Molecular heterogeneity of developing retinal ganglion and amacrine cells revealed through single cell gene expression profiling

During development of the central nervous system (CNS), cycling uncommitted progenitor cells give rise to a variety of distinct neuronal and glial cell types. As these different cell types are born they progress from newly specified cells to fully differentiated neurons and glia. In order to define...

Full description

Saved in:
Bibliographic Details
Published in:Journal of comparative neurology (1911) Vol. 502; no. 6; pp. 1047 - 1065
Main Authors: Trimarchi, Jeffrey M., Stadler, Michael B., Roska, Botond, Billings, Nathan, Sun, Ben, Bartch, Brandon, Cepko, Constance L.
Format: Journal Article
Language:English
Published: Hoboken Wiley Subscription Services, Inc., A Wiley Company 20-06-2007
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract During development of the central nervous system (CNS), cycling uncommitted progenitor cells give rise to a variety of distinct neuronal and glial cell types. As these different cell types are born they progress from newly specified cells to fully differentiated neurons and glia. In order to define the developmental processes of individual cell types, single cell expression profiling was carried out on developing ganglion and amacrine cells of the murine retina. Individual cells from multiple developmental stages were isolated and profiled on Affymetrix oligonucleotide arrays. Two‐color fluorescent in situ hybridization on dissociated retinas was used to verify and extend the microarray results by allowing quantitative measurements of a large number of cells coexpressing two genes. Together, these experiments have yielded an expanded view of the processes underway in developing retinal ganglion and amacrine cells, as well as several hundred new marker genes for these cell types. In addition, this study has allowed for the definition of some of the molecular heterogeneity both between developing ganglion and amacrine cells and among subclasses of each cell type. J. Comp. Neurol. 502:1047–1065, 2007. © 2007 Wiley‐Liss, Inc.
AbstractList During development of the central nervous system (CNS), cycling uncommitted progenitor cells give rise to a variety of distinct neuronal and glial cell types. As these different cell types are born they progress from newly specified cells to fully differentiated neurons and glia. In order to define the developmental processes of individual cell types, single cell expression profiling was carried out on developing ganglion and amacrine cells of the murine retina. Individual cells from multiple developmental stages were isolated and profiled on Affymetrix oligonucleotide arrays. Two‐color fluorescent in situ hybridization on dissociated retinas was used to verify and extend the microarray results by allowing quantitative measurements of a large number of cells coexpressing two genes. Together, these experiments have yielded an expanded view of the processes underway in developing retinal ganglion and amacrine cells, as well as several hundred new marker genes for these cell types. In addition, this study has allowed for the definition of some of the molecular heterogeneity both between developing ganglion and amacrine cells and among subclasses of each cell type. J. Comp. Neurol. 502:1047–1065, 2007. © 2007 Wiley‐Liss, Inc.
During development of the central nervous system (CNS), cycling uncommitted progenitor cells give rise to a variety of distinct neuronal and glial cell types. As these different cell types are born they progress from newly specified cells to fully differentiated neurons and glia. In order to define the developmental processes of individual cell types, single cell expression profiling was carried out on developing ganglion and amacrine cells of the murine retina. Individual cells from multiple developmental stages were isolated and profiled on Affymetrix oligonucleotide arrays. Two-color fluorescent in situ hybridization on dissociated retinas was used to verify and extend the microarray results by allowing quantitative measurements of a large number of cells coexpressing two genes. Together, these experiments have yielded an expanded view of the processes underway in developing retinal ganglion and amacrine cells, as well as several hundred new marker genes for these cell types. In addition, this study has allowed for the definition of some of the molecular heterogeneity both between developing ganglion and amacrine cells and among subclasses of each cell type.
Author Sun, Ben
Roska, Botond
Cepko, Constance L.
Stadler, Michael B.
Trimarchi, Jeffrey M.
Bartch, Brandon
Billings, Nathan
Author_xml – sequence: 1
  givenname: Jeffrey M.
  surname: Trimarchi
  fullname: Trimarchi, Jeffrey M.
  organization: Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
– sequence: 2
  givenname: Michael B.
  surname: Stadler
  fullname: Stadler, Michael B.
  organization: Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
– sequence: 3
  givenname: Botond
  surname: Roska
  fullname: Roska, Botond
  organization: Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
– sequence: 4
  givenname: Nathan
  surname: Billings
  fullname: Billings, Nathan
  organization: Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
– sequence: 5
  givenname: Ben
  surname: Sun
  fullname: Sun, Ben
  organization: Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
– sequence: 6
  givenname: Brandon
  surname: Bartch
  fullname: Bartch, Brandon
  organization: Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
– sequence: 7
  givenname: Constance L.
  surname: Cepko
  fullname: Cepko, Constance L.
  email: cepko@genetics.med.harvard.edu
  organization: Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17444492$$D View this record in MEDLINE/PubMed
BookMark eNp1kM1uEzEURi1URNPCghdAXiGxmNYez5-XMGoDqAQhgVhajn09MTh2sGfaZsej4zCBrno3XtzznWt9Z-jEBw8IvaTkghJSXioPFyVlTfcELSjhTcG7hp6gRd7RgvOmPUVnKf0ghHDOumfolLZVHl4u0O9PwYGanIx4AyPEMIAHO-5xMFjDLbiws37AEUbrpcOD9IOzwWPpNZZbqaL1gBU4lzJzC9KBxuMmhmnY4JSTbt7igxbD_S5CSof8LgZjXQaeo6dGugQvju85-nZ99bV_X9x8Xn7o394UqmrKrtCKal3zkpZKAmhdATeKGdN0hq2ZqVnVmLJbM6Y7I5U0ma-6uiSU1JVcE8bO0evZmy__miCNYmvT4WvSQ5iSaElVNi1pM_hmBlUMKUUwYhftVsa9oEQc6ha5bvG37sy-Okqn9Rb0A3nsNwOXM3BnHewfN4l-dfVPWcwJm0a4_5-Q8adoWtbW4vtqKdrlxy_v-KoXPfsDbGCeZg
CitedBy_id crossref_primary_10_1089_zeb_2016_1366
