Molecular heterogeneity of developing retinal ganglion and amacrine cells revealed through single cell gene expression profiling
During development of the central nervous system (CNS), cycling uncommitted progenitor cells give rise to a variety of distinct neuronal and glial cell types. As these different cell types are born they progress from newly specified cells to fully differentiated neurons and glia. In order to define...
Saved in:
Published in: | Journal of comparative neurology (1911) Vol. 502; no. 6; pp. 1047 - 1065 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
20-06-2007
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | During development of the central nervous system (CNS), cycling uncommitted progenitor cells give rise to a variety of distinct neuronal and glial cell types. As these different cell types are born they progress from newly specified cells to fully differentiated neurons and glia. In order to define the developmental processes of individual cell types, single cell expression profiling was carried out on developing ganglion and amacrine cells of the murine retina. Individual cells from multiple developmental stages were isolated and profiled on Affymetrix oligonucleotide arrays. Two‐color fluorescent in situ hybridization on dissociated retinas was used to verify and extend the microarray results by allowing quantitative measurements of a large number of cells coexpressing two genes. Together, these experiments have yielded an expanded view of the processes underway in developing retinal ganglion and amacrine cells, as well as several hundred new marker genes for these cell types. In addition, this study has allowed for the definition of some of the molecular heterogeneity both between developing ganglion and amacrine cells and among subclasses of each cell type. J. Comp. Neurol. 502:1047–1065, 2007. © 2007 Wiley‐Liss, Inc. |
---|---|
AbstractList | During development of the central nervous system (CNS), cycling uncommitted progenitor cells give rise to a variety of distinct neuronal and glial cell types. As these different cell types are born they progress from newly specified cells to fully differentiated neurons and glia. In order to define the developmental processes of individual cell types, single cell expression profiling was carried out on developing ganglion and amacrine cells of the murine retina. Individual cells from multiple developmental stages were isolated and profiled on Affymetrix oligonucleotide arrays. Two‐color fluorescent in situ hybridization on dissociated retinas was used to verify and extend the microarray results by allowing quantitative measurements of a large number of cells coexpressing two genes. Together, these experiments have yielded an expanded view of the processes underway in developing retinal ganglion and amacrine cells, as well as several hundred new marker genes for these cell types. In addition, this study has allowed for the definition of some of the molecular heterogeneity both between developing ganglion and amacrine cells and among subclasses of each cell type. J. Comp. Neurol. 502:1047–1065, 2007. © 2007 Wiley‐Liss, Inc. During development of the central nervous system (CNS), cycling uncommitted progenitor cells give rise to a variety of distinct neuronal and glial cell types. As these different cell types are born they progress from newly specified cells to fully differentiated neurons and glia. In order to define the developmental processes of individual cell types, single cell expression profiling was carried out on developing ganglion and amacrine cells of the murine retina. Individual cells from multiple developmental stages were isolated and profiled on Affymetrix oligonucleotide arrays. Two-color fluorescent in situ hybridization on dissociated retinas was used to verify and extend the microarray results by allowing quantitative measurements of a large number of cells coexpressing two genes. Together, these experiments have yielded an expanded view of the processes underway in developing retinal ganglion and amacrine cells, as well as several hundred new marker genes for these cell types. In addition, this study has allowed for the definition of some of the molecular heterogeneity both between developing ganglion and amacrine cells and among subclasses of each cell type. |
Author | Sun, Ben Roska, Botond Cepko, Constance L. Stadler, Michael B. Trimarchi, Jeffrey M. Bartch, Brandon Billings, Nathan |
Author_xml | – sequence: 1 givenname: Jeffrey M. surname: Trimarchi fullname: Trimarchi, Jeffrey M. organization: Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115 – sequence: 2 givenname: Michael B. surname: Stadler fullname: Stadler, Michael B. organization: Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland – sequence: 3 givenname: Botond surname: Roska fullname: Roska, Botond organization: Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland – sequence: 4 givenname: Nathan surname: Billings fullname: Billings, Nathan organization: Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115 – sequence: 5 givenname: Ben surname: Sun fullname: Sun, Ben organization: Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115 – sequence: 6 givenname: Brandon surname: Bartch fullname: Bartch, Brandon organization: Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115 – sequence: 7 givenname: Constance L. surname: Cepko fullname: Cepko, Constance L. email: cepko@genetics.med.harvard.edu organization: Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17444492$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kM1uEzEURi1URNPCghdAXiGxmNYez5-XMGoDqAQhgVhajn09MTh2sGfaZsej4zCBrno3XtzznWt9Z-jEBw8IvaTkghJSXioPFyVlTfcELSjhTcG7hp6gRd7RgvOmPUVnKf0ghHDOumfolLZVHl4u0O9PwYGanIx4AyPEMIAHO-5xMFjDLbiws37AEUbrpcOD9IOzwWPpNZZbqaL1gBU4lzJzC9KBxuMmhmnY4JSTbt7igxbD_S5CSof8LgZjXQaeo6dGugQvju85-nZ99bV_X9x8Xn7o394UqmrKrtCKal3zkpZKAmhdATeKGdN0hq2ZqVnVmLJbM6Y7I5U0ma-6uiSU1JVcE8bO0evZmy__miCNYmvT4WvSQ5iSaElVNi1pM_hmBlUMKUUwYhftVsa9oEQc6ha5bvG37sy-Okqn9Rb0A3nsNwOXM3BnHewfN4l-dfVPWcwJm0a4_5-Q8adoWtbW4vtqKdrlxy_v-KoXPfsDbGCeZg |
