Genetics and Morphology Characterize the Dinoflagellate Symbiodinium voratum, n. sp., (Dinophyceae) as the Sole Representative of Symbiodinium Clade E

Dinoflagellates in the genus Symbiodinium are ubiquitous in shallow marine habitats where they commonly exist in symbiosis with cnidarians. Attempts to culture them often retrieve isolates that may not be symbiotic, but instead exist as free‐living species. In particular, cultures of Symbiodinium cl...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of eukaryotic microbiology Vol. 61; no. 1; pp. 75 - 94
Main Authors: Jeong, Hae Jin, Lee, Sung Yeon, Kang, Nam Seon, Yoo, Yeong Du, Lim, An Suk, Lee, Moo Joon, Kim, Hyung Seop, Yih, Wonho, Yamashita, Hiroshi, LaJeunesse, Todd C.
Format: Journal Article
Language:English
Published: United States Blackwell Publishing Ltd 01-01-2014
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Dinoflagellates in the genus Symbiodinium are ubiquitous in shallow marine habitats where they commonly exist in symbiosis with cnidarians. Attempts to culture them often retrieve isolates that may not be symbiotic, but instead exist as free‐living species. In particular, cultures of Symbiodinium clade E obtained from temperate environments were recently shown to feed phagotrophically on bacteria and microalgae. Genetic, behavioral, and morphological evidence indicate that strains of clade E obtained from the northwestern, southwestern, and northeastern temperate Pacific Ocean as well as the Mediterranean Sea constitute a single species: Symbiodinium voratum n. sp. Chloroplast ribosomal 23S and mitochondrial cytochrome b nucleotide sequences were the same for all isolates. The D1/D2 domains of nuclear ribosomal DNA were identical among Western Pacific strains, but single nucleotide substitutions differentiated isolates from California (USA) and Spain. Phylogenetic analyses demonstrated that S. voratum is well‐separated evolutionarily from other Symbiodinium spp. The motile, or mastigote, cells from different cultures were morphologically similar when observed using light, scanning, and transmission electron microscopy; and the first complete Kofoidian plate formula for a Symbiodinium sp. was characterized. As the largest of known Symbiodinium spp., the average coccoid cell diameters measured among cultured isolates ranged between 12.2 (± 0.2 SE) and 13.3 (± 0.2 SE) μm. Unique among species in the genus, a high proportion (approximately 10–20%) of cells remain motile in culture during the dark cycle. Although S. voratum occurs on surfaces of various substrates and is potentially common in the plankton of coastal areas, it may be incapable of forming stable mutualistic symbioses.
AbstractList Dinoflagellates in the genus Symbiodinium are ubiquitous in shallow marine habitats where they commonly exist in symbiosis with cnidarians. Attempts to culture them often retrieve isolates that may not be symbiotic, but instead exist as free-living species. In particular, cultures of Symbiodinium clade E obtained from temperate environments were recently shown to feed phagotrophically on bacteria and microalgae. Genetic, behavioral, and morphological evidence indicate that strains of clade E obtained from the northwestern, southwestern, and northeastern temperate Pacific Ocean as well as the Mediterranean Sea constitute a single species: Symbiodinium voratum n. sp. Chloroplast ribosomal 23S and mitochondrial cytochrome b nucleotide sequences were the same for all isolates. The D1/D2 domains of nuclear ribosomal DNA were identical among Western Pacific strains, but single nucleotide substitutions differentiated isolates from California (USA) and Spain. Phylogenetic analyses demonstrated that S. voratum is well-separated evolutionarily from other Symbiodinium spp. The motile, or mastigote, cells from different cultures were morphologically similar when observed using light, scanning, and transmission electron microscopy; and the first complete Kofoidian plate formula for a Symbiodinium sp. was characterized. As the largest of known Symbiodinium spp., the average coccoid cell diameters measured among cultured isolates ranged between 12.2 (± 0.2 SE) and 13.3 (± 0.2 SE) μm. Unique among species in the genus, a high proportion (approximately 10-20%) of cells remain motile in culture during the dark cycle. Although S. voratum occurs on surfaces of various substrates and is potentially common in the plankton of coastal areas, it may be incapable of forming stable mutualistic symbioses.
