: Akkaladevi, Sharath Chandra
  organization: Institute of Networked and Embedded Systems, Alpen-Adria-Universität Klagenfurt, Klagenfurt, Austria
– sequence: 2
  givenname: Matthias
  surname: Plasch
  fullname: Plasch, Matthias
  organization: Profactor GmbH, Steyr-Gleink, Steyr, Austria
– sequence: 3
  givenname: Sriniwas
  surname: Maddukuri
  fullname: Maddukuri, Sriniwas
  organization: Profactor GmbH, Steyr-Gleink, Steyr, Austria
– sequence: 4
  givenname: Christian
  surname: Eitzinger
  fullname: Eitzinger, Christian
  organization: Profactor GmbH, Steyr-Gleink, Steyr, Austria
– sequence: 5
  givenname: Andreas
  surname: Pichler
  fullname: Pichler, Andreas
  organization: Profactor GmbH, Steyr-Gleink, Steyr, Austria
– sequence: 6
  givenname: Bernhard
  surname: Rinner
  fullname: Rinner, Bernhard
  organization: Institute of Networked and Embedded Systems, Alpen-Adria-Universität Klagenfurt, Klagenfurt, Austria
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33501005$$D View this record in MEDLINE/PubMed
BookMark eNpVkUtPGzEUha0KVChl31XlZTdJ_Rp7vKlEIx6RIhUhurb8uJMOnbGpPQHx73ESimBl-_qc79r3fEIHMUVA6Aslc85b_b3LyU1zRmg7J4Qy-QEdM6blTFMhDt7sj9BpKXekappWcKU-oiPOG0IJaY7ReJsebQ7YRryME2Trp_4B8A30sUvZwwhxwj9tgYBXYHPs4xpfZDvCY8p_cZXgq81YzTfJpQkv0jBYl7LdQc5KgdENT_g6Jw_1UD6jw84OBU5f1hP0--L8dnE1W_26XC7OVjMvJJtmSlAuLWl86EByTwJIpYPiWkPjpOCho9x7DZo7RYKuv2FSUNo41TrJNfATtNxzQ7J35j73o81PJtne7Aopr43NU-8HMBQsl6wTrG2cABtaSrn2TvjQ2I42rLJ-7Fn3GzdC8HUg2Q7voO9vYv_HrNODUS2RhLcV8O0FkNO_DZTJjH3xUCcVIW2KYaKlUijCt73IXupzKiVD99qGErMN3exCN9vQzS70avn69nmvhv8R82f-BKxb
CitedBy_id crossref_primary_10_1038_s41598_021_99428_0
crossref_primary_10_1109_TMECH_2020_3039017
crossref_primary_10_1016_j_cie_2024_110106
crossref_primary_10_3390_app11094269
crossref_primary_10_1007_s00170_021_07265_2
crossref_primary_10_1007_s00502_019_00740_5
crossref_primary_10_1007_s00502_019_00741_4
crossref_primary_10_1016_j_asoc_2023_110547
crossref_primary_10_1016_j_jmsy_2021_02_014
crossref_primary_10_3390_robotics11060126
crossref_primary_10_1007_s10845_024_02439_7
crossref_primary_10_1016_j_rcim_2022_102517
Cites_doi 10.1109/IROS.2018.8593842
10.5772/5702
10.1016/j.robot.2008.10.024
10.1007/978-3-540-30301-5_60
10.1142/S0219843608001303
10.1163/156855305323383811
10.1109/COASE.2016.7743419
10.1007/s10846-010-9422-y
10.1007/978-3-319-02675-6_46
10.1007/BF00992698
10.1007/BF00114730
10.1145/860575.860614
10.1016/j.promfg.2017.07.139
10.1145/1597735.1597738
10.1109/ETFA.2015.7301453
10.1007/s00502-017-0514-2
10.1561/1100000005
10.1109/70.964670
10.1109/70.508440
10.1177/0278364913481635
10.1016/j.rcim.2015.04.002
ContentType Journal Article
Copyright Copyright © 2018 Akkaladevi, Plasch, Maddukuri, Eitzinger, Pichler and Rinner.
Copyright © 2018 Akkaladevi, Plasch, Maddukuri, Eitzinger, Pichler and Rinner. 2018 Akkaladevi, Plasch, Maddukuri, Eitzinger, Pichler and Rinner
Copyright_xml – notice: Copyright © 2018 Akkaladevi, Plasch, Maddukuri, Eitzinger, Pichler and Rinner.