CitedBy_id | crossref_primary_10_1089_zeb_2016_1366 crossref_primary_10_1186_s13287_018_0848_7 crossref_primary_10_1111_j_1440_169X_2009_01157_x crossref_primary_10_1523_JNEUROSCI_0397_08_2008 crossref_primary_10_1016_j_neuron_2008_10_020 crossref_primary_10_1038_mtm_2013_5 crossref_primary_10_1111_j_1440_169X_2011_01326_x crossref_primary_10_1016_j_molmed_2017_04_006 crossref_primary_10_1096_fj_202100563R crossref_primary_10_4137_BBI_S6930 crossref_primary_10_1002_dvdy_21973 crossref_primary_10_1002_cne_21798 crossref_primary_10_1186_1471_213X_8_101 crossref_primary_10_1073_pnas_1604153113 crossref_primary_10_1242_dev_200857 crossref_primary_10_1038_s41598_020_71460_6 crossref_primary_10_1016_j_tig_2023_06_002 crossref_primary_10_1186_s12864_019_5903_y crossref_primary_10_1038_s41467_018_03856_y crossref_primary_10_3389_fcell_2021_718851 crossref_primary_10_1002_dneu_22188 crossref_primary_10_1242_dev_124800 crossref_primary_10_1007_s10571_020_00830_5 crossref_primary_10_1089_zeb_2015_1184 crossref_primary_10_1126_science_aba0803 crossref_primary_10_1136_lupus_2016_000202 crossref_primary_10_1038_s41598_019_52215_4 crossref_primary_10_1073_pnas_1821000116 crossref_primary_10_1002_dvdy_22138 crossref_primary_10_1371_journal_pone_0076489 crossref_primary_10_1371_journal_pone_0114888 crossref_primary_10_1242_dev_024620 crossref_primary_10_1016_j_tcb_2015_07_004 crossref_primary_10_1038_s41598_018_21822_y crossref_primary_10_1371_journal_pone_0175322 crossref_primary_10_1523_ENEURO_0044_14_2015 crossref_primary_10_1002_cne_21730 crossref_primary_10_1007_s10571_009_9473_4 crossref_primary_10_1016_j_exer_2013_11_003 crossref_primary_10_1016_j_neuron_2014_08_040 crossref_primary_10_1016_j_neuron_2009_12_009 crossref_primary_10_1016_j_neuron_2019_08_002 crossref_primary_10_1002_cne_23210 crossref_primary_10_1146_annurev_vision_032621_075200 crossref_primary_10_3390_ijms22168357 crossref_primary_10_1371_journal_pone_0012525 crossref_primary_10_1002_wsbm_22 crossref_primary_10_1523_JNEUROSCI_4713_10_2011 crossref_primary_10_1016_j_neuroscience_2012_08_066 crossref_primary_10_1523_JNEUROSCI_2187_10_2010 crossref_primary_10_1016_j_preteyeres_2012_10_003 crossref_primary_10_1371_journal_pone_0001588 crossref_primary_10_1016_j_stemcr_2018_02_010 crossref_primary_10_4161_15384101_2015_941757 crossref_primary_10_1002_dneu_22257 crossref_primary_10_1002_cne_23702 crossref_primary_10_1016_j_gep_2013_07_009 crossref_primary_10_1016_j_ydbio_2020_09_003 crossref_primary_10_1073_pnas_1203138109 crossref_primary_10_1016_j_visres_2010_07_010 crossref_primary_10_1002_cne_21639 crossref_primary_10_1039_b908276j crossref_primary_10_1016_j_conb_2016_11_001 crossref_primary_10_1186_s13064_018_0121_x crossref_primary_10_1242_dmm_025262 crossref_primary_10_1002_stem_2755 crossref_primary_10_1016_j_neuron_2017_04_022 crossref_primary_10_1002_dvdy_24006 crossref_primary_10_1038_nrn3767 crossref_primary_10_1371_journal_pone_0150878 crossref_primary_10_1002_cne_24241 crossref_primary_10_1089_ten_tea_2013_0720 crossref_primary_10_1016_j_stem_2015_05_015 crossref_primary_10_1007_s11302_019_09667_0 crossref_primary_10_1038_nn_4366 crossref_primary_10_1371_journal_pone_0110194 crossref_primary_10_7554_eLife_48216 crossref_primary_10_1073_pnas_0903264106 crossref_primary_10_1523_JNEUROSCI_2555_10_2011 crossref_primary_10_1016_j_cell_2012_11_049 crossref_primary_10_1038_nn_3032 crossref_primary_10_1038_s41467_021_21704_4 crossref_primary_10_1016_j_tice_2015_04_004 crossref_primary_10_1016_j_cub_2022_08_013 crossref_primary_10_1080_21541248_2016_1189989 crossref_primary_10_1523_ENEURO_0255_21_2021 crossref_primary_10_1016_j_cell_2016_07_054 crossref_primary_10_1007_s12177_008_9005_3 crossref_primary_10_1038_nprot_2012_158 crossref_primary_10_1242_dev_090696 crossref_primary_10_1002_wsbm_59 crossref_primary_10_1523_JNEUROSCI_3714_07_2008 crossref_primary_10_1016_j_ydbio_2012_03_027 crossref_primary_10_1093_gigascience_giab061 crossref_primary_10_1186_1752_0509_7_4 crossref_primary_10_1523_JNEUROSCI_3675_14_2015 crossref_primary_10_1016_j_cell_2010_03_039 crossref_primary_10_7554_eLife_15675 crossref_primary_10_1016_j_neures_2007_12_011 crossref_primary_10_1038_nn_2370 crossref_primary_10_1101_gad_1847110 crossref_primary_10_1016_j_preteyeres_2009_05_002 crossref_primary_10_1016_j_ydbio_2021_06_005 crossref_primary_10_1016_j_devcel_2013_06_005 crossref_primary_10_1002_wsbm_139 crossref_primary_10_1016_j_ccr_2011_07_005 crossref_primary_10_1016_j_exer_2016_11_013 crossref_primary_10_1242_dev_175729 crossref_primary_10_1371_journal_pone_0057281 crossref_primary_10_1523_ENEURO_0169_16_2016 crossref_primary_10_1002_dvdy_23762 crossref_primary_10_1371_journal_pone_0127475 crossref_primary_10_1523_JNEUROSCI_0102_20_2020 crossref_primary_10_1002_cne_24073 crossref_primary_10_1016_j_preteyeres_2015_01_005 crossref_primary_10_1371_journal_pone_0242426 |