Dinoflagellates in the genus Symbiodinium are ubiquitous in shallow marine habitats where they commonly exist in symbiosis with cnidarians. Attempts to culture them often retrieve isolates that may not be symbiotic, but instead exist as free‐living species. In particular, cultures of Symbiodinium clade E obtained from temperate environments were recently shown to feed phagotrophically on bacteria and microalgae. Genetic, behavioral, and morphological evidence indicate that strains of clade E obtained from the northwestern, southwestern, and northeastern temperate Pacific Ocean as well as the Mediterranean Sea constitute a single species: Symbiodinium voratum n. sp. Chloroplast ribosomal 23S and mitochondrial cytochrome b nucleotide sequences were the same for all isolates. The D1/D2 domains of nuclear ribosomal DNA were identical among Western Pacific strains, but single nucleotide substitutions differentiated isolates from California (USA) and Spain. Phylogenetic analyses demonstrated that S. voratum is well‐separated evolutionarily from other Symbiodinium spp. The motile, or mastigote, cells from different cultures were morphologically similar when observed using light, scanning, and transmission electron microscopy; and the first complete Kofoidian plate formula for a Symbiodinium sp. was characterized. As the largest of known Symbiodinium spp., the average coccoid cell diameters measured among cultured isolates ranged between 12.2 (± 0.2 SE) and 13.3 (± 0.2 SE) μm. Unique among species in the genus, a high proportion (approximately 10–20%) of cells remain motile in culture during the dark cycle. Although S. voratum occurs on surfaces of various substrates and is potentially common in the plankton of coastal areas, it may be incapable of forming stable mutualistic symbioses.
Dinoflagellates in the genus Symbiodinium are ubiquitous in shallow marine habitats where they commonly exist in symbiosis with cnidarians. Attempts to culture them often retrieve isolates that may not be symbiotic, but instead exist as free-living species. In particular, cultures of Symbiodinium clade E obtained from temperate environments were recently shown to feed phagotrophically on bacteria and microalgae. Genetic, behavioral, and morphological evidence indicate that strains of clade E obtained from the northwestern, southwestern, and northeastern temperate Pacific Ocean as well as the Mediterranean Sea constitute a single species: Symbiodinium voratum n. sp. Chloroplast ribosomal 23S and mitochondrial cytochrome b nucleotide sequences were the same for all isolates. The D1/D2 domains of nuclear ribosomal DNA were identical among Western Pacific strains, but single nucleotide substitutions differentiated isolates from California (USA) and Spain. Phylogenetic analyses demonstrated that S. voratum is well-separated evolutionarily from other Symbiodinium spp. The motile, or mastigote, cells from different cultures were morphologically similar when observed using light, scanning, and transmission electron microscopy; and the first complete Kofoidian plate formula for a Symbiodinium sp. was characterized. As the largest of known Symbiodinium spp., the average coccoid cell diameters measured among cultured isolates ranged between 12.2 ( plus or minus 0.2 SE) and 13.3 ( plus or minus 0.2 SE) mu m. Unique among species in the genus, a high proportion (approximately 10-20%) of cells remain motile in culture during the dark cycle. Although S. voratum occurs on surfaces of various substrates and is potentially common in the plankton of coastal areas, it may be incapable of forming stable mutualistic symbioses.