crossref_primary_10_1186_s13287_018_0848_7
crossref_primary_10_1111_j_1440_169X_2009_01157_x
crossref_primary_10_1523_JNEUROSCI_0397_08_2008
crossref_primary_10_1016_j_neuron_2008_10_020
crossref_primary_10_1038_mtm_2013_5
crossref_primary_10_1111_j_1440_169X_2011_01326_x
crossref_primary_10_1016_j_molmed_2017_04_006
crossref_primary_10_1096_fj_202100563R
crossref_primary_10_4137_BBI_S6930
crossref_primary_10_1002_dvdy_21973
crossref_primary_10_1002_cne_21798
crossref_primary_10_1186_1471_213X_8_101
crossref_primary_10_1073_pnas_1604153113
crossref_primary_10_1242_dev_200857
crossref_primary_10_1038_s41598_020_71460_6
crossref_primary_10_1016_j_tig_2023_06_002
crossref_primary_10_1186_s12864_019_5903_y
crossref_primary_10_1038_s41467_018_03856_y
crossref_primary_10_3389_fcell_2021_718851
crossref_primary_10_1002_dneu_22188
crossref_primary_10_1242_dev_124800
crossref_primary_10_1007_s10571_020_00830_5
crossref_primary_10_1089_zeb_2015_1184
crossref_primary_10_1126_science_aba0803
crossref_primary_10_1136_lupus_2016_000202
crossref_primary_10_1038_s41598_019_52215_4
crossref_primary_10_1073_pnas_1821000116
crossref_primary_10_1002_dvdy_22138
crossref_primary_10_1371_journal_pone_0076489
crossref_primary_10_1371_journal_pone_0114888
crossref_primary_10_1242_dev_024620
crossref_primary_10_1016_j_tcb_2015_07_004
crossref_primary_10_1038_s41598_018_21822_y
crossref_primary_10_1371_journal_pone_0175322
crossref_primary_10_1523_ENEURO_0044_14_2015
crossref_primary_10_1002_cne_21730
crossref_primary_10_1007_s10571_009_9473_4
crossref_primary_10_1016_j_exer_2013_11_003
crossref_primary_10_1016_j_neuron_2014_08_040
crossref_primary_10_1016_j_neuron_2009_12_009
crossref_primary_10_1016_j_neuron_2019_08_002
crossref_primary_10_1002_cne_23210
crossref_primary_10_1146_annurev_vision_032621_075200
crossref_primary_10_3390_ijms22168357
crossref_primary_10_1371_journal_pone_0012525
crossref_primary_10_1002_wsbm_22
crossref_primary_10_1523_JNEUROSCI_4713_10_2011
crossref_primary_10_1016_j_neuroscience_2012_08_066
crossref_primary_10_1523_JNEUROSCI_2187_10_2010
crossref_primary_10_1016_j_preteyeres_2012_10_003
crossref_primary_10_1371_journal_pone_0001588
crossref_primary_10_1016_j_stemcr_2018_02_010
crossref_primary_10_4161_15384101_2015_941757
crossref_primary_10_1002_dneu_22257
crossref_primary_10_1002_cne_23702
crossref_primary_10_1016_j_gep_2013_07_009
crossref_primary_10_1016_j_ydbio_2020_09_003
crossref_primary_10_1073_pnas_1203138109
crossref_primary_10_1016_j_visres_2010_07_010
crossref_primary_10_1002_cne_21639
crossref_primary_10_1039_b908276j
crossref_primary_10_1016_j_conb_2016_11_001
crossref_primary_10_1186_s13064_018_0121_x
crossref_primary_10_1242_dmm_025262
crossref_primary_10_1002_stem_2755
crossref_primary_10_1016_j_neuron_2017_04_022
crossref_primary_10_1002_dvdy_24006
crossref_primary_10_1038_nrn3767
crossref_primary_10_1371_journal_pone_0150878
crossref_primary_10_1002_cne_24241
crossref_primary_10_1089_ten_tea_2013_0720
crossref_primary_10_1016_j_stem_2015_05_015
crossref_primary_10_1007_s11302_019_09667_0
crossref_primary_10_1038_nn_4366
crossref_primary_10_1371_journal_pone_0110194
crossref_primary_10_7554_eLife_48216
crossref_primary_10_1073_pnas_0903264106
crossref_primary_10_1523_JNEUROSCI_2555_10_2011
crossref_primary_10_1016_j_cell_2012_11_049
crossref_primary_10_1038_nn_3032
crossref_primary_10_1038_s41467_021_21704_4
crossref_primary_10_1016_j_tice_2015_04_004
crossref_primary_10_1016_j_cub_2022_08_013
crossref_primary_10_1080_21541248_2016_1189989
crossref_primary_10_1523_ENEURO_0255_21_2021
crossref_primary_10_1016_j_cell_2016_07_054
crossref_primary_10_1007_s12177_008_9005_3
crossref_primary_10_1038_nprot_2012_158
crossref_primary_10_1242_dev_090696
crossref_primary_10_1002_wsbm_59
crossref_primary_10_1523_JNEUROSCI_3714_07_2008
crossref_primary_10_1016_j_ydbio_2012_03_027
crossref_primary_10_1093_gigascience_giab061
crossref_primary_10_1186_1752_0509_7_4
crossref_primary_10_1523_JNEUROSCI_3675_14_2015
crossref_primary_10_1016_j_cell_2010_03_039
crossref_primary_10_7554_eLife_15675
crossref_primary_10_1016_j_neures_2007_12_011
crossref_primary_10_1038_nn_2370
crossref_primary_10_1101_gad_1847110
crossref_primary_10_1016_j_preteyeres_2009_05_002
crossref_primary_10_1016_j_ydbio_2021_06_005
crossref_primary_10_1016_j_devcel_2013_06_005
crossref_primary_10_1002_wsbm_139
crossref_primary_10_1016_j_ccr_2011_07_005
crossref_primary_10_1016_j_exer_2016_11_013
crossref_primary_10_1242_dev_175729
crossref_primary_10_1371_journal_pone_0057281
crossref_primary_10_1523_ENEURO_0169_16_2016
crossref_primary_10_1002_dvdy_23762
crossref_primary_10_1371_journal_pone_0127475
crossref_primary_10_1523_JNEUROSCI_0102_20_2020
crossref_primary_10_1002_cne_24073
crossref_primary_10_1016_j_preteyeres_2015_01_005
crossref_primary_10_1371_journal_pone_0242426
Cites_doi 10.1016/S0092-8674(01)00574-8
10.1016/0076-6879(93)25039-5
10.1016/S0896-6273(00)80216-0
10.1167/iovs.02-1080
10.1073/pnas.0307014101
10.1523/JNEUROSCI.15-06-04370.1995
10.1126/science.1672047
10.1523/JNEUROSCI.2755-05.2006
10.1242/dev.126.1.23
10.1074/jbc.M007967200
10.1002/ar.1092120215
10.1186/gb-2002-3-8-reviews1022
10.1016/S0959-4388(00)00230-0
10.1002/cne.20535
10.1242/dev.01010
10.1073/pnas.95.25.14863
10.1023/B:NERE.0000023593.77052.f7
10.1038/nbt729
10.1186/gb-2006-7-3-r18
10.1073/pnas.93.2.589
10.1073/pnas.93.9.3920
10.1242/dev.02075
10.1371/journal.pbio.0020247
10.1073/pnas.051014098
10.1523/JNEUROSCI.15-07-04762.1995
10.1016/S0896-6273(00)80778-3
10.1007/BF01186541
10.1016/0166-2236(94)90030-2
10.1242/dev.127.5.969
10.1073/pnas.2235688100
10.1006/dbio.1998.8868
10.1016/S0014-5793(97)00517-6
10.1016/S0896-6273(00)80478-X
10.1242/dev.127.16.3581
10.1101/gad.13.2.225
10.1002/cne.20631
10.1016/j.ydbio.2005.01.028
10.1038/labinvest.3700005
10.1016/0092-8674(95)90161-2
10.1002/cne.902290307
10.1523/JNEUROSCI.22-09-03831.2002
10.1016/S0092-8674(03)00268-X
10.1002/cne.20134
10.1016/0896-6273(93)90079-7
10.1098/rspb.1988.0072
10.1093/hmg/ddi084
10.1073/pnas.87.5.1663
10.1002/(SICI)1097-0177(200003)217:3<320::AID-DVDY10>3.0.CO;2-F
10.1073/pnas.91.23.10800
10.1002/(SICI)1096-9861(19991018)413:2<305::AID-CNE10>3.0.CO;2-E
10.1016/S0092-8674(00)80439-0
10.1016/S0896-6273(03)00229-0
10.1242/dev.01018
10.1016/0896-6273(92)90025-9
ContentType Journal Article
Copyright Copyright © 2007 Wiley‐Liss, Inc.