Cites_doi | 10.1016/S0092-8674(01)00574-8 10.1016/0076-6879(93)25039-5 10.1016/S0896-6273(00)80216-0 10.1167/iovs.02-1080 10.1073/pnas.0307014101 10.1523/JNEUROSCI.15-06-04370.1995 10.1126/science.1672047 10.1523/JNEUROSCI.2755-05.2006 10.1242/dev.126.1.23 10.1074/jbc.M007967200 10.1002/ar.1092120215 10.1186/gb-2002-3-8-reviews1022 10.1016/S0959-4388(00)00230-0 10.1002/cne.20535 10.1242/dev.01010 10.1073/pnas.95.25.14863 10.1023/B:NERE.0000023593.77052.f7 10.1038/nbt729 10.1186/gb-2006-7-3-r18 10.1073/pnas.93.2.589 10.1073/pnas.93.9.3920 10.1242/dev.02075 10.1371/journal.pbio.0020247 10.1073/pnas.051014098 10.1523/JNEUROSCI.15-07-04762.1995 10.1016/S0896-6273(00)80778-3 10.1007/BF01186541 10.1016/0166-2236(94)90030-2 10.1242/dev.127.5.969 10.1073/pnas.2235688100 10.1006/dbio.1998.8868 10.1016/S0014-5793(97)00517-6 10.1016/S0896-6273(00)80478-X 10.1242/dev.127.16.3581 10.1101/gad.13.2.225 10.1002/cne.20631 10.1016/j.ydbio.2005.01.028 10.1038/labinvest.3700005 10.1016/0092-8674(95)90161-2 10.1002/cne.902290307 10.1523/JNEUROSCI.22-09-03831.2002 10.1016/S0092-8674(03)00268-X 10.1002/cne.20134 10.1016/0896-6273(93)90079-7 10.1098/rspb.1988.0072 10.1093/hmg/ddi084 10.1073/pnas.87.5.1663 10.1002/(SICI)1097-0177(200003)217:3<320::AID-DVDY10>3.0.CO;2-F 10.1073/pnas.91.23.10800 10.1002/(SICI)1096-9861(19991018)413:2<305::AID-CNE10>3.0.CO;2-E 10.1016/S0092-8674(00)80439-0 10.1016/S0896-6273(03)00229-0 10.1242/dev.01018 10.1016/0896-6273(92)90025-9 |
ContentType | Journal Article |
Copyright | Copyright © 2007 Wiley‐Liss, Inc. (c) 2007 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2007 Wiley‐Liss, Inc. – notice: (c) 2007 Wiley-Liss, Inc. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1002/cne.21368 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
EISSN | 1096-9861 |
EndPage | 1065 |
ExternalDocumentID | 10_1002_cne_21368 17444492 CNE21368 ark_67375_WNG_7GJQB9NC_C |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Ruth L. Kirchenstein individual NRSA fellowship funderid: F32 EY014495 – fundername: National Eye Institute funderid: EY08064 – fundername: Schepens Eye Research Institute/NEI funderid: T32 EY007145 – fundername: NEI NIH HHS grantid: EY08064 – fundername: NEI NIH HHS grantid: T32 EY007145 – fundername: NEI NIH HHS grantid: F32 EY014495 |
GroupedDBID | --- -DZ -~X .3N .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5RE 5VS 66C 702 79B 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABIJN ABIVO ABJNI ABOCM ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACIWK ACPOU ACPRK ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AELAQ AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ L7B LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K ROL RWD RWI RX1 RYL SUPJJ TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ XG1 XJT XV2 YQT ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c4628-dc1dd59212caeedd4e9fc3ff68f3b3f5346f28b33d8facafdc1485201054ab033 |
IEDL.DBID | 33P |
ISSN | 0021-9967 |
IngestDate | Fri Aug 16 01:48:17 EDT 2024 Fri Nov 22 00:39:35 EST 2024 Sat Sep 28 07:45:25 EDT 2024 Sat Aug 24 00:57:39 EDT 2024 Wed Oct 30 09:52:34 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | (c) 2007 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4628-dc1dd59212caeedd4e9fc3ff68f3b3f5346f28b33d8facafdc1485201054ab033 |
Notes | Ruth L. Kirchenstein individual NRSA fellowship - No. F32 EY014495 ArticleID:CNE21368 ark:/67375/WNG-7GJQB9NC-C Schepens Eye Research Institute/NEI - No. T32 EY007145 National Eye Institute - No. EY08064 istex:A0A88FD054C93DBFAA185ED0207700D25554364B ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cne.21368 |
PMID | 17444492 |
PQID | 70426707 |
PQPubID | 23479 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_70426707 crossref_primary_10_1002_cne_21368 pubmed_primary_17444492 wiley_primary_10_1002_cne_21368_CNE21368 istex_primary_ark_67375_WNG_7GJQB9NC_C |
PublicationCentury | 2000 |
PublicationDate | 20 June 2007 |
PublicationDateYYYYMMDD | 2007-06-20 |
PublicationDate_xml | – month: 06 year: 2007 text: 20 June 2007 day: 20 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Journal of comparative neurology (1911) |
PublicationTitleAlternate | J. Comp. Neurol |
PublicationYear | 2007 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Chowers I, Gunatilaka TL, Farkas RH, Qian J, Hackam AS, Duh E, Kageyama M, Wang C, Vora A, Campochiaro PA, Zack DJ. 2003. Identification of novel genes preferentially expressed in the retina using a custom human retina cDNA microarray. Invest Ophthalmol Vis Sci 44: 3732-3741. DeGregorio-Rocasolano N, Gasull T, Trullas R. 2001. Overexpression of neuronal pentraxin 1 is involved in neuronal death evoked by low K(+) in cerebellar granule cells. J Biol Chem 276: 796-803. Furukawa T, Morrow EM, Cepko CL. 1997. Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 91: 531-541. Miyashiro K, Dichter M, Eberwine J. 1994. On the nature and differential distribution of mRNAs in hippocampal neurites: implications for neuronal functioning. Proc Natl Acad Sci U S A 91: 10800-10804. Blackshaw S, Harpavat S, Trimarchi J, Cai L, Huang H, Kuo WP, Weber G, Lee K, Fraioli RE, Cho SH, Yung R, Asch E, Ohno-Machado L, Wong WH, Cepko CL. 2004. Genomic analysis of mouse retinal development. PLoS Biol 2: E247. Rockhill RL, Daly FJ, MacNeil MA, Brown SP, Masland RH. 2002. The diversity of ganglion cells in a mammalian retina. J Neurosci 22: 3831-3843. MacNeil MA, Heussy JK, Dacheux RF, Raviola E, Masland RH. 1999. The shapes and numbers of amacrine cells: matching of photofilled with Golgi-stained cells in the rabbit retina and comparison with other mammalian species. J Comp Neurol 413: 305-326. Nakakura EK, Watkins DN, Schuebel KE, Sriuranpong V, Borges MW, Nelkin BD, Ball DW. 2001. Mammalian Scratch: a neural-specific Snail family transcriptional repressor. Proc Natl Acad Sci U S A 98: 4010-4015. Iscove NN, Barbara M, Gu M, Gibson M, Modi C, Winegarden N. 2002. Representation is faithfully preserved in global cDNA amplified exponentially from sub-picogram quantities of mRNA. Nat Biotechnol 20: 940-943. Morrow EM, Furukawa T, Lee JE, Cepko CL. 1999. NeuroD regulates multiple functions in the developing neural retina in rodent. Development 126: 23-36. Liu W, Wang JH, Xiang M. 2000. Specific expression of the LIM/homeodomain protein Lim-1 in horizontal cells during retinogenesis. Dev Dyn 217: 320-325. Matsuda T, Cepko CL. 2004. Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Natl Acad Sci U S A 101: 16-22. Vaney DI, Peichl L, Boycott BB. 1988. Neurofibrillar long-range amacrine cells in mammalian retinae. Proc R Soc Lond B Biol Sci 235: 203-219. Young RW. 1984. Cell death during differentiation of the retina in the mouse. J Comp Neurol 229: 362-373. Dulac C, Axel R. 1995. A novel family of genes encoding putative pheromone receptors in mammals. Cell 83: 195-206. Ginsberg SD, Elarova I, Ruben M, Tan F, Counts SE, Eberwine JH, Trojanowski JQ, Hemby SE, Mufson EJ, Che S. 2004. Single-cell gene expression analysis: implications for neurodegenerative and neuropsychiatric disorders. Neurochem Res 29: 1053-1064. Zhang F, Lu C, Severin C, Sretavan DW. 2000. GAP-43 mediates retinal axon interaction with lateral diencephalon cells during optic tract formation. Development 127: 969-980. Eisen MB, Spellman PT, Brown PO, Botstein D. 1998. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95: 14863-14868. Burden-Gulley SM, Payne HR, Lemmon V. 1995. Growth cones are actively influenced by substrate-bound adhesion molecules. J Neurosci 15: 4370-4381. Lohrke S, Brandstatter JH, Boycott BB, Peichl L. 1995. Expression of neurofilament proteins by horizontal cells in the rabbit retina varies with retinal location. J Neurocytol 24: 283-300. Caceres A, Mautino J, Kosik KS. 1992. Suppression of MAP2 in cultured cerebellar macroneurons inhibits minor neurite formation. Neuron 9: 607-618. Ginsberg SD, Che S. 2005. Expression profile analysis within the human hippocampus: comparison of CA1 and CA3 pyramidal neurons. J Comp Neurol 487: 107-118. Mu X, Beremand PD, Zhao S, Pershad R, Sun H, Scarpa A, Liang S, Thomas TL, Klein WH. 2004. Discrete gene sets depend on POU domain transcription factor Brn3b/Brn-3.2/POU4f2 for their expression in the mouse embryonic retina. Development 131: 1197-1210. Riehl R, Johnson K, Bradley R, Grunwald GB, Cornel E, Lilienbaum A, Holt CE. 1996. Cadherin function is required for axon outgrowth in retinal ganglion cells in vivo. Neuron 17: 837-848. Gleeson JG, Lin PT, Flanagan LA, Walsh CA. 1999. Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23: 257-271. Blackshaw S, Fraioli RE, Furukawa T, Cepko CL. 2001. Comprehensive analysis of photoreceptor gene expression and the identification of candidate retinal disease genes. Cell 107: 579-589. Livesey FJ, Young TL, Cepko CL. 2004. An analysis of the gene expression program of mammalian neural progenitor cells. Proc Natl Acad Sci U S A 101: 1374-1379. Young RW. 1985. Cell differentiation in the retina of the mouse. Anat Rec 212: 199-205. Xiang M, Zhou L, Peng YW, Eddy RL, Shows TB, Nathans J. 1993. Brn-3b: a POU domain gene expressed in a subset of retinal ganglion cells. Neuron 11: 689-701. MacNeil MA, Masland RH. 1998. Extreme diversity among amacrine cells: implications for function. Neuron 20: 971-982. Rapaport DH, Wong LL, Wood ED, Yasumura D, LaVail MM. 2004. Timing and topography of cell genesis in the rat retina. J Comp Neurol 474: 304-324. Dowling JE. 1987. The retina-an approachable part of the brain. Cambridge, MA: Harvard University Press. Mu X, Fu X, Sun H, Beremand PD, Thomas TL, Klein WH. 2005. A gene network downstream of transcription factor Math5 regulates retinal progenitor cell competence and ganglion cell fate. Dev Biol 280: 467-481. Masland RH. 2001. Neuronal diversity in the retina. Curr Opin Neurobiol 11: 431-436. Matus A. 1994. Stiff microtubules and neuronal morphology. Trends Neurosci 17: 19-22. Godinho L, Mumm JS, Williams PR, Schroeter EH, Koerber A, Park SW, Leach SD, Wong RO. 2005. Targeting of amacrine cell neurites to appropriate synaptic laminae in the developing zebrafish retina. Development 132: 5069-5079. Tietjen I, Rihel JM, Cao Y, Koentges G, Zakhary L, Dulac C. 2003. Single-cell transcriptional analysis of neuronal progenitors. Neuron 38: 161-175. Kong JH, Fish DR, Rockhill RL, Masland RH. 2005. Diversity of ganglion cells in the mouse retina: unsupervised morphological classification and its limits. J Comp Neurol 489: 293-310. Xiang M. 1998. Requirement for Brn-3b in early differentiation of postmitotic retinal ganglion cell precursors. Dev Biol 197: 155-169. Xiang M, Zhou L, Macke JP, Yoshioka T, Hendry SH, Eddy RL, Shows TB, Nathans J. 1995. The Brn-3 family of POU-domain factors: primary structure, binding specificity, and expression in subsets of retinal ganglion cells and somatosensory neurons. J Neurosci 15: 4762-4785. Van Gelder RN, von Zastrow ME, Yool A, Dement WC, Barchas JD, Eberwine JH. 1990. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc Natl Acad Sci U S A 87: 1663-1667. Murtaugh LC, Chyung JH, Lassar AB. 1999. Sonic hedgehog promotes somitic chondrogenesis by altering the cellular response to BMP signaling. Genes Dev 13: 225-237. Edqvist PH, Hallbook F. 2004. Newborn horizontal cells migrate bi-directionally across the neuroepithelium during retinal development. Development 131: 1343-1351. Swaroop A, Zack DJ. 2002. Transcriptome analysis of the retina. Genome Biol 3: REVIEWS1022. Alfano G, Vitiello C, Caccioppoli C, Caramico T, Carola A, Szego MJ, McInnes RR, Auricchio A, Banfi S. 2005. Natural antisense transcripts associated with genes involved in eye development. Hum Mol Genet 14: 913-923. Che S, Ginsberg SD. 2004. Amplification of RNA transcripts using terminal continuation. Lab Invest 84: 131-137. Brent AE, Schweitzer R, Tabin CJ. 2003. A somitic compartment of tendon progenitors. Cell 113: 235-248. Dizhoor AM, Ray S, Kumar S, Niemi G, Spencer M, Brolley D, Walsh KA, Philipov PP, Hurley JB, Stryer L. 1991. Recoverin: a calcium sensitive activator of retinal rod guanylate cyclase. Science 251: 915-918. Nguyen M, Arnheiter H. 2000. Signaling and transcriptional regulation in early mammalian eye development: a link between FGF and MITF. Development 127: 3581-3591. Azarian SM, Travis GH. 1997. The photoreceptor rim protein is an ABC transporter encoded by the gene for recessive Stargardt's disease (ABCR). FEBS Lett 409: 247-252. Stead JD, Neal C, Meng F, Wang Y, Evans S, Vazquez DM, Watson SJ, Akil H. 2006. Transcriptional profiling of the developing rat brain reveals that the most dramatic regional differentiation in gene expression occurs postpartum. J Neurosci 26: 345-353. Cepko CL, Austin CP, Yang X, Alexiades M, Ezzeddine D. 1996. Cell fate determination in the vertebrate retina. Proc Natl Acad Sci U S A 93: 589-595. Subkhankulova T, Livesey FJ. 2006. Comparative evaluation of linear and exponential amplification techniques for expression profiling at the single cell level. Genome Biol 7: R18. Brady G, Iscove NN. 1993. Construction of cDNA libraries from single cells. Methods Enzymol 225: 611-623. Gan L, Xiang M, Zhou L, Wagner DS, Klein WH, Nathans J. 1996. POU domain factor Brn-3b is required for the development of a large set of retinal ganglion cells. Proc Natl Acad Sci U S A 93: 3920-3925. 2004; 29 2005; 132 2000; 217 2004; 2 2001; 107 2003; 113 1999; 126 1998; 197 1997; 91 1992; 9 2004; 131 1990; 87 2000; 127 1995; 24 2006; 26 1987 1999; 13 1985; 212 2001; 11 1998; 95 1999; 413 2003; 44 2001; 98 2004; 101 1991; 251 2004; 84 1996; 17 1995; 15 2006; 7 1996; 93 1999; 23 2002; 3 2003; 38 1984; 229 1991 1993; 225 1998; 20 2001; 276 2004; 474 2005; 280 1995; 83 2002; 20 2005; 487 1993; 11 2005; 489 2002; 22 1988; 235 1994; 17 1994; 91 1997; 409 2005; 14 e_1_2_6_51_1 e_1_2_6_53_1 e_1_2_6_32_1 e_1_2_6_30_1 e_1_2_6_19_1 Swaroop A (e_1_2_6_48_1) 2002; 3 e_1_2_6_13_1 e_1_2_6_36_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_43_1 e_1_2_6_20_1 e_1_2_6_41_1 e_1_2_6_5_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_28_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_54_1 Burden‐Gulley SM (e_1_2_6_9_1) 1995; 15 e_1_2_6_10_1 e_1_2_6_31_1 Altshuler DM (e_1_2_6_3_1) 1991 e_1_2_6_50_1 Zhang F (e_1_2_6_57_1) 2000; 127 e_1_2_6_14_1 e_1_2_6_35_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_39_1 e_1_2_6_56_1 e_1_2_6_37_1 e_1_2_6_42_1 e_1_2_6_21_1 e_1_2_6_40_1 Dowling JE (e_1_2_6_16_1) 1987 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_6_1 e_1_2_6_25_1 Che S (e_1_2_6_12_1) 2004; 84 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_27_1 e_1_2_6_46_1 |
References_xml | – volume: 229 start-page: 362 year: 1984 end-page: 373 article-title: Cell death during differentiation of the retina in the mouse publication-title: J Comp Neurol – volume: 93 start-page: 3920 year: 1996 end-page: 3925 article-title: POU domain factor Brn‐3b is required for the development of a large set of retinal ganglion cells publication-title: Proc Natl Acad Sci U S A – volume: 409 start-page: 247 year: 1997 end-page: 252 article-title: The photoreceptor rim protein is an ABC transporter encoded by the gene for recessive Stargardt's disease (ABCR) publication-title: FEBS Lett – volume: 83 start-page: 195 year: 1995 end-page: 206 article-title: A novel family of genes encoding putative pheromone receptors in mammals publication-title: Cell – volume: 84 start-page: 131 year: 2004 end-page: 137 article-title: Amplification of RNA transcripts using terminal continuation publication-title: Lab Invest – volume: 17 start-page: 19 year: 1994 end-page: 22 article-title: Stiff microtubules and neuronal morphology publication-title: Trends Neurosci – volume: 235 start-page: 203 year: 1988 end-page: 219 article-title: Neurofibrillar long‐range amacrine cells in mammalian retinae publication-title: Proc R Soc Lond B Biol Sci – volume: 14 start-page: 913 year: 2005 end-page: 923 article-title: Natural antisense transcripts associated with genes involved in eye development publication-title: Hum Mol Genet – volume: 11 start-page: 689 year: 1993 end-page: 701 article-title: Brn‐3b: a POU domain gene expressed in a subset of retinal ganglion cells publication-title: Neuron – volume: 13 start-page: 225 year: 1999 end-page: 237 article-title: Sonic hedgehog promotes somitic chondrogenesis by altering the cellular response to BMP signaling publication-title: Genes Dev – volume: 276 start-page: 796 year: 2001 end-page: 803 article-title: Overexpression of neuronal pentraxin 1 is involved in neuronal death evoked by low K(+) in