Dinoflagellates in the genus Symbiodinium are ubiquitous in shallow marine habitats where they commonly exist in symbiosis with cnidarians. Attempts to culture them often retrieve isolates that may not be symbiotic, but instead exist as free‐living species. In particular, cultures of Symbiodinium clade E obtained from temperate environments were recently shown to feed phagotrophically on bacteria and microalgae. Genetic, behavioral, and morphological evidence indicate that strains of clade E obtained from the northwestern, southwestern, and northeastern temperate Pacific Ocean as well as the Mediterranean Sea constitute a single species: Symbiodinium voratum n. sp. Chloroplast ribosomal 23S and mitochondrial cytochrome b nucleotide sequences were the same for all isolates. The D1/D2 domains of nuclear ribosomal DNA were identical among Western Pacific strains, but single nucleotide substitutions differentiated isolates from California ( USA ) and Spain. Phylogenetic analyses demonstrated that S. voratum is well‐separated evolutionarily from other Symbiodinium spp. The motile, or mastigote, cells from different cultures were morphologically similar when observed using light, scanning, and transmission electron microscopy; and the first complete Kofoidian plate formula for a Symbiodinium sp. was characterized. As the largest of known Symbiodinium spp., the average coccoid cell diameters measured among cultured isolates ranged between 12.2 (± 0.2  SE ) and 13.3 (± 0.2 SE ) μm. Unique among species in the genus, a high proportion (approximately 10–20%) of cells remain motile in culture during the dark cycle. Although S. voratum occurs on surfaces of various substrates and is potentially common in the plankton of coastal areas, it may be incapable of forming stable mutualistic symbioses.
Author Lim, An Suk
Kang, Nam Seon
Yoo, Yeong Du
Lee, Sung Yeon
Lee, Moo Joon
Kim, Hyung Seop
LaJeunesse, Todd C.
Jeong, Hae Jin
Yih, Wonho
Yamashita, Hiroshi
Author_xml – sequence: 1
  givenname: Hae Jin
  surname: Jeong
  fullname: Jeong, Hae Jin
  organization: School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University, 151-747, Seoul, Korea
– sequence: 2
  givenname: Sung Yeon
  surname: Lee
  fullname: Lee, Sung Yeon
  organization: School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University, 151-747, Seoul, Korea
– sequence: 3
  givenname: Nam Seon
  surname: Kang
  fullname: Kang, Nam Seon
  organization: School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University, 151-747, Seoul, Korea
– sequence: 4
  givenname: Yeong Du
  surname: Yoo
  fullname: Yoo, Yeong Du
  organization: School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University, 151-747, Seoul, Korea
– sequence: 5
  givenname: An Suk
  surname: Lim
  fullname: Lim, An Suk
  organization: School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University, 151-747, Seoul, Korea
– sequence: 6
  givenname: Moo Joon
  surname: Lee
  fullname: Lee, Moo Joon
  organization: School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University, 151-747, Seoul, Korea
– sequence: 7
  givenname: Hyung Seop
  surname: Kim
  fullname: Kim, Hyung Seop
  organization: Department of Oceanography, Kunsan National University, 573-701, Kunsan, Korea
– sequence: 8
  givenname: Wonho
  surname: Yih
  fullname: Yih, Wonho
  organization: Department of Oceanography, Kunsan National University, 573-701, Kunsan, Korea
– sequence: 9
  givenname: Hiroshi
  surname: Yamashita
  fullname: Yamashita, Hiroshi
  organization: Seikai National Fisheries Research Institute, Fisheries Research Agency, Fukai-Ohta, 907-0451, Ishigaki Okinawa, Japan
– sequence: 10
  givenname: Todd C.
  surname: LaJeunesse
  fullname: LaJeunesse, Todd C.