(c) 2007 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2007 Wiley‐Liss, Inc.
– notice: (c) 2007 Wiley-Liss, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1002/cne.21368
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 1096-9861
EndPage 1065
ExternalDocumentID 10_1002_cne_21368
17444492
CNE21368
ark_67375_WNG_7GJQB9NC_C
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: Ruth L. Kirchenstein individual NRSA fellowship
  funderid: F32 EY014495
– fundername: National Eye Institute
  funderid: EY08064
– fundername: Schepens Eye Research Institute/NEI
  funderid: T32 EY007145
– fundername: NEI NIH HHS
  grantid: EY08064
– fundername: NEI NIH HHS
  grantid: T32 EY007145
– fundername: NEI NIH HHS
  grantid: F32 EY014495
GroupedDBID ---
-DZ
-~X
.3N
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5RE
5VS
66C
702
79B
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABIVO
ABJNI
ABOCM
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACPRK
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AELAQ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
L7B
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OVD
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWD
RWI
RX1
RYL
SUPJJ
TEORI
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WJL
WNSPC
WOHZO
WQJ
WRC
WUP
WXSBR
WYISQ
XG1
XJT
XV2
YQT
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c4628-dc1dd59212caeedd4e9fc3ff68f3b3f5346f28b33d8facafdc1485201054ab033
IEDL.DBID 33P
ISSN 0021-9967
IngestDate Fri Aug 16 01:48:17 EDT 2024
Fri Nov 22 00:39:35 EST 2024
Sat Sep 28 07:45:25 EDT 2024
Sat Aug 24 00:57:39 EDT 2024
Wed Oct 30 09:52:34 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License (c) 2007 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4628-dc1dd59212caeedd4e9fc3ff68f3b3f5346f28b33d8facafdc1485201054ab033
Notes Ruth L. Kirchenstein individual NRSA fellowship - No. F32 EY014495
ArticleID:CNE21368
ark:/67375/WNG-7GJQB9NC-C
Schepens Eye Research Institute/NEI - No. T32 EY007145
National Eye Institute - No. EY08064
istex:A0A88FD054C93DBFAA185ED0207700D25554364B
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cne.21368
PMID 17444492
PQID 70426707
PQPubID 23479
PageCount 19
ParticipantIDs proquest_miscellaneous_70426707
crossref_primary_10_1002_cne_21368
pubmed_primary_17444492
wiley_primary_10_1002_cne_21368_CNE21368
istex_primary_ark_67375_WNG_7GJQB9NC_C
PublicationCentury 2000
PublicationDate 20 June 2007
PublicationDateYYYYMMDD 2007-06-20
PublicationDate_xml – month: 06
  year: 2007
  text: 20 June 2007
  day: 20
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Journal of comparative neurology (1911)
PublicationTitleAlternate J. Comp. Neurol
PublicationYear 2007
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Chowers I, Gunatilaka TL, Farkas RH, Qian J, Hackam AS, Duh E, Kageyama M, Wang C, Vora A, Campochiaro PA, Zack DJ. 2003. Identification of novel genes preferentially expressed in the retina using a custom human retina cDNA microarray. Invest Ophthalmol Vis Sci 44: 3732-3741.
DeGregorio-Rocasolano N, Gasull T, Trullas R. 2001. Overexpression of neuronal pentraxin 1 is involved in neuronal death evoked by low K(+) in cerebellar granule cells. J Biol Chem 276: 796-803.
Furukawa T, Morrow EM, Cepko CL. 1997. Crx, a novel otx-like homeobox gene, shows photoreceptor-specific expression and regulates photoreceptor differentiation. Cell 91: 531-541.
Miyashiro K, Dichter M, Eberwine J. 1994. On the nature and differential distribution of mRNAs in hippocampal neurites: implications for neuronal functioning. Proc Natl Acad Sci U S A 91: 10800-10804.
Blackshaw S, Harpavat S, Trimarchi J, Cai L, Huang H, Kuo WP, Weber G, Lee K, Fraioli RE, Cho SH, Yung R, Asch E, Ohno-Machado L, Wong WH, Cepko CL. 2004. Genomic analysis of mouse retinal development. PLoS Biol 2: E247.
Rockhill RL, Daly FJ, MacNeil MA, Brown SP, Masland RH. 2002. The diversity of ganglion cells in a mammalian retina. J Neurosci 22: 3831-3843.
MacNeil MA, Heussy JK, Dacheux RF, Raviola E, Masland RH. 1999. The shapes and numbers of amacrine cells: matching of photofilled with Golgi-stained cells in the rabbit retina and comparison with other mammalian species. J Comp Neurol 413: 305-326.
Nakakura EK, Watkins DN, Schuebel KE, Sriuranpong V, Borges MW, Nelkin BD, Ball DW. 2001. Mammalian Scratch: a neural-specific Snail family transcriptional repressor. Proc Natl Acad Sci U S A 98: 4010-4015.
Iscove NN, Barbara M, Gu M, Gibson M, Modi C, Winegarden N. 2002. Representation is faithfully preserved in global cDNA amplified exponentially from sub-picogram quantities of mRNA. Nat Biotechnol 20: 940-943.
Morrow EM, Furukawa T, Lee JE, Cepko CL. 1999. NeuroD regulates multiple functions in the developing neural retina in rodent. Development 126: 23-36.