cerebellar granule cells publication-title: J Biol Chem – volume: 15 start-page: 4762 year: 1995 end-page: 4785 article-title: The Brn‐3 family of POU‐domain factors: primary structure, binding specificity, and expression in subsets of retinal ganglion cells and somatosensory neurons publication-title: J Neurosci – volume: 93 start-page: 589 year: 1996 end-page: 595 article-title: Cell fate determination in the vertebrate retina publication-title: Proc Natl Acad Sci U S A – volume: 87 start-page: 1663 year: 1990 end-page: 1667 article-title: Amplified RNA synthesized from limited quantities of heterogeneous cDNA publication-title: Proc Natl Acad Sci U S A – volume: 2 start-page: E247 year: 2004 article-title: Genomic analysis of mouse retinal development publication-title: PLoS Biol – volume: 113 start-page: 235 year: 2003 end-page: 248 article-title: A somitic compartment of tendon progenitors publication-title: Cell – volume: 217 start-page: 320 year: 2000 end-page: 325 article-title: Specific expression of the LIM/homeodomain protein Lim‐1 in horizontal cells during retinogenesis publication-title: Dev Dyn – volume: 29 start-page: 1053 year: 2004 end-page: 1064 article-title: Single‐cell gene expression analysis: implications for neurodegenerative and neuropsychiatric disorders publication-title: Neurochem Res – volume: 24 start-page: 283 year: 1995 end-page: 300 article-title: Expression of neurofilament proteins by horizontal cells in the rabbit retina varies with retinal location publication-title: J Neurocytol – volume: 9 start-page: 607 year: 1992 end-page: 618 article-title: Suppression of MAP2 in cultured cerebellar macroneurons inhibits minor neurite formation publication-title: Neuron – volume: 474 start-page: 304 year: 2004 end-page: 324 article-title: Timing and topography of cell genesis in the rat retina publication-title: J Comp Neurol – volume: 44 start-page: 3732 year: 2003 end-page: 3741 article-title: Identification of novel genes preferentially expressed in the retina using a custom human retina cDNA microarray publication-title: Invest Ophthalmol Vis Sci – volume: 126 start-page: 23 year: 1999 end-page: 36 article-title: NeuroD regulates multiple functions in the developing neural retina in rodent publication-title: Development – volume: 251 start-page: 915 year: 1991 end-page: 918 article-title: Recoverin: a calcium sensitive activator of retinal rod guanylate cyclase publication-title: Science – volume: 38 start-page: 161 year: 2003 end-page: 175 article-title: Single‐cell transcriptional analysis of neuronal progenitors publication-title: Neuron – volume: 487 start-page: 107 year: 2005 end-page: 118 article-title: Expression profile analysis within the human hippocampus: comparison of CA1 and CA3 pyramidal neurons publication-title: J Comp Neurol – volume: 23 start-page: 257 year: 1999 end-page: 271 article-title: Doublecortin is a microtubule‐associated protein and is expressed widely by migrating neurons publication-title: Neuron – volume: 225 start-page: 611 year: 1993 end-page: 623 article-title: Construction of cDNA libraries from single cells publication-title: Methods Enzymol – volume: 107 start-page: 579 year: 2001 end-page: 589 article-title: Comprehensive analysis of photoreceptor gene expression and the identification of candidate retinal disease genes publication-title: Cell – volume: 197 start-page: 155 year: 1998 end-page: 169 article-title: Requirement for Brn‐3b in early differentiation of postmitotic retinal ganglion cell precursors publication-title: Dev Biol – volume: 101 start-page: 1374 year: 2004 end-page: 1379 article-title: An analysis of the gene expression program of mammalian neural progenitor cells publication-title: Proc Natl Acad Sci U S A – volume: 15 start-page: 4370 year: 1995 end-page: 4381 article-title: Growth cones are actively influenced by substrate‐bound adhesion molecules publication-title: J Neurosci – volume: 11 start-page: 431 year: 2001 end-page: 436 article-title: Neuronal diversity in the retina publication-title: Curr Opin Neurobiol – volume: 132 start-page: 5069 year: 2005 end-page: 5079 article-title: Targeting of amacrine cell neurites to appropriate synaptic laminae in the developing zebrafish retina publication-title: Development – start-page: 37 year: 1991 end-page: 58 – year: 1987 – volume: 95 start-page: 14863 year: 1998 end-page: 14868 article-title: Cluster analysis and display of genome‐wide expression patterns publication-title: Proc Natl Acad Sci U S A – volume: 131 start-page: 1343 year: 2004 end-page: 1351 article-title: Newborn horizontal cells migrate bi‐directionally across the neuroepithelium during retinal development publication-title: Development – volume: 127 start-page: 3581 year: 2000 end-page: 3591 article-title: Signaling and transcriptional regulation in early mammalian eye development: a link between FGF and MITF publication-title: Development – volume: 489 start-page: 293 year: 2005 end-page: 310 article-title: Diversity of ganglion cells in the mouse retina: unsupervised morphological classification and its limits publication-title: J Comp Neurol – volume: 91 start-page: 10800 year: 1994 end-page: 10804 article-title: On the nature and differential distribution of mRNAs in hippocampal neurites: implications for neuronal functioning publication-title: Proc Natl Acad Sci U S A – volume: 280 start-page: 467 year: 2005 end-page: 481 article-title: A gene network downstream of transcription factor Math5 regulates retinal