  email: tcl3@psu.edu
  organization: Department of Biology, 327 Mueller Laboratory, Pennsylvania State University, PA, 16802, University Park, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24460699$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAUhi1URC-w4AWQl63UTH2LnSzRdGYKGkBQKiQ2lpOcdFySONhOITwIz0um01ZigbAs2Yvv_6Rz_kO017kOEHpJyYxO5-wGhhllJMueoAOapiRRgmR7059ImaSMi310GMINIVQySp-hfSaEJDLPD9DvFXQQbRmw6Sr8zvl-4xp3PeL5xnhTRvD2F-C4AXxuO1c35hqaxkTAl2NbWFfZzg4tvnXexKE9xd0Mh352io-3dL8ZSzBwgk24M1y6BvAn6D0E6KKJ9hawq_82zRtTAV48R09r0wR4cf8eoavl4vP8Ill_WL2Zv14npZAsSwomspxUJieSpVCrUlRUQW2oKigIxUGlHEzFRZVlvCYSiiIVshAFySuluORH6Hjn7b37PkCIurWh3I7YgRuCpikh2XQV_z8qciazaalkQk92aOldCB5q3XvbGj9qSvS2MT01pu8am9hX99qhaKF6JB8qmoCzHfDDNjD-26TfLq4elMkuYUOEn48J479pqbhK9Zf3K72-YEv-dfVRL_kfNG2xkQ
CitedBy_id crossref_primary_10_1111_jpy_12486
crossref_primary_10_1080_09670262_2015_1054892
crossref_primary_10_1111_mec_15719
crossref_primary_10_2216_13_186_1
crossref_primary_10_4490_algae_2020_35_8_20
crossref_primary_10_1016_j_hal_2014_04_001
crossref_primary_10_1111_1755_0998_13004
crossref_primary_10_1016_j_hal_2024_102658
crossref_primary_10_1016_j_cub_2018_07_008
crossref_primary_10_1016_j_oceano_2016_04_006
crossref_primary_10_1111_jpy_13007
crossref_primary_10_1111_jpy_12999
crossref_primary_10_4490_algae_2014_29_2_075
crossref_primary_10_1086_696977
crossref_primary_10_1111_jpy_12570
crossref_primary_10_1111_mec_14055
crossref_primary_10_1007_s00227_015_2736_3
crossref_primary_10_1007_s00338_020_01911_z
crossref_primary_10_4490_algae_2019_34_5_25
crossref_primary_10_7717_peerj_15023
crossref_primary_10_1016_j_hal_2014_04_017
crossref_primary_10_1016_j_protis_2015_10_003
crossref_primary_10_1093_gbe_evw019
crossref_primary_10_1029_2020JG006172
crossref_primary_10_3389_fmicb_2014_00445
crossref_primary_10_1007_s00338_015_1286_y
crossref_primary_10_1007_s00248_015_0724_2
crossref_primary_10_1016_j_seares_2018_11_010
crossref_primary_10_1007_s00338_016_1458_4
crossref_primary_10_1111_mec_13676
crossref_primary_10_1111_mec_13631
crossref_primary_10_1073_pnas_2100493118
crossref_primary_10_1039_D2LC00130F
crossref_primary_10_7717_peerj_14006
crossref_primary_10_1111_nph_13483
crossref_primary_10_1111_jpy_12340
crossref_primary_10_1007_s10126_014_9581_0
crossref_primary_10_1111_mec_12869
crossref_primary_10_3755_galaxea_18_1_13
crossref_primary_10_1371_journal_pone_0187707
crossref_primary_10_1007_s12601_017_0025_4
crossref_primary_10_2108_zs230045
crossref_primary_10_1371_journal_pone_0290649
crossref_primary_10_3389_fmicb_2020_00847
crossref_primary_10_1016_j_cub_2018_09_024
crossref_primary_10_4490_algae_2014_29_4_299
crossref_primary_10_1016_j_marpolbul_2022_114032
crossref_primary_10_1038_s41396_021_01007_8
crossref_primary_10_1093_ismejo_wrae059
crossref_primary_10_1038_s41598_020_76621_1
crossref_primary_10_1134_S1063074021020127
crossref_primary_10_1111_jpy_12232
crossref_primary_10_3389_fevo_2024_1333028
crossref_primary_10_1016_j_hal_2018_03_009
crossref_primary_10_1038_srep32366
crossref_primary_10_3390_su12093928
crossref_primary_10_7554_eLife_42507
crossref_primary_10_4490_algae_2014_29_2_137
crossref_primary_10_1186_s12866_020_01765_z