– notice: Copyright © 2018 Akkaladevi, Plasch, Maddukuri, Eitzinger, Pichler and Rinner. 2018 Akkaladevi, Plasch, Maddukuri, Eitzinger, Pichler and Rinner
DBID NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.3389/frobt.2018.00126
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2296-9144
EndPage 126
ExternalDocumentID oai_doaj_org_article_1ea362f4285b4ead81139cb4cd5af152
10_3389_frobt_2018_00126
33501005
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
ACGFS
ACXDI
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
GROUPED_DOAJ
IAO
ICD
IEA
IPNFZ
ISR
KQ8
M~E
NPM
OK1
PGMZT
RIG
RPM
AAYXX
CITATION
7X8
5PM
AFPKN
ID FETCH-LOGICAL-c462t-74136a05cdfe63c0de679d7399e5b643df13cc9e93b70d9335264115b78b639e3
IEDL.DBID RPM
ISSN 2296-9144
IngestDate Tue Oct 22 15:13:04 EDT 2024
Tue Sep 17 21:04:41 EDT 2024
Fri Oct 25 03:11:57 EDT 2024
Fri Nov 22 00:38:00 EST 2024
Wed Oct 16 00:46:18 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords interactive reinforcement learning
knowledge modeling
cognition
reasoning
human robot collaboration
Language English
License Copyright © 2018 Akkaladevi, Plasch, Maddukuri, Eitzinger, Pichler and Rinner.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-74136a05cdfe63c0de679d7399e5b643df13cc9e93b70d9335264115b78b639e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Malte Schilling, Bielefeld University, Germany
These author have contributed equally to this work
Reviewed by: Eiji Uchibe, Advanced Telecommunications Research Institute International (ATR), Japan; Erwei Yin, China Astronaut Research and Training Center, China
This article was submitted to Robotic Control Systems, a section of the journal Frontiers in Robotics and AI
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7806038/
PMID 33501005
PQID 2481647032
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_1ea362f4285b4ead81139cb4cd5af152
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7806038
proquest_miscellaneous_2481647032
crossref_primary_10_3389_frobt_2018_00126
pubmed_primary_33501005
PublicationCentury 2000
PublicationDate 2018-11-22
PublicationDateYYYYMMDD 2018-11-22
PublicationDate_xml – month: 11
  year: 2018
  text: 2018-11-22
  day: 22
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in robotics and AI
PublicationTitleAlternate Front Robot AI
PublicationYear 2018
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Steinmetz (B34) 2016
Bruyninckx (B11) 1996; 12
Watkins (B41) 1992; 8
Kuhlmann (B22) 2004
Goodrich (B15) 2007; 1
Pichler (B30) 2017; 11
Bauer (B9) 2008; 5
Ko (B21) 2015
Knox (B20) 2013
Pedersen (B28) 2016; 37
Suay (B36) 2011
Knox (B19) 2009
Maclin (B23) 1996; 22
Stenmark (B35) 2016
Billard (B10) 2008
Mosemann (B25) 2001; 17
Sutton (B37) 1998
Rozo (B31) 2013
Holz (B17) 2015
B33
Akkaladevi (B7)
Akkaladevi (B5)
Akkaladevi (B3)
Akkaladevi (B4) 2018
Akkaladevi (B1)
Argall (B8) 2009; 57
Dautenhahn (B12) 2007; 4
Finkemeyer (B14) 2005; 19
Pedersen (B27) 2015
Akkaladevi (B2) 2015
Akkaladevi (B6); 134
Thomaz (B39) 2006
Kartoun (B18) 2010; 60
Peng (B29) 2016
Griffith (B16) 2013
Moreno (B24) 2004
Dean-Leon (B13) 2016
Rozo (B32) 2014
Nicolescu (B26) 2003
Tenorth (B38) 2013; 32
B40
References_xml – volume-title: Proceedings of IEEE International Conference on Intelligent Robots (IROS)
  year: 2018
  ident: B4
  article-title: “Towards a context enhanced framework for multi object tracking in human robot collaboration,”
  doi: 10.1109/IROS.2018.8593842
  contributor:
    fullname: Akkaladevi
– start-page: 61
  volume-title: Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction
  ident: B5
  article-title: “Context enhanced multi-object tracker for human robot collaboration,”
  contributor:
    fullname: Akkaladevi
– start-page: 3
  volume-title: Proceedings European Starting AI Researcher Symposium, Vol. 284
  ident: B7
  article-title: “Human robot collaboration to reach a common goal in an assembly process,”
  contributor:
    fullname: Akkaladevi
– volume: 4
  start-page: 103
  year: 2007
  ident: B12
  article-title: Methodology and themes of human-robot interaction: a growing research field
  publication-title: Int. J. Adv. Rob. Syst.