progenitor cell competence and ganglion cell fate publication-title: Dev Biol – volume: 17 start-page: 837 year: 1996 end-page: 848 article-title: Cadherin function is required for axon outgrowth in retinal ganglion cells in vivo publication-title: Neuron – volume: 91 start-page: 531 year: 1997 end-page: 541 article-title: Crx, a novel otx‐like homeobox gene, shows photoreceptor‐specific expression and regulates photoreceptor differentiation publication-title: Cell – volume: 20 start-page: 940 year: 2002 end-page: 943 article-title: Representation is faithfully preserved in global cDNA amplified exponentially from sub‐picogram quantities of mRNA publication-title: Nat Biotechnol – volume: 20 start-page: 971 year: 1998 end-page: 982 article-title: Extreme diversity among amacrine cells: implications for function publication-title: Neuron – volume: 413 start-page: 305 year: 1999 end-page: 326 article-title: The shapes and numbers of amacrine cells: matching of photofilled with Golgi‐stained cells in the rabbit retina and comparison with other mammalian species publication-title: J Comp Neurol – volume: 7 start-page: R18 year: 2006 article-title: Comparative evaluation of linear and exponential amplification techniques for expression profiling at the single cell level publication-title: Genome Biol – volume: 98 start-page: 4010 year: 2001 end-page: 4015 article-title: Mammalian Scratch: a neural‐specific Snail family transcriptional repressor publication-title: Proc Natl Acad Sci U S A – volume: 26 start-page: 345 year: 2006 end-page: 353 article-title: Transcriptional profiling of the developing rat brain reveals that the most dramatic regional differentiation in gene expression occurs postpartum publication-title: J Neurosci – volume: 3 start-page: REVIEWS1022 year: 2002 article-title: Transcriptome analysis of the retina publication-title: Genome Biol – volume: 22 start-page: 3831 year: 2002 end-page: 3843 article-title: The diversity of ganglion cells in a mammalian retina publication-title: J Neurosci – volume: 101 start-page: 16 year: 2004 end-page: 22 article-title: Electroporation and RNA interference in the rodent retina in vivo and in vitro publication-title: Proc Natl Acad Sci U S A – volume: 212 start-page: 199 year: 1985 end-page: 205 article-title: Cell differentiation in the retina of the mouse publication-title: Anat Rec – volume: 131 start-page: 1197 year: 2004 end-page: 1210 article-title: Discrete gene sets depend on POU domain transcription factor Brn3b/Brn‐3.2/POU4f2 for their expression in the mouse embryonic retina publication-title: Development – volume: 127 start-page: 969 year: 2000 end-page: 980 article-title: GAP‐43 mediates retinal axon interaction with lateral diencephalon cells during optic tract formation publication-title: Development – ident: e_1_2_6_5_1 doi: 10.1016/S0092-8674(01)00574-8 – ident: e_1_2_6_7_1 doi: 10.1016/0076-6879(93)25039-5 – ident: e_1_2_6_44_1 doi: 10.1016/S0896-6273(00)80216-0 – ident: e_1_2_6_13_1 doi: 10.1167/iovs.02-1080 – ident: e_1_2_6_29_1 doi: 10.1073/pnas.0307014101 – volume: 15 start-page: 4370 year: 1995 ident: e_1_2_6_9_1 article-title: Growth cones are actively influenced by substrate‐bound adhesion molecules publication-title: J Neurosci doi: 10.1523/JNEUROSCI.15-06-04370.1995 contributor: fullname: Burden‐Gulley SM – ident: e_1_2_6_15_1 doi: 10.1126/science.1672047 – ident: e_1_2_6_46_1 doi: 10.1523/JNEUROSCI.2755-05.2006 – ident: e_1_2_6_37_1 doi: 10.1242/dev.126.1.23 – ident: e_1_2_6_14_1 doi: 10.1074/jbc.M007967200 – ident: e_1_2_6_56_1 doi: 10.1002/ar.1092120215 – volume: 3 start-page: REVIEWS1022 year: 2002 ident: e_1_2_6_48_1 article-title: Transcriptome analysis of the retina publication-title: Genome Biol doi: 10.1186/gb-2002-3-8-reviews1022 contributor: fullname: Swaroop A – ident: e_1_2_6_33_1 doi: 10.1016/S0959-4388(00)00230-0 – ident: e_1_2_6_22_1 doi: 10.1002/cne.20535 – ident: e_1_2_6_38_1 doi: 10.1242/dev.01010 – ident: e_1_2_6_19_1 doi: 10.1073/pnas.95.25.14863 – start-page: 37 volume-title: Develoment of the visual system year: 1991 ident: e_1_2_6_3_1 contributor: fullname: Altshuler DM – ident: e_1_2_6_23_1 doi: 10.1023/B:NERE.0000023593.77052.f7 – ident: e_1_2_6_26_1 doi: 10.1038/nbt729 – ident: e_1_2_6_47_1 doi: 10.1186/gb-2006-7-3-r18 – ident: e_1_2_6_11_1 doi: 10.1073/pnas.93.2.589 – ident: e_1_2_6_21_1 doi: 10.1073/pnas.93.9.3920 – ident: e_1_2_6_25_1 doi: 10.1242/dev.02075 – ident: e_1_2_6_6_1 doi: 10.1371/journal.pbio.0020247 – ident: e_1_2_6_41_1 doi: 10.1073/pnas.051014098 – ident: e_1_2_6_54_1 doi: 10.1523/JNEUROSCI.15-07-04762.1995 – ident: e_1_2_6_24_1 doi: 10.1016/S0896-6273(00)80778-3 – ident: e_1_2_6_30_1 doi: 10.1007/BF01186541 – ident: e_1_2_6_35_1 doi: 10.1016/0166-2236(94)90030-2 – volume: 127 start-page: 969 year: 2000 ident: e_1_2_6_57_1 article-title: GAP‐43 mediates retinal axon interaction with lateral diencephalon cells during optic tract formation publication-title: Development doi: 10.1242/dev.127.5.969 contributor: fullname: Zhang F – ident: e_1_2_6_34_1 doi: 10.1073/pnas.2235688100 – ident: e_1_2_6_52_1 doi: 10.1006/dbio.1998.8868 – ident: e_1_2_6_4_1 doi: 10.1016/S0014-5793(97)00517-6 – ident: e_1_2_6_31_1 doi: 10.1016/S0896-6273(00)80478-X – ident: e_1_2_6_42_1 doi: 10.1242/dev.127.16.3581 – ident: e_1_2_6_40_1 doi: 10.1101/gad.13.2.225 – ident: e_1_2_6_27_1 doi: 10.1002/cne.20631 – ident: e_1_2_6_39_1 doi: 10.1016/j.ydbio.2005.01.028 – volume: 84 start-page: 131 year: 2004 ident: e_1_2_6_12_1 article-title: Amplification of RNA transcripts using terminal continuation publication-title: Lab Invest doi: 10.1038/labinvest.3700005 contributor: fullname: Che S – ident: e_1_2_6_17_1 doi: 10.1016/0092-8674(95)90161-2 – ident: e_1_2_6_55_1 doi: 10.1002/cne.902290307 – ident: e_1_2_6_45_1 doi: 10.1523/JNEUROSCI.22-09-03831.2002 – ident: e_1_2_6_8_1 doi: 10.1016/S0092-8674(03)00268-X – ident: e_1_2_6_43_1 doi: 10.1002/cne.20134 – ident: e_1_2_6_53_1 doi: 10.1016/0896-6273(93)90079-7 – volume-title: The retina—an approachable part of the brain year: 1987 ident: e_1_2_6_16_1 contributor: fullname: Dowling JE – ident: e_1_2_6_51_1 doi: 10.1098/rspb.1988.0072 – ident: e_1_2_6_2_1 doi: 10.1093/hmg/ddi084 – ident: e_1_2_6_50_1 doi: 10.1073/pnas.87.5.1663 – ident: e_1_2_6_28_1 doi: 10.1002/(SICI)1097-0177(200003)217:3<320::AID-DVDY10>3.0.CO;2-F – ident: e_1_2_6_36_1 doi: 10.1073/pnas.91.23.10800 – ident: e_1_2_6_32_1 doi: 10.1002/(SICI)1096-9861(19991018)413:2<305::AID-CNE10>3.0.CO;2-E – ident: e_1_2_6_20_1 doi: 10.1016/S0092-8674(00)80439-0 – ident: e_1_2_6_49_1 doi: 10.1016/S0896-6273(03)00229-0 – ident: e_1_2_6_18_1 doi: 10.1242/dev.01018 – ident: e_1_2_6_10_1 doi: 10.1016/0896-6273(92)90025-9 |
SSID | ssj0009938 |
Score | 2.3243623 |
Snippet | During development of the central nervous system (CNS), cycling uncommitted progenitor cells give rise to a variety of distinct neuronal and glial cell types.... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1047 |
SubjectTerms | amacrine Amacrine Cells - cytology Amacrine Cells - metabolism Animals Cell Differentiation - genetics Cells, Cultured ganglion Gene Expression Profiling - methods Gene Expression Regulation, Developmental - genetics Genetic Markers - genetics In Situ Hybridization, Fluorescence Mice microarray molecular markers Nerve Tissue Proteins - biosynthesis Nerve Tissue Proteins - genetics Neurofilament Proteins - biosynthesis Neurofilament Proteins - genetics retina Retina - cytology Retina - embryology Retina - metabolism Retinal Ganglion Cells - cytology Retinal Ganglion Cells - metabolism Retinal Rod Photoreceptor Cells - cytology Retinal Rod Photoreceptor Cells - metabolism single cell Stem Cells - cytology Stem Cells - metabolism Transcription Factor AP-2 - genetics Transcription, Genetic - genetics |
Title | Molecular heterogeneity of developing retinal ganglion and amacrine cells revealed through single cell gene expression profiling |
URI | https://api.istex.fr/ark:/67375/WNG-7GJQB9NC-C/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcne.21368 https://www.ncbi.nlm.nih.gov/pubmed/17444492 https://search.proquest.com/docview/70426707 |
Volume | 502 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB_8oOCLrbbq1lqDlNKX9faS7CZLn-r1VAo9LFWUvoRsPlpQd8XrgY_9081kb-8QKgju08LOZrOZSWYymfkNwIeM6sIxJ1Np8ZhReJ5q43UqaCZdmXvDI3bn8U8xupBfhwiT87nLhWnxIWYON5wZcb3GCa6rcW8OGmpqt0_7rMBE37BLiOkb7GQOuFuydhXGEISyEB2qUEZ7szcf6KJlHNa7_xmaD-3WqHgOXz6ry69gdWpvki-tgKzBgqvX4cWvJnrTX8O_7115XPIHA2OaIE8uGOak8WSeT0Uw1RGb-a0x67epia4t0dfaYO4gQef_mCAWVNA2lkxL_xD0Qly1Twk2S9zdNOq2Jm2p8EDwBs4Oh6eD43RalCE1mMaaWtO3Ni-DxjM66FfLXekN876QnlXM54wXnsqKMSu9NtoHei5zPHPPua4yxjZgqW5qtwXEFjLIhtZCFp5nVdiM00DcF95UjAcZSmCvY4-6abE3VIuyTFUYShWHMoGPkXEzCn17icFqIlfnoyMljr79OChHAzVIYLfjrApTCH9e166ZjJXAfaTIRAKbLcPnXxM8XCVN4FPk6-PdUIPRMN68fTrpNqx00Yc0ewdLf28nbgcWx3byPsryPQHI984 |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71IUQvtLxK-qAWQohLaNZ2YkfiQrfbLtBGIIqKuFiOHyABCep2pR770-txNruqBBISOUXKxHE8Y894PPMNwPOM6sIxJ1Np8ZhReJ5q43UqaCZdmXvDI3bn-JOovsjDEcLkvO5zYTp8iLnDDWdGXK9xgqNDen-BGmoa94oOWCGXYZUXQRAxgYN9WEDulqxbhzEIoSxEjyuU0f35q7e00SoO7NWfTM3blmtUPUfr_9fpDbg3MznJm05G7sOSax7Ana9tdKg_hOvTvkIu-Y6xMW0QKRdsc9J6skipIpjtiM1805j42zZEN5boX9pg-iBB__-EIBxUUDiWzKr_EHRE_OyeEmyWuKtZ4G1DumrhgeARfD4anQ3H6awuQ2owkzW1ZmBtXgalZ3RQsZa70hvmfSE9q5nPGS88lTVjVnpttA_0XOZ47J5zXWeMPYaVpm3cEyC2kEE8tBay8Dyrw36cBuKB8KZmPIhRAs96_qjfHfyG6oCWqQpDqeJQJvAicm5OoS9-YLyayNV5dazE8buPB2U1VMME9nrWqjCL8Od149rpRAncSopMJLDZcXzxNcHDVdIEXkbG_r0baliN4s3Wv5Puwd3x2emJOnlbvd-GtT4YkWY7sHJ5MXW7sDyx06dRsG8AnOf79g |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71IVAvtLxKKFALIcQlbdZ2YkecYLvb8opaAWrFxXL8AAlIqm5X6rE_HY-z2VWlIlVqTpEycRzP2DMez3wD8CqjunDMyVRaPGYUnqfaeJ0KmklX5t7wiN158FVUJ3JvhDA5b_tcmA4fYu5ww5kR12uc4KfW7y5AQ03jduiAFXIZVnkwwxE4n7HDBeJuybplGGMQykL0sEIZ3Z2_ekUZreK4XlxnaV41XKPmGa_fqs8bcG9mcJJ3nYTchyXXPIA7P9roTn8Il1_6-rjkF0bGtEGgXLDMSevJIqGKYK4jNvNTY9pv2xDdWKL_aoPJgwS9_xOCYFBB3Vgyq_1D0A3xp3tKsFniLmZhtw3paoUHgkfwfTz6NjxIZ1UZUoN5rKk1A2vzMqg8o4OCtdyV3jDvC-lZzXzOeOGprBmz0mujfaDnMsdD95zrOmPsMaw0beOeALGFDMKhtZCF51kdduM0EA-ENzXjQYgSeNmzR5124Buqg1mmKgylikOZwOvIuDmFPvuN0WoiV8fVvhL7H4_el9VQDRPY7jmrwhzCn9eNa6cTJXAjKTKRwGbH8MXXBA9XSRN4E_n6_26oYTWKN09vTroNdw_3xurzh-rTFqz1kYg0ewYr52dT9xyWJ3b6Ior1P5j2-pw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+heterogeneity+of+developing+retinal+ganglion+and+amacrine+cells+revealed+through+single+cell+gene+expression+profiling&rft.jtitle=Journal+of+comparative+neurology+%281911%29&rft.au=Trimarchi%2C+Jeffrey+M.&rft.au=Stadler%2C+Michael+B.&rft.au=Roska%2C+Botond&rft.au=Billings%2C+Nathan&rft.date=2007-06-20&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0021-9967&rft.eissn=1096-9861&rft.volume=502&rft.issue=6&rft.spage=1047&rft.epage=1065&rft_id=info:doi/10.1002%2Fcne.21368&rft.externalDBID=10.1002%252Fcne.21368&rft.externalDocID=CNE21368 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9967&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9967&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9967&client=summon |