Liu W, Wang JH, Xiang M. 2000. Specific expression of the LIM/homeodomain protein Lim-1 in horizontal cells during retinogenesis. Dev Dyn 217: 320-325.
Matsuda T, Cepko CL. 2004. Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc Natl Acad Sci U S A 101: 16-22.
Vaney DI, Peichl L, Boycott BB. 1988. Neurofibrillar long-range amacrine cells in mammalian retinae. Proc R Soc Lond B Biol Sci 235: 203-219.
Young RW. 1984. Cell death during differentiation of the retina in the mouse. J Comp Neurol 229: 362-373.
Dulac C, Axel R. 1995. A novel family of genes encoding putative pheromone receptors in mammals. Cell 83: 195-206.
Ginsberg SD, Elarova I, Ruben M, Tan F, Counts SE, Eberwine JH, Trojanowski JQ, Hemby SE, Mufson EJ, Che S. 2004. Single-cell gene expression analysis: implications for neurodegenerative and neuropsychiatric disorders. Neurochem Res 29: 1053-1064.
Zhang F, Lu C, Severin C, Sretavan DW. 2000. GAP-43 mediates retinal axon interaction with lateral diencephalon cells during optic tract formation. Development 127: 969-980.
Eisen MB, Spellman PT, Brown PO, Botstein D. 1998. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95: 14863-14868.
Burden-Gulley SM, Payne HR, Lemmon V. 1995. Growth cones are actively influenced by substrate-bound adhesion molecules. J Neurosci 15: 4370-4381.
Lohrke S, Brandstatter JH, Boycott BB, Peichl L. 1995. Expression of neurofilament proteins by horizontal cells in the rabbit retina varies with retinal location. J Neurocytol 24: 283-300.
Caceres A, Mautino J, Kosik KS. 1992. Suppression of MAP2 in cultured cerebellar macroneurons inhibits minor neurite formation. Neuron 9: 607-618.
Ginsberg SD, Che S. 2005. Expression profile analysis within the human hippocampus: comparison of CA1 and CA3 pyramidal neurons. J Comp Neurol 487: 107-118.
Mu X, Beremand PD, Zhao S, Pershad R, Sun H, Scarpa A, Liang S, Thomas TL, Klein WH. 2004. Discrete gene sets depend on POU domain transcription factor Brn3b/Brn-3.2/POU4f2 for their expression in the mouse embryonic retina. Development 131: 1197-1210.
Riehl R, Johnson K, Bradley R, Grunwald GB, Cornel E, Lilienbaum A, Holt CE. 1996. Cadherin function is required for axon outgrowth in retinal ganglion cells in vivo. Neuron 17: 837-848.
Gleeson JG, Lin PT, Flanagan LA, Walsh CA. 1999. Doublecortin is a microtubule-associated protein and is expressed widely by migrating neurons. Neuron 23: 257-271.
Blackshaw S, Fraioli RE, Furukawa T, Cepko CL. 2001. Comprehensive analysis of photoreceptor gene expression and the identification of candidate retinal disease genes. Cell 107: 579-589.
Livesey FJ, Young TL, Cepko CL. 2004. An analysis of the gene expression program of mammalian neural progenitor cells. Proc Natl Acad Sci U S A 101: 1374-1379.
Young RW. 1985. Cell differentiation in the retina of the mouse. Anat Rec 212: 199-205.
Xiang M, Zhou L, Peng YW, Eddy RL, Shows TB, Nathans J. 1993. Brn-3b: a POU domain gene expressed in a subset of retinal ganglion cells. Neuron 11: 689-701.
MacNeil MA, Masland RH. 1998. Extreme diversity among amacrine cells: implications for function. Neuron 20: 971-982.
Rapaport DH, Wong LL, Wood ED, Yasumura D, LaVail MM. 2004. Timing and topography of cell genesis in the rat retina. J Comp Neurol 474: 304-324.
Dowling JE. 1987. The retina-an approachable part of the brain. Cambridge, MA: Harvard University Press.
Mu X, Fu X, Sun H, Beremand PD, Thomas TL, Klein WH. 2005. A gene network downstream of transcription factor Math5 regulates retinal progenitor cell competence and ganglion cell fate. Dev Biol 280: 467-481.
Masland RH. 2001. Neuronal diversity in the retina. Curr Opin Neurobiol 11: 431-436.
Matus A. 1994. Stiff microtubules and neuronal morphology. Trends Neurosci 17: 19-22.
Godinho L, Mumm JS, Williams PR, Schroeter EH, Koerber A, Park SW, Leach SD, Wong RO. 2005. Targeting of amacrine cell neurites to appropriate synaptic laminae in the developing zebrafish retina. Development 132: 5069-5079.
Tietjen I, Rihel JM, Cao Y, Koentges G, Zakhary L, Dulac C. 2003. Single-cell transcriptional analysis of neuronal progenitors. Neuron 38: 161-175.
Kong JH, Fish DR, Rockhill RL, Masland RH. 2005. Diversity of ganglion cells in the mouse retina: unsupervised morphological classification and its limits. J Comp Neurol 489: 293-310.
Xiang M. 1998. Requirement for Brn-3b in early differentiation of postmitotic retinal ganglion cell precursors. Dev Biol 197: 155-169.
Xiang M, Zhou L, Macke JP, Yoshioka T, Hendry SH, Eddy RL, Shows TB, Nathans J. 1995. The Brn-3 family of POU-domain factors: primary structure, binding specificity, and expression in subsets of retinal ganglion cells and somatosensory neurons. J Neurosci 15: 4762-4785.
Van Gelder RN, von Zastrow ME, Yool A, Dement WC, Barchas JD, Eberwine JH. 1990. Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc Natl Acad Sci U S A 87: 1663-1667.
Murtaugh LC, Chyung JH, Lassar AB. 1999. Sonic hedgehog promotes somitic chondrogenesis by altering the cellular response to BMP signaling. Genes Dev 13: 225-237.
Edqvist PH, Hallbook F. 2004. Newborn horizontal cells migrate bi-directionally across the neuroepithelium during retinal development. Development 131: 1343-1351.
Swaroop A, Zack DJ. 2002. Transcriptome analysis of the retina. Genome Biol 3: REVIEWS1022.
Alfano G, Vitiello C, Caccioppoli C, Caramico T, Carola A, Szego MJ, McInnes RR, Auricchio A, Banfi S. 2005. Natural antisense transcripts associated with genes involved in eye development. Hum Mol Genet 14: 913-923.
Che S, Ginsberg SD. 2004. Amplification of RNA transcripts using terminal continuation. Lab Invest 84: 131-137.
Brent AE, Schweitzer R, Tabin CJ. 2003. A somitic compartment of tendon progenitors. Cell 113: 235-248.