  doi: 10.5772/5702
  contributor:
    fullname: Dautenhahn
– volume: 57
  start-page: 469
  year: 2009
  ident: B8
  article-title: A survey of robot learning from demonstration
  publication-title: Rob. Auton. Syst.
  doi: 10.1016/j.robot.2008.10.024
  contributor:
    fullname: Argall
– year: 2015
  ident: B21
  article-title: “Towards industrial robot learning from demonstration,”
  publication-title: Proceedings of the 3rd International Conference on Human-Agent Interaction.
  contributor:
    fullname: Ko
– start-page: 1371
  volume-title: Springer Handbook of Robotics
  year: 2008
  ident: B10
  article-title: “Robot programming by demonstration,”
  doi: 10.1007/978-3-540-30301-5_60
  contributor:
    fullname: Billard
– start-page: 75
  volume-title: AAAI Fall Symposium Series: Artificial Intelligence for Human-Robot Interaction
  year: 2016
  ident: B35
  article-title: “From demonstrations to skills for high-level programming of industrial robots,”
  contributor:
    fullname: Stenmark
– start-page: 957
  volume-title: Proceedings of the 15th International Conference on Autonomous Agents and Multiagent System
  year: 2016
  ident: B29
  article-title: “A need for speed: adapting agent action speed to improve task learning from non-expert humans,”
  contributor:
    fullname: Peng
– volume-title: Proceedings Towards Autonomous Robotics Systems
  year: 2004
  ident: B24
  article-title: “Using prior knowledge to improve reinforcement learning in mobile robotics,”
  contributor:
    fullname: Moreno
– volume: 5
  start-page: 47
  year: 2008
  ident: B9
  article-title: Human-robot collaboration: a survey
  publication-title: Int. J. Hum. Rob.
  doi: 10.1142/S0219843608001303
  contributor:
    fullname: Bauer
– year: 2004
  ident: B22
  article-title: “Guiding a reinforcement learner with natural language advice: Initial results in RoboCup soccer,”
  publication-title: The AAAI-2004 Workshop on Supervisory Control of Learning and Adaptive Systems.
  contributor:
    fullname: Kuhlmann
– ident: B33
– year: 2015
  ident: B27
  article-title: “Automated planning of industrial logistics on a skill-equipped robot,”
  publication-title: IROS 2015 workshop Task Planning for Intelligent Robots in Service and Manufacturing
  contributor:
    fullname: Pedersen
– start-page: 3
  volume-title: Proceedings 8th International Conference on Intelligent Human Computer Interaction
  ident: B3
  article-title: “Towards learning to handle deviations using user preferences in a human robot collaboration scenario,”
  contributor:
    fullname: Akkaladevi
– volume: 19
  start-page: 591
  year: 2005
  ident: B14
  article-title: Executing assembly tasks specified by manipulation primitive nets
  publication-title: Adv. Rob.
  doi: 10.1163/156855305323383811
  contributor:
    fullname: Finkemeyer
– start-page: 280
  volume-title: 2016 IEEE International Conference on Automation Science and Engineering
  year: 2016
  ident: B34
  article-title: “Skill parametrization approaches and skill architecture for human-robot interaction,”
  doi: 10.1109/COASE.2016.7743419
  contributor:
    fullname: Steinmetz
– volume: 60
  start-page: 217
  year: 2010
  ident: B18
  article-title: A human-robot collaborative reinforcement learning algorithm
  publication-title: J. Intell. Rob. Syst.
  doi: 10.1007/s10846-010-9422-y
  contributor:
    fullname: Kartoun
– start-page: 1
  volume-title: IEEE International Symposium on Robot and Human Interactive Communication
  year: 2011
  ident: B36
  article-title: “Effect of human guidance and state space size on interactive reinforcement learning,”
  contributor:
    fullname: Suay
– start-page: 619
  volume-title: Proceedings of the 23rd IEEE International Symposium on Robot and Human Interactive Communication
  year: 2014
  ident: B32
  article-title: “Learning force and position constraints in human-robot cooperative transportation,”
  contributor:
    fullname: Rozo
– start-page: 460
  volume-title: International Conference on Social Robotics
  year: 2013
  ident: B20
  article-title: “Training a robot via human feedback: a case study,”
  doi: 10.1007/978-3-319-02675-6_46
  contributor:
    fullname: Knox
– volume: 8
  start-page: 279
  year: 1992
  ident: B41
  article-title: Q-learning
  publication-title: Mach. Learn.