crossref_primary_10_1080_09670262_2015_1025857
crossref_primary_10_1016_j_tim_2022_02_001
crossref_primary_10_1038_s41396_020_0629_z
crossref_primary_10_1080_09670262_2018_1466200
crossref_primary_10_1086_710349
crossref_primary_10_1007_s13199_014_0308_9
crossref_primary_10_1007_s00338_022_02222_1
crossref_primary_10_1111_jpy_12749
crossref_primary_10_4490_algae_2015_30_3_183
crossref_primary_10_1080_09670262_2015_1018336
crossref_primary_10_3389_fmars_2021_740416
crossref_primary_10_1111_jeu_12692
crossref_primary_10_1007_s00338_021_02092_z
Cites_doi 10.1371/journal.pone.0002160
10.1111/j.0022-3646.1991.00552.x
10.1007/s00338-010-0635-0
10.1111/j.0908-8857.2004.03297.x
10.1111/j.1529-8817.2008.00621.x
10.1186/1471-2148-12-217
10.1371/journal.pone.0029013
10.1016/0022-0981(95)00073-9
10.1111/j.1529-8817.1969.tb02624.x
10.1016/S1055-7903(02)00010-6
10.3354/meps284147
10.1111/j.1529-8817.2009.00716.x
10.1371/journal.pone.0006303
10.1007/BF00175822
10.1111/j.1550-7408.2011.00544.x
10.1111/j.1365-294X.2007.03576.x
10.1016/j.jembe.2003.08.003
10.1111/j.0022-3646.1996.00987.x
10.1017/S0025315400046270
10.4319/lo.1981.26.4.0601
10.4319/lo.1980.25.5.0943
10.1201/9780849379901.ch12
10.1126/science.229.4714.656
10.1016/j.protis.2010.01.002
10.1016/j.ympev.2011.01.006
10.1046/j.1529-8817.2001.01031.x
10.1016/0378-1119(88)90066-2
10.1098/rspb.1980.0032
10.1098/rspb.1980.0033
10.1371/journal.pone.0035269
10.2307/1542872
10.1016/j.hal.2005.02.001
10.1111/j.1529-8817.1993.tb00153.x
10.1111/j.1529-8817.2005.04168.x
10.1007/s00338-005-0063-8
10.1016/S0022-0981(03)00242-9
10.3354/meps08934
10.1093/molbev/msm092
10.1080/00288330.1983.9516003
10.1098/rspb.1980.0031
10.3354/meps08080
10.1007/s10126-002-0076-z
10.1111/j.0022-3646.1994.00999.x
10.1046/j.1529-8817.2003.02112.x
10.1016/j.ympev.2005.04.028
10.1080/09670269500650911
10.1111/j.1550-7408.1962.tb02579.x
10.1111/j.1550-7408.1999.tb04619.x
10.1111/j.0022-3646.1993.00314.x
10.1073/pnas.89.8.3639
10.1111/pre.12004
10.1007/s12601-010-0007-2
10.1111/j.1529-8817.2012.01217.x
10.1111/j.0022-3646.2004.02-149.x
10.1111/j.1365-2699.2010.02273.x
10.1086/BBLv220n3p199
10.1093/bioinformatics/btl446
10.1093/bioinformatics/17.8.754
10.1007/s00248-010-9681-y
10.1016/j.jembe.2011.12.002
10.1007/s002270100674
10.1016/S0022-5320(69)90033-1
10.1371/journal.pone.0013991
10.1073/pnas.0402907101
10.1007/s00227-002-0829-2
10.1111/j.1550-7408.2009.00462.x
10.1007/s00227-003-1165-x
10.1093/bioinformatics/btm404
10.1111/j.1469-8137.1983.tb03456.x
10.1007/s00338-007-0279-x
10.1007/s00227-008-1011-2
10.1111/j.1365-3040.2008.01909.x
10.1007/s00227-003-1157-x
10.1111/j.1529-8817.2004.03186.x
10.1073/pnas.1204302109
10.1111/jpy.12055
10.1016/j.ympev.2010.03.040
10.1128/AEM.01578-08
10.1111/j.1529-8817.1987.tb02534.x
10.1007/s00338-004-0389-7
10.2108/zsj.29.173
10.1371/journal.pone.0042780
10.1007/s11802-007-0033-6
10.1016/j.hal.2008.09.003
10.1126/science.251.4999.1348
10.1007/BF00936511
10.1111/j.1365-294X.2008.04037.x
10.1111/evo.12270
10.1007/s00338-008-0434-z
ContentType Journal Article
Copyright 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists
2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists.