Dizhoor AM, Ray S, Kumar S, Niemi G, Spencer M, Brolley D, Walsh KA, Philipov PP, Hurley JB, Stryer L. 1991. Recoverin: a calcium sensitive activator of retinal rod guanylate cyclase. Science 251: 915-918.
Nguyen M, Arnheiter H. 2000. Signaling and transcriptional regulation in early mammalian eye development: a link between FGF and MITF. Development 127: 3581-3591.
Azarian SM, Travis GH. 1997. The photoreceptor rim protein is an ABC transporter encoded by the gene for recessive Stargardt's disease (ABCR). FEBS Lett 409: 247-252.
Stead JD, Neal C, Meng F, Wang Y, Evans S, Vazquez DM, Watson SJ, Akil H. 2006. Transcriptional profiling of the developing rat brain reveals that the most dramatic regional differentiation in gene expression occurs postpartum. J Neurosci 26: 345-353.
Cepko CL, Austin CP, Yang X, Alexiades M, Ezzeddine D. 1996. Cell fate determination in the vertebrate retina. Proc Natl Acad Sci U S A 93: 589-595.
Subkhankulova T, Livesey FJ. 2006. Comparative evaluation of linear and exponential amplification techniques for expression profiling at the single cell level. Genome Biol 7: R18.
Brady G, Iscove NN. 1993. Construction of cDNA libraries from single cells. Methods Enzymol 225: 611-623.
Gan L, Xiang M, Zhou L, Wagner DS, Klein WH, Nathans J. 1996. POU domain factor Brn-3b is required for the development of a large set of retinal ganglion cells. Proc Natl Acad Sci U S A 93: 3920-3925.
2004; 29
2005; 132
2000; 217
2004; 2
2001; 107
2003; 113
1999; 126
1998; 197
1997; 91
1992; 9
2004; 131
1990; 87
2000; 127
1995; 24
2006; 26
1987
1999; 13
1985; 212
2001; 11
1998; 95
1999; 413
2003; 44
2001; 98
2004; 101
1991; 251
2004; 84
1996; 17
1995; 15
2006; 7
1996; 93
1999; 23
2002; 3
2003; 38
1984; 229
1991
1993; 225
1998; 20
2001; 276
2004; 474
2005; 280
1995; 83
2002; 20
2005; 487
1993; 11
2005; 489
2002; 22
1988; 235
1994; 17
1994; 91
1997; 409
2005; 14
e_1_2_6_51_1
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
Swaroop A (e_1_2_6_48_1) 2002; 3
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_54_1
Burden‐Gulley SM (e_1_2_6_9_1) 1995; 15
e_1_2_6_10_1
e_1_2_6_31_1
Altshuler DM (e_1_2_6_3_1) 1991
e_1_2_6_50_1
Zhang F (e_1_2_6_57_1) 2000; 127
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_56_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
Dowling JE (e_1_2_6_16_1) 1987
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
Che S (e_1_2_6_12_1) 2004; 84
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 229
  start-page: 362
  year: 1984
  end-page: 373
  article-title: Cell death during differentiation of the retina in the mouse
  publication-title: J Comp Neurol
– volume: 93
  start-page: 3920
  year: 1996
  end-page: 3925
  article-title: POU domain factor Brn‐3b is required for the development of a large set of retinal ganglion cells
  publication-title: Proc Natl Acad Sci U S A
– volume: 409
  start-page: 247
  year: 1997
  end-page: 252
  article-title: The photoreceptor rim protein is an ABC transporter encoded by the gene for recessive Stargardt's disease (ABCR)
  publication-title: FEBS Lett
– volume: 83
  start-page: 195
  year: 1995
  end-page: 206
  article-title: A novel family of genes encoding putative pheromone receptors in mammals
  publication-title: Cell
– volume: 84
  start-page: 131
  year: 2004
  end-page: 137
  article-title: Amplification of RNA transcripts using terminal continuation
  publication-title: Lab Invest
– volume: 17
  start-page: 19
  year: 1994
  end-page: 22
  article-title: Stiff microtubules and neuronal morphology
  publication-title: Trends Neurosci
– volume: 235
  start-page: 203
  year: 1988
  end-page: 219
  article-title: Neurofibrillar long‐range amacrine cells in mammalian retinae
  publication-title: Proc R Soc Lond B Biol Sci
– volume: 14
  start-page: 913
  year: 2005
  end-page: 923
  article-title: Natural antisense transcripts associated with genes involved in eye development
  publication-title: Hum Mol Genet
– volume: 11
  start-page: 689
  year: 1993
  end-page: 701
  article-title: Brn‐3b: a POU domain gene expressed in a subset of retinal ganglion cells
  publication-title: Neuron
– volume: 13
  start-page: 225
  year: 1999
  end-page: 237
  article-title: Sonic hedgehog promotes somitic chondrogenesis by altering the cellular response to BMP signaling
  publication-title: Genes Dev
– volume: 276
  start-page: 796
  year: 2001
  end-page: 803
  article-title: Overexpression of neuronal pentraxin 1 is involved in neuronal death evoked by low K(+) in cerebellar granule cells
  publication-title: J Biol Chem
– volume: 15
  start-page: 4762
  year: 1995
  end-page: 4785
  article-title: The Brn‐3 family of POU‐domain factors: primary structure, binding specificity, and expression in subsets of retinal ganglion cells and somatosensory neurons
  publication-title: J Neurosci
– volume: 93
  start-page: 589
  year: 1996
  end-page: 595
  article-title: Cell fate determination in the vertebrate retina
  publication-title: Proc Natl Acad Sci U S A
– volume: 87
  start-page: 1663
  year: 1990
  end-page: 1667
  article-title: Amplified RNA synthesized from limited quantities of heterogeneous cDNA
  publication-title: Proc Natl Acad Sci U S A
– volume: 2
  start-page: E247
  year: 2004
  article-title: Genomic analysis of mouse retinal development
  publication-title: PLoS Biol
– volume: 113
  start-page: 235
  year: 2003
  end-page: 248
  article-title: A somitic compartment of tendon progenitors
  publication-title: Cell
– volume: 217
  start-page: 320
  year: 2000
  end-page: 325
  article-title: Specific expression of the LIM/homeodomain protein Lim‐1 in horizontal cells during retinogenesis
  publication-title: Dev Dyn
– volume: 29
  start-page: 1053
  year: 2004
  end-page: 1064
  article-title: Single‐cell gene expression analysis: implications for neurodegenerative and neuropsychiatric disorders