  doi: 10.1007/BF00992698
  contributor:
    fullname: Watkins
– ident: B40
– volume: 22
  start-page: 251
  year: 1996
  ident: B23
  article-title: Creating advice-taking reinforcement learners
  publication-title: Mach. Learn.
  doi: 10.1007/BF00114730
  contributor:
    fullname: Maclin
– start-page: 6900
  volume-title: Proceedings of the 42nd IEEE Annual Conference on Industrial Electronics Society (IECON)
  year: 2016
  ident: B13
  article-title: “Robotic technologies for fast deployment of industrial robot systems,”
  contributor:
    fullname: Dean-Leon
– start-page: 2625
  volume-title: Advances in Neural Information Processing Systems (NIPS)
  year: 2013
  ident: B16
  article-title: “Policy shaping: integrating human feedback with reinforcement learning,”
  contributor:
    fullname: Griffith
– start-page: 5644
  volume-title: Proceedings of IEEE International Conference on Robotics and Automation (ICRA)
  ident: B1
  article-title: “Tracking multiple rigid symmetric and non-symmetric objects in real-time using depth data,”
  contributor:
    fullname: Akkaladevi
– start-page: 241
  volume-title: Proceedings of the Second International Joint Conference on Autonomous Agents and Multiagent Systems
  year: 2003
  ident: B26
  article-title: “Natural methods for robot task learning: Instructive demonstrations, generalization and practice,”
  doi: 10.1145/860575.860614
  contributor:
    fullname: Nicolescu
– volume: 11
  start-page: 72
  year: 2017
  ident: B30
  article-title: Towards shared autonomy for robotic tasks in manufacturing
  publication-title: Procedia Manufacturing
  doi: 10.1016/j.promfg.2017.07.139
  contributor:
    fullname: Pichler
– start-page: 9
  volume-title: Proceedings of the Fifth International Conference on Knowledge Capture
  year: 2009
  ident: B19
  article-title: “Interactively shaping agents via human reinforcement: The TAMER framework,”
  doi: 10.1145/1597735.1597738
  contributor:
    fullname: Knox
– start-page: 1
  volume-title: Proceedings of the 20th IEEE Conference on Emerging Technologies and Factory Automation (ETFA)
  year: 2015
  ident: B17
  article-title: “A skill-based system for object perception and manipulation for automating kitting tasks,”
  doi: 10.1109/ETFA.2015.7301453
  contributor:
    fullname: Holz
– start-page: 1422
  volume-title: Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence
  year: 2013
  ident: B31
  article-title: “Learning collaborative impedance-based robot behaviors,”
  contributor:
    fullname: Rozo
– volume: 134
  start-page: 312
  ident: B6
  article-title: Skill-based learning of an assembly processSkill-basiertes Lernen für Montageprozesse
  publication-title: e & i Elektrotechnik und Informationstechnik
  doi: 10.1007/s00502-017-0514-2
  contributor:
    fullname: Akkaladevi
– volume: 1
  start-page: 203
  year: 2007
  ident: B15
  article-title: Human-robot interaction: a survey
  publication-title: Foundations Trends Hum. Comp. Interact.
  doi: 10.1561/1100000005
  contributor:
    fullname: Goodrich
– volume: 17
  start-page: 709
  year: 2001
  ident: B25
  article-title: Automatic decomposition of planned assembly sequences into skill primitives
  publication-title: IEEE Trans. Robot. Automat.
  doi: 10.1109/70.964670
  contributor:
    fullname: Mosemann
– start-page: 352
  volume-title: Proceedings of the 15th IEEE International Symposium on Robot and Human Interactive Communication
  year: 2006
  ident: B39
  article-title: “Reinforcement learning with human teachers: Understanding how people want to teach robots,”
  contributor:
    fullname: Thomaz
– volume: 12
  start-page: 581
  year: 1996
  ident: B11
  article-title: Specification of force-controlled actions in the“ task frame formalism”-a synthesis
  publication-title: IEEE Trans. Robot. Automat.