Copyright_xml – notice: 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists
– notice: 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7TN
8FD
F1W
FR3
H95
L.G
M7N
P64
RC3
DOI 10.1111/jeu.12088
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Oceanic Abstracts
Technology Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE - Academic

MEDLINE
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Biology
EISSN 1550-7408
EndPage 94
ExternalDocumentID 10_1111_jeu_12088
24460699
JEU12088
ark_67375_WNG_LH2F3ZGQ_F
Genre article
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Pacific Ocean
California
Mediterranean Sea
Spain
INE, USA, California
ANE, Spain
GeographicLocations_xml – name: Mediterranean Sea
– name: Spain
– name: California
– name: Pacific Ocean
– name: INE, USA, California
– name: ANE, Spain
GrantInformation_xml – fundername: Mid‐career Researcher Program
  funderid: 2012‐R1A2A2A01010987
– fundername: National Research Foundation/Ministry of Science, ICT & Future Planning
  funderid: NRF‐C1ABA001‐2010‐0020702
– fundername: Ecological Disturbance Research Program
– fundername: Korea Institute of Marine Science & Technology Promotion/KMLTM
– fundername: The National Science Foundation
  funderid: OCE‐0928764
GroupedDBID ---
-DZ
-JH
-~X
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29K
31~
33P
36B
3O-
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
702
7PT
8-0
8-1
8-3
8-4
8-5
85S
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AANLZ
AAONW
AAPSS
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACKIV
ACNCT
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADHSS
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEPYG
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFIJ
AFFNX
AFFPM
AFGKR
AFNWH
AFPWT
AFZJQ
AGCDD
AHBTC
AHEFC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKPMI
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
D-E
D-F
D-I
D0L
DC7
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMB
EMOBN
F00
F01
F04
F5P
FEDTE
FSRTE
FZ0
G-S
G.N
GODZA
H.T
H.X
H13
HF~
HGLYW
HVGLF
HZI
HZ~
H~9
J0M
K48
L7B
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MM.