  publication-title: Neurochem Res
– volume: 24
  start-page: 283
  year: 1995
  end-page: 300
  article-title: Expression of neurofilament proteins by horizontal cells in the rabbit retina varies with retinal location
  publication-title: J Neurocytol
– volume: 9
  start-page: 607
  year: 1992
  end-page: 618
  article-title: Suppression of MAP2 in cultured cerebellar macroneurons inhibits minor neurite formation
  publication-title: Neuron
– volume: 474
  start-page: 304
  year: 2004
  end-page: 324
  article-title: Timing and topography of cell genesis in the rat retina
  publication-title: J Comp Neurol
– volume: 44
  start-page: 3732
  year: 2003
  end-page: 3741
  article-title: Identification of novel genes preferentially expressed in the retina using a custom human retina cDNA microarray
  publication-title: Invest Ophthalmol Vis Sci
– volume: 126
  start-page: 23
  year: 1999
  end-page: 36
  article-title: NeuroD regulates multiple functions in the developing neural retina in rodent
  publication-title: Development
– volume: 251
  start-page: 915
  year: 1991
  end-page: 918
  article-title: Recoverin: a calcium sensitive activator of retinal rod guanylate cyclase
  publication-title: Science
– volume: 38
  start-page: 161
  year: 2003
  end-page: 175
  article-title: Single‐cell transcriptional analysis of neuronal progenitors
  publication-title: Neuron
– volume: 487
  start-page: 107
  year: 2005
  end-page: 118
  article-title: Expression profile analysis within the human hippocampus: comparison of CA1 and CA3 pyramidal neurons
  publication-title: J Comp Neurol
– volume: 23
  start-page: 257
  year: 1999
  end-page: 271
  article-title: Doublecortin is a microtubule‐associated protein and is expressed widely by migrating neurons
  publication-title: Neuron
– volume: 225
  start-page: 611
  year: 1993
  end-page: 623
  article-title: Construction of cDNA libraries from single cells
  publication-title: Methods Enzymol
– volume: 107
  start-page: 579
  year: 2001
  end-page: 589
  article-title: Comprehensive analysis of photoreceptor gene expression and the identification of candidate retinal disease genes
  publication-title: Cell
– volume: 197
  start-page: 155
  year: 1998
  end-page: 169
  article-title: Requirement for Brn‐3b in early differentiation of postmitotic retinal ganglion cell precursors
  publication-title: Dev Biol
– volume: 101
  start-page: 1374
  year: 2004
  end-page: 1379
  article-title: An analysis of the gene expression program of mammalian neural progenitor cells
  publication-title: Proc Natl Acad Sci U S A
– volume: 15
  start-page: 4370
  year: 1995
  end-page: 4381
  article-title: Growth cones are actively influenced by substrate‐bound adhesion molecules
  publication-title: J Neurosci
– volume: 11
  start-page: 431
  year: 2001
  end-page: 436
  article-title: Neuronal diversity in the retina
  publication-title: Curr Opin Neurobiol
– volume: 132
  start-page: 5069
  year: 2005
  end-page: 5079
  article-title: Targeting of amacrine cell neurites to appropriate synaptic laminae in the developing zebrafish retina
  publication-title: Development
– start-page: 37
  year: 1991
  end-page: 58
– year: 1987
– volume: 95
  start-page: 14863
  year: 1998
  end-page: 14868
  article-title: Cluster analysis and display of genome‐wide expression patterns
  publication-title: Proc Natl Acad Sci U S A
– volume: 131
  start-page: 1343
  year: 2004
  end-page: 1351
  article-title: Newborn horizontal cells migrate bi‐directionally across the neuroepithelium during retinal development
  publication-title: Development
– volume: 127
  start-page: 3581
  year: 2000
  end-page: 3591
  article-title: Signaling and transcriptional regulation in early mammalian eye development: a link between FGF and MITF
  publication-title: Development
– volume: 489
  start-page: 293
  year: 2005
  end-page: 310
  article-title: Diversity of ganglion cells in the mouse retina: unsupervised morphological classification and its limits
  publication-title: J Comp Neurol
– volume: 91
  start-page: 10800
  year: 1994
  end-page: 10804
  article-title: On the nature and differential distribution of mRNAs in hippocampal neurites: implications for neuronal functioning
  publication-title: Proc Natl Acad Sci U S A
– volume: 280
  start-page: 467
  year: 2005
  end-page: 481
  article-title: A gene network downstream of transcription factor Math5 regulates retinal progenitor cell competence and ganglion cell fate
  publication-title: Dev Biol
– volume: 17
  start-page: 837
  year: 1996
  end-page: 848
  article-title: Cadherin function is required for axon outgrowth in retinal ganglion cells in vivo
  publication-title: Neuron
– volume: 91
  start-page: 531
  year: 1997
  end-page: 541
  article-title: Crx, a novel otx‐like homeobox gene, shows photoreceptor‐specific expression and regulates photoreceptor differentiation
  publication-title: Cell
– volume: 20
  start-page: 940
  year: 2002
  end-page: 943
  article-title: Representation is faithfully preserved in global cDNA amplified exponentially from sub‐picogram quantities of mRNA
  publication-title: Nat Biotechnol
– volume: 20
  start-page: 971
  year: 1998
  end-page: 982
  article-title: Extreme diversity among amacrine cells: implications for function
  publication-title: Neuron
– volume: 413
  start-page: 305
  year: 1999
  end-page: 326
  article-title: The shapes and numbers of amacrine cells: matching of photofilled with Golgi‐stained cells in the rabbit retina and comparison with other mammalian species
  publication-title: J Comp Neurol
– volume: 7
  start-page: R18
  year: 2006
  article-title: Comparative evaluation of linear and exponential amplification techniques for expression profiling at the single cell level
  publication-title: Genome Biol
– volume: 98