  doi: 10.1109/70.508440
  contributor:
    fullname: Bruyninckx
– volume: 32
  start-page: 566
  year: 2013
  ident: B38
  article-title: KnowRob: a knowledge processing infrastructure for cognition enabled robots
  publication-title: Int. J. Rob. Res.
  doi: 10.1177/0278364913481635
  contributor:
    fullname: Tenorth
– start-page: 94
  volume-title: Proceedings of IEEE International Conference on Computer Graphics, Vision and Information Security (CGVIS)
  year: 2015
  ident: B2
  article-title: “Action recognition for human robot interaction in industrial applications,”
  contributor:
    fullname: Akkaladevi
– volume: 37
  start-page: 282
  year: 2016
  ident: B28
  article-title: Robot skills for manufacturing: from concept to industrial deployment
  publication-title: Rob. Comp. Integr. Manufact.
  doi: 10.1016/j.rcim.2015.04.002
  contributor:
    fullname: Pedersen
– volume-title: Reinforcement Learning: An introduction.
  year: 1998
  ident: B37
  contributor:
    fullname: Sutton
SSID ssj0001584377
Score 2.2292938
Snippet As manufacturing demographics change from mass production to mass customization, advances in human-robot interaction in industries have taken many forms....
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 126
SubjectTerms cognition
human robot collaboration
interactive reinforcement learning
knowledge modeling
reasoning
Robotics and AI
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELbKnsoBUWjpFoqM1EsP0SaxYztH2O6KEwegUm-Wn4AECdrHgX_fGSe77CKkXnpNrMSZmYw_z-MzIT-UM84HKbMiRpZxxmVmIhNZxCyv8aqUDkMDlzfy6o_6NUGanPVRX1gT1tEDd4IbFcGAj42AkivL4bNVAZjFWe58ZSIsPsn75mJjM9X1ByvOpOzykrALq0dx1lqsnSywdrJALoWNdSjR9b-HMd-WSm6sPdN9steDRnreTfYT-RCaA7K7QSV4SJ5uU_0rNQ1NQT6T_Bi9DokZ1aUgIL2AJcvTnlL1jk5XhVkUhtAUzqfXrW0XdPxqHfAQTAw_2ccX2ncVhPln8ns6uR1fZv1RCpnjolxkgBuYMHnlfAyCudwHIWsvAZ2EygIo8bFgztWhZlbmvsZGLMEBLFqpLGCYwL6QQdM24SuhxuUmVo6JIlhuea2QQJ5HxlwpQuXDkPxcCVY_d4wZGnYaqASdlKBRCTopYUguUPLrcch1nS6ABejeAvS_LGBIzlZ60_BvYMLDNKFdznXJFdKl5QzGHHV6XL-KYUYVXNCQyC0Nb81l-07zcJ_4t6XKRc7Ut_8x-WPyEcWB3Y1leUIGi9kyfCc7c788TRb9FxIl_h4
  priority: 102
  providerName: Directory of Open Access Journals
Title Toward an Interactive Reinforcement Based Learning Framework for Human Robot Collaborative Assembly Processes
URI https://www.ncbi.nlm.nih.gov/pubmed/33501005
https://search.proquest.com/docview/2481647032
https://pubmed.ncbi.nlm.nih.gov/PMC7806038
https://doaj.org/article/1ea362f4285b4ead81139cb4cd5af152