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OHT
OIG
P2P
P2W
P2X
P4D
PALCI
PQ0
Q.N
Q11
Q5J
QB0
R.K
RBO
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
SV3
TN5
TWZ
UB1
UKR
UPT
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XJT
XOL
YHZ
YQT
YZZ
ZCG
ZXP
ZZTAW
~IA
~KM
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7X8
7TN
8FD
F1W
FR3
H95
L.G
M7N
P64
RC3
ID FETCH-LOGICAL-c4628-b24890da90625ef7c4d17efa17b1e473e753ead34d883f06ebb546b4b09d77363
IEDL.DBID 33P
ISSN 1066-5234
IngestDate Fri Aug 16 02:08:16 EDT 2024
Fri Aug 16 09:46:21 EDT 2024
Thu Nov 21 20:53:31 EST 2024
Sat Sep 28 07:59:38 EDT 2024
Sat Aug 24 00:53:26 EDT 2024
Wed Oct 30 09:56:39 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords phylogeny
plastid genes
taxonomy
systematics
species
Language English
License 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4628-b24890da90625ef7c4d17efa17b1e473e753ead34d883f06ebb546b4b09d77363
Notes National Research Foundation/Ministry of Science, ICT & Future Planning - No. NRF-C1ABA001-2010-0020702
ArticleID:JEU12088
ark:/67375/WNG-LH2F3ZGQ-F
Fig. S1. Temperate Pacific Ocean and Mediterranean Sea origins of cultured isolates assigned to Symbiodinium clade E and used in this research to investigate genetic, morphological, ecological, and behavioral traits (designated by solid circles). Open white circles represent additional locals where clade E was reported to be cultured from water samples, but these cultures were not investigated in this study. Fig. S2. Consensus Bayesian tree based on 1,814 bp aligned positions of the small subunit (SSU) region, using the GTR + G + I model with Prorocentrum micans as an outgroup taxa. The parameters were as follows: assumed nucleotide frequency with equal; substitution rate matrix with A-C substitutions = 0.0586, A-G substitutions = 0.2383, A-T substitutions = 0.0869, C-G substitutions = 0.0578, C-T substitutions = 0.5156, G-T substitutions = 0.0428; proportion of sites assumed to be invariable = 0.7004; and rates for variable sites assumed to follow a gamma distribution with shape parameter = 0.0800. The branch lengths are proportional to the amount of character changes. The numbers above the branches indicate the Bayesian posterior probability (left) and maximum likelihood (ML) bootstrap values (right). Posterior probabilities ≥ 0.5 are shown. The rDNA sequences of the strains shown in bold were analyzed in this study. Fig. S3. Consensus Bayesian tree based on 853 bp aligned positions of the internal transcribed spacer 1 (ITS1), 5.8s, and internal transcribed spacer 2 (ITS2) regions, using the GTR + G + I model and Akashiwo sanguinea as an outgroup taxa. The parameters were as follows: assumed nucleotide frequency with equal; substitution rate matrix with A-C substitutions = 0.1038, A-G substitutions = 0.2646, A-T substitutions = 0.1320, C-G substitutions = 0.0625, C-T substitutions = 0.3480, G-T substitutions = 0.0892; proportion of sites assumed to be invariable = 0.1153; and rates for variable sites assumed to follow a gamma distribution with shape parameter = 1.5640. The branch lengths are proportional to the amount of character changes. The numbers above the branches indicate the Bayesian posterior probability (left) and maximum likelihood (ML) bootstrap values (right). Posterior probabilities ≥ 0.5 are shown. Strain EU074907 marked with an asterisk represents a combination of other similar species (EU074916, EU074917, EU074919, EU074920, EU074921, EU074922, EU074923, and EU074924). Fig. S4. Partial psbA and psbAncr alignments identify four distinct haplotypes (hap1-hap4). The start of gray areas indicates regions where chromatograms change abruptly from a high quality to non-interpretable multipeak sequences. Fig. S5. Position of the nucleus in mastigotes of SvFL 1. (A-C) light micrographs of flagellated cells and (D-F) corresponding epi-fluorescent micrographs showing the variable location of DAPI stained nuclei. Fig. S6. Scanning electron micrographs of the motile cell of CCMP 421. (A) Apical view showing the rare example of a cell with seven apical plates. (B) Enlarged figure of apical plate in S4. (C) Apical view showing a cell with six apical plates. (D) Enlarged figure of apical plate in S6. All scale bars = 1 μm. Fig. S7. Scanning electron micrographs of motile cells of SvFL 1. (A) Antapical view showing the hyposome. Micrograph showing a rare cell with seven postcingular plates and heptagonal 2″″ plates. (B). Drawing of antapical view of SvFL 1. (C) Micrograph showing an example