  start-page: 4010
  year: 2001
  end-page: 4015
  article-title: Mammalian Scratch: a neural‐specific Snail family transcriptional repressor
  publication-title: Proc Natl Acad Sci U S A
– volume: 26
  start-page: 345
  year: 2006
  end-page: 353
  article-title: Transcriptional profiling of the developing rat brain reveals that the most dramatic regional differentiation in gene expression occurs postpartum
  publication-title: J Neurosci
– volume: 3
  start-page: REVIEWS1022
  year: 2002
  article-title: Transcriptome analysis of the retina
  publication-title: Genome Biol
– volume: 22
  start-page: 3831
  year: 2002
  end-page: 3843
  article-title: The diversity of ganglion cells in a mammalian retina
  publication-title: J Neurosci
– volume: 101
  start-page: 16
  year: 2004
  end-page: 22
  article-title: Electroporation and RNA interference in the rodent retina in vivo and in vitro
  publication-title: Proc Natl Acad Sci U S A
– volume: 212
  start-page: 199
  year: 1985
  end-page: 205
  article-title: Cell differentiation in the retina of the mouse
  publication-title: Anat Rec
– volume: 131
  start-page: 1197
  year: 2004
  end-page: 1210
  article-title: Discrete gene sets depend on POU domain transcription factor Brn3b/Brn‐3.2/POU4f2 for their expression in the mouse embryonic retina
  publication-title: Development
– volume: 127
  start-page: 969
  year: 2000
  end-page: 980
  article-title: GAP‐43 mediates retinal axon interaction with lateral diencephalon cells during optic tract formation
  publication-title: Development
– ident: e_1_2_6_5_1
  doi: 10.1016/S0092-8674(01)00574-8
– ident: e_1_2_6_7_1
  doi: 10.1016/0076-6879(93)25039-5
– ident: e_1_2_6_44_1
  doi: 10.1016/S0896-6273(00)80216-0
– ident: e_1_2_6_13_1
  doi: 10.1167/iovs.02-1080
– ident: e_1_2_6_29_1
  doi: 10.1073/pnas.0307014101
– volume: 15
  start-page: 4370
  year: 1995
  ident: e_1_2_6_9_1
  article-title: Growth cones are actively influenced by substrate‐bound adhesion molecules
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.15-06-04370.1995
  contributor:
    fullname: Burden‐Gulley SM
– ident: e_1_2_6_15_1
  doi: 10.1126/science.1672047
– ident: e_1_2_6_46_1
  doi: 10.1523/JNEUROSCI.2755-05.2006
– ident: e_1_2_6_37_1
  doi: 10.1242/dev.126.1.23
– ident: e_1_2_6_14_1
  doi: 10.1074/jbc.M007967200
– ident: e_1_2_6_56_1
  doi: 10.1002/ar.1092120215
– volume: 3
  start-page: REVIEWS1022
  year: 2002
  ident: e_1_2_6_48_1
  article-title: Transcriptome analysis of the retina
  publication-title: Genome Biol
  doi: 10.1186/gb-2002-3-8-reviews1022
  contributor:
    fullname: Swaroop A
– ident: e_1_2_6_33_1
  doi: 10.1016/S0959-4388(00)00230-0
– ident: e_1_2_6_22_1
  doi: 10.1002/cne.20535
– ident: e_1_2_6_38_1
  doi: 10.1242/dev.01010
– ident: e_1_2_6_19_1
  doi: 10.1073/pnas.95.25.14863
– start-page: 37
  volume-title: Develoment of the visual system
  year: 1991
  ident: e_1_2_6_3_1
  contributor:
    fullname: Altshuler DM
– ident: e_1_2_6_23_1
  doi: 10.1023/B:NERE.0000023593.77052.f7
– ident: e_1_2_6_26_1
  doi: 10.1038/nbt729
– ident: e_1_2_6_47_1
  doi: 10.1186/gb-2006-7-3-r18
– ident: e_1_2_6_11_1
  doi: 10.1073/pnas.93.2.589
– ident: e_1_2_6_21_1
  doi: 10.1073/pnas.93.9.3920
– ident: e_1_2_6_25_1
  doi: 10.1242/dev.02075
– ident: e_1_2_6_6_1
  doi: 10.1371/journal.pbio.0020247
– ident: e_1_2_6_41_1
  doi: 10.1073/pnas.051014098
– ident: e_1_2_6_54_1
  doi: 10.1523/JNEUROSCI.15-07-04762.1995
– ident: e_1_2_6_24_1
  doi: 10.1016/S0896-6273(00)80778-3
– ident: e_1_2_6_30_1
  doi: 10.1007/BF01186541
– ident: e_1_2_6_35_1
  doi: 10.1016/0166-2236(94)90030-2
– volume: 127
  start-page: 969
  year: 2000
  ident: e_1_2_6_57_1
  article-title: GAP‐43 mediates retinal axon interaction with lateral diencephalon cells during optic tract formation
  publication-title: Development
  doi: 10.1242/dev.127.5.969
  contributor:
    fullname: Zhang F
– ident: e_1_2_6_34_1
  doi: 10.1073/pnas.2235688100
– ident: e_1_2_6_52_1
  doi: 10.1006/dbio.1998.8868
– ident: e_1_2_6_4_1
  doi: 10.1016/S0014-5793(97)00517-6
– ident: e_1_2_6_31_1
  doi: 10.1016/S0896-6273(00)80478-X
– ident: e_1_2_6_42_1
  doi: 10.1242/dev.127.16.3581
– ident: e_1_2_6_40_1
  doi: 10.1101/gad.13.2.225
– ident: e_1_2_6_27_1
  doi: 10.1002/cne.20631
– ident: e_1_2_6_39_1
  doi: 10.1016/j.ydbio.2005.01.028
– volume: 84
  start-page: 131
  year: 2004
  ident: e_1_2_6_12_1
  article-title: Amplification of RNA transcripts using terminal continuation
  publication-title: Lab Invest
  doi: 10.1038/labinvest.3700005
  contributor:
    fullname: Che S
– ident: e_1_2_6_17_1
  doi: 10.1016/0092-8674(95)90161-2
– ident: e_1_2_6_55_1
  doi: 10.1002/cne.902290307
– ident: e_1_2_6_45_1
  doi: 10.1523/JNEUROSCI.22-09-03831.2002
– ident: e_1_2_6_8_1
  doi: 10.1016/S0092-8674(03)00268-X
– ident: e_1_2_6_43_1
  doi: 10.1002/cne.20134
– ident: e_1_2_6_53_1
  doi: 10.1016/0896-6273(93)90079-7
– volume-title: The retina—an approachable part of the brain
  year: 1987
  ident: e_1_2_6_16_1
  contributor:
    fullname: Dowling JE
– ident: e_1_2_6_51_1
  doi: 10.1098/rspb.1988.0072
– ident: e_1_2_6_2_1
  doi: 10.1093/hmg/ddi084
– ident: e_1_2_6_50_1
  doi: 10.1073/pnas.87.5.1663
– ident: e_1_2_6_28_1
  doi: 10.1002/(SICI)1097-0177(200003)217:3<320::AID-DVDY10>3.0.CO;2-F
– ident: e_1_2_6_36_1
  doi: 10.1073/pnas.91.23.10800
– ident: e_1_2_6_32_1
  doi: 10.1002/(SICI)1096-9861(19991018)413:2<305::AID-CNE10>3.0.CO;2-E
– ident: e_1_2_6_20_1
  doi: 10.1016/S0092-8674(00)80439-0
– ident: e_1_2_6_49_1
  doi: 10.1016/S0896-6273(03)00229-0
– ident: e_1_2_6_18_1
  doi: 10.1242/dev.01018
– ident: e_1_2_6_10_1
  doi: 10.1016/0896-6273(92)90025-9
SSID ssj0009938
Score 2.3243623
Snippet During development of the central nervous system (CNS), cycling uncommitted progenitor cells give rise to a variety of distinct neuronal and glial cell types....
