Absence of marginal zone B cells in Pyk-2-deficient mice defines their role in the humoral response

The lymphoid organs contain specialized microanatomic structures composed of lymphoid, myeloid and stromal cells that are vital to the generation of an effective adaptive immune response. Although the existence of these specialized structures has been known for over a century, the developmental sign...

Full description

Saved in:
Bibliographic Details
Published in:Nature immunology Vol. 1; no. 1; pp. 31 - 36
Main Authors: Ravetch, Jeffrey V, Guinamard, Rodolphe, Okigaki, Mitsuhiko, Schlessinger, Joseph
Format: Journal Article
Language:English
Published: United States Nature Publishing Group 01-07-2000
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The lymphoid organs contain specialized microanatomic structures composed of lymphoid, myeloid and stromal cells that are vital to the generation of an effective adaptive immune response. Although the existence of these specialized structures has been known for over a century, the developmental signals that generate them and the specific roles of these structures in the immune response have remained largely elusive. Because of their position adjacent to the marginal sinuses, marginal zone B (MZB) cells are amongst the first population of cells seen by blood born antigens and are presumed to have a critical role in host defense against bacterial pathogens. Here we demonstrate that a deficiency of the tyrosine kinase (Pyk-2) results in a cell autonomous defect of MZB cell production. In response to repetitive polysaccharide antigens (T-independent type II (TI-II)) Pyk-2-deficient mice displayed marked suppression of IgM, IgG3 and IgG2a production. Furthermore, complement receptor engagement proved necessary for the specific targeting of polysaccharide antigens to MZB cells. These results suggest how innate immune responses mediated through complement coupling are translated into an adaptive response by MZB cells, and provide a potential mechanism for the T cell independence of humoral responses to polysaccharide antigens.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1529-2908
1529-2916
DOI:10.1038/76882