Characteristics of an endophytic pyrene-degrading bacterium of Enterobacter sp. 12J1 from Allium macrostemon Bunge
One pyrene-degrading endophytic bacterium was isolated from plants grown in polycyclic aromatic hydrocarbon-contaminated soils and identified as Enterobacter sp. 12J1 based on the 16S rDNA gene sequence analysis. Heavy metal and antibiotic resistance, degradation of pyrene, solubilization of inorgan...
Saved in:
Published in: | International biodeterioration & biodegradation Vol. 62; no. 2; pp. 88 - 95 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Elsevier Ltd
01-09-2008
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | One pyrene-degrading endophytic bacterium was isolated from plants grown in polycyclic aromatic hydrocarbon-contaminated soils and identified as
Enterobacter sp. 12J1 based on the 16S rDNA gene sequence analysis. Heavy metal and antibiotic resistance, degradation of pyrene, solubilization of inorganic phosphate and cell surface hydrophobicity characteristics of the isolate were further characterized. The isolate was also evaluated for promoting plant growth of wheat and maize and pyrene removal from pyrene-amended soil in pot experiments. High-performance liquid chromatograph (HPLC) analysis showed that the degradation rate of pyrene (5
mg
l
−1) by the endophytic bacterial strain 12J1 was 83.8% under 28
°C for 7 days. The
Enterobacter sp. 12J1 could produce indole acetic acid (IAA), siderophore and solubilize inorganic phosphate. The
Enterobacter sp. 12J1 also has a cell surface hydrophobicity. In the live bacterial inoculation experiment, an increase in pyrene removal varying from 60% to 107% was observed in the planted soils treated with 100
mg
kg
−1 of pyrene compared with the unplanted soils. The rate of pyrene removal increased by 43–65% in the live bacterium-inoculated planted soils compared with the dead bacterium-inoculated planted soils. Although there were no significant differences in the total culturable bacterial numbers between live and dead bacterial inoculation, the numbers of pyrene-degrading bacteria were significantly greater in the live bacterium-inoculated planted or unplanted soils. The isolate could colonize the tissue (root and stem) interiors and rhizosphere soils of wheat and maize after root inoculation. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0964-8305 1879-0208 |
DOI: | 10.1016/j.ibiod.2007.12.003 |