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1047
SubjectTerms amacrine
Amacrine Cells - cytology
Amacrine Cells - metabolism
Animals
Cell Differentiation - genetics
Cells, Cultured
ganglion
Gene Expression Profiling - methods
Gene Expression Regulation, Developmental - genetics
Genetic Markers - genetics
In Situ Hybridization, Fluorescence
Mice
microarray
molecular markers
Nerve Tissue Proteins - biosynthesis
Nerve Tissue Proteins - genetics
Neurofilament Proteins - biosynthesis
Neurofilament Proteins - genetics
retina
Retina - cytology
Retina - embryology
Retina - metabolism
Retinal Ganglion Cells - cytology
Retinal Ganglion Cells - metabolism
Retinal Rod Photoreceptor Cells - cytology
Retinal Rod Photoreceptor Cells - metabolism
single cell
Stem Cells - cytology
Stem Cells - metabolism
Transcription Factor AP-2 - genetics
Transcription, Genetic - genetics
Title Molecular heterogeneity of developing retinal ganglion and amacrine cells revealed through single cell gene expression profiling
URI https://api.istex.fr/ark:/67375/WNG-7GJQB9NC-C/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcne.21368
https://www.ncbi.nlm.nih.gov/pubmed/17444492
https://search.proquest.com/docview/70426707
Volume 502
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEB_8oOCLrbbq1lqDlNKX9faS7CZLn-r1VAo9LFWUvoRsPlpQd8XrgY_9081kb-8QKgju08LOZrOZSWYymfkNwIeM6sIxJ1Np8ZhReJ5q43UqaCZdmXvDI3bn8U8xupBfhwiT87nLhWnxIWYON5wZcb3GCa6rcW8OGmpqt0_7rMBE37BLiOkb7GQOuFuydhXGEISyEB2qUEZ7szcf6KJlHNa7_xmaD-3WqHgOXz6ry69gdWpvki-tgKzBgqvX4cWvJnrTX8O_7115XPIHA2OaIE8uGOak8WSeT0Uw1RGb-a0x67epia4t0dfaYO4gQef_mCAWVNA2lkxL_xD0Qly1Twk2S9zdNOq2Jm2p8EDwBs4Oh6eD43RalCE1mMaaWtO3Ni-DxjM66FfLXekN876QnlXM54wXnsqKMSu9NtoHei5zPHPPua4yxjZgqW5qtwXEFjLIhtZCFp5nVdiM00DcF95UjAcZSmCvY4-6abE3VIuyTFUYShWHMoGPkXEzCn17icFqIlfnoyMljr79OChHAzVIYLfjrApTCH9e166ZjJXAfaTIRAKbLcPnXxM8XCVN4FPk6-PdUIPRMN68fTrpNqx00Yc0ewdLf28nbgcWx3byPsryPQHI984
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71IUQvtLxK-qAWQohLaNZ2YkfiQrfbLtBGIIqKuFiOHyABCep2pR770-txNruqBBISOUXKxHE8Y894PPMNwPOM6sIxJ1Np8ZhReJ5q43UqaCZdmXvDI3bn-JOovsjDEcLkvO5zYTp8iLnDDWdGXK9xgqNDen-BGmoa94oOWCGXYZUXQRAxgYN9WEDulqxbhzEIoSxEjyuU0f35q7e00SoO7NWfTM3blmtUPUfr_9fpDbg3MznJm05G7sOSax7Ana9tdKg_hOvTvkIu-Y6xMW0QKRdsc9J6skipIpjtiM1805j42zZEN5boX9pg-iBB__-EIBxUUDiWzKr_EHRE_OyeEmyWuKtZ4G1DumrhgeARfD4anQ3H6awuQ2owkzW1ZmBtXgalZ3RQsZa70hvmfSE9q5nPGS88lTVjVnpttA_0XOZ47J5zXWeMPYaVpm3cEyC2kEE8tBay8Dyrw36cBuKB8KZmPIhRAs96_qjfHfyG6oCWqQpDqeJQJvAicm5OoS9-YLyayNV5dazE8buPB2U1VMME9nrWqjCL8Od149rpRAncSopMJLDZcXzxNcHDVdIEXkbG_r0baliN4s3Wv5Puwd3x2emJOnlbvd-GtT4YkWY7sHJ5MXW7sDyx06dRsG8AnOf79g
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71IVAvtLxKKFALIcQlbdZ2YkecYLvb8opaAWrFxXL8AAlIqm5X6rE_HY-z2VWlIlVqTpEycRzP2DMez3wD8CqjunDMyVRaPGYUnqfaeJ0KmklX5t7wiN158FVUJ3JvhDA5b_tcmA4fYu5ww5kR12uc4KfW7y5AQ03jduiAFXIZVnkwwxE4n7HDBeJuybplGGMQykL0sEIZ3Z2_ekUZreK4XlxnaV41XKPmGa_fqs8bcG9mcJJ3nYTchyXXPIA7P9roTn8Il1_6-rjkF0bGtEGgXLDMSevJIqGKYK4jNvNTY9pv2xDdWKL_aoPJgwS9_xOCYFBB3Vgyq_1D0A3xp3tKsFniLmZhtw3paoUHgkfwfTz6NjxIZ1UZUoN5rKk1A2vzMqg8o4OCtdyV3jDvC-lZzXzOeOGprBmz0mujfaDnMsdD95zrOmPsMaw0beOeALGFDMKhtZCF51kdduM0EA-ENzXjQYgSeNmzR5124Buqg1mmKgylikOZwOvIuDmFPvuN0WoiV8fVvhL7H4_el9VQDRPY7jmrwhzCn9eNa6cTJXAjKTKRwGbH8MXXBA9XSRN4E_n6_26oYTWKN09vTroNdw_3xurzh-rTFqz1kYg0ewYr52dT9xyWJ3b6Ior1P5j2-pw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+heterogeneity+of+developing+retinal+ganglion+and+amacrine+cells+revealed+through+single+cell+gene+expression+profiling&rft.jtitle=Journal+of+comparative+neurology+%281911%29&rft.au=Trimarchi%2C+Jeffrey+M.&rft.au=Stadler%2C+Michael+B.&rft.au=Roska%2C+Botond&rft.au=Billings%2C+Nathan&rft.date=2007-06-20&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0021-9967&rft.eissn=1096-9861&rft.volume=502&rft.issue=6&rft.spage=1047&rft.epage=1065&rft_id=info:doi/10.1002%2Fcne.21368&rft.externalDBID=10.1002%252Fcne.21368&rft.externalDocID=CNE21368
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9967&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9967&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9967&client=summon