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT9wwFLY6nNpD1bK00wUZiUsPYZLYsZ1jmTLiAkIUJG6WV4rEJGiWQ_9933MSOlP1xDVxFvl7yfv8ls-EHCtnnA9SZkWMLOOMy8xEJrKIWV7jVSkdhgbOf8rLO_XjDGVyqqEXJhXtO_tw0jzOT5qHX6m28mnuJkOd2OTqYipVLnKmJiMyAm64sUTvWoMVZ1J2KUlYgNWTuGgtlk0WWDZZlLhrEcN8Wo571m14oyTa_z-m-W_B5IYHmr0jb3vqSL93r_ievArNLnmzISi4R-Y3qQqWmoamUJ9JfzN6HZI-qkuhQHoKjsvTXlj1ns6G8iwKQ2gK6tPr1rYrOv1rI3ATTA_P7eNv2vcWhOU-uZ2d3UzPs35DhcxxUa4yYA9MmLxyPgbBXO6DkLWXwFFCZYGa-Fgw5-pQMytzX2M7luBAGa1UFphMYAdkp2mb8JFQ43ITK8dEESy3vFYoI88jY64UofJhTL4NE6ufOt0MDesNxEMnPDTioRMeY3KKM_88DhWv04F2ca973HURDPjaCKulynIwf1UAd3WWO1-ZCCRkTI4G3DR8IZj2ME1o10tdcoWiaTmDMR86HJ8fNdjBmMgthLfeZfsMGGVS4e6N8NOLr_xMXuMcYGNjWX4hO6vFOnwlo6VfH6bIwGGy6z-paf8i
link.rule.ids 230,315,729,782,786,866,887,2106,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoOQAH3o_laSQuHNJ1Yid2jnTpahFthcoicbP8LJW6SbWPA_-eGScpu4hTr7HzkGcm841n5jMhH5QzzgcpszxGngkuZGYir7KIWV7jVSEdbg3MvsvTn-rzEdLklEMvTCrad_bioLlcHDQXv1Jt5dXCjYc6sfG3k4lUrGJcjffIbbBXxraC9K45WAkuZZeUhBCsHsdla7FwMsfCybzAc4s4ZtQYnlq35Y8Sbf__sOa_JZNbPmj64IZf_5Dc70En_dQNPyK3QvOY3NuiInxCFvNUP0tNQ9MmoUn_QXoWErOqS5uI9BBcnqc9Jes5nQ6FXRSm0JQOoGetbdd08le74CGYWF7Yy9-070oIq6fkx_RoPpll_VEMmRNVsc4Ad_DKsNL5GCrumA-VrL0EdBNKC6DGx5w7V4eaW8l8jY1clQCwaaWygIECf0b2m7YJLwg1jplYOl7lwQoraoUE9CJy7ooqlD6MyMdBIPqqY9zQEKmgHHWSo0Y56iTHETlEiV3PQ67sdKFdnut-zXUeDHjpCHFWaQUYjsoB9TornC9NBPgyIu8HeWuwLUyYmCa0m5UuhEK6NcZhzvNO_tevGvRnROSOZux8y-4IKETi7-4V4OWN73xH7szmJ8f6-Mvp11fkLq4HtkcWxWuyv15uwhuyt_Kbt8kq_gBWqhPE
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZokRAcKG-W8jASFw5pHnZi50i3XRUBVVWKxM3ys1TqJqt9HPj3zDjJsot6otdk8vKMM589nz8T8kFabZ0XIslDYAlnXCQ6sCoJWOXVThbC4tTAyXdx-lMeHaNMznqrr0jat-bqoLmeHjRXvyK3cja16cATS8--jYXMqozJdOZCukPuQp_Nio2BerdAWHImRFeYhGFYnYZ5a5A8mSN5Mi9w7yKGVbUMd67byElRuv8mvPkvbXIjD032bvEFj8jDHnzST53JY3LHN0_Igw1JwqdkehF5tFQ3NE4W6vg_pOc-KqzaOJlIDyH1OdpLs17SyUDwomBCY1mAnremXdLx3yiDm2CBeWquf9N-dYJfPCM_JscX45Ok35IhsbwqlgngD1bprLQu-IrZzPlK1E4AyvGlAXDjQs6srX3NjMhcjQu6Kg6g0whpAAt59pzsNm3jXxKqbaZDaVmVe8MNryUK0fPAmC0qXzo_Ih8Hp6hZp7yhYMSCvlTRlwp9qaIvR-QQvba2Q83seKCdX6q-3VXuNWTrAOOt0nDoQDIH9GsNt67UAWDMiLwffK6gj2HhRDe-XS1UwSXKrmUMbF50MbB-1BBDIyK2omPrXbbPQFBEHe8-CF7995XvyL2zo4n6-vn0yz65j82BqySL4jXZXc5X_g3ZWbjV29gx_gDv0RZE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+an+Interactive+Reinforcement+Based+Learning+Framework+for+Human+Robot+Collaborative+Assembly+Processes&rft.jtitle=Frontiers+in+robotics+and+AI&rft.au=Akkaladevi%2C+Sharath+Chandra&rft.au=Plasch%2C+Matthias&rft.au=Maddukuri%2C+Sriniwas&rft.au=Eitzinger%2C+Christian&rft.date=2018-11-22&rft.eissn=2296-9144&rft.volume=5&rft.spage=126&rft.epage=126&rft_id=info:doi/10.3389%2Ffrobt.2018.00126&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-9144&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-9144&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-9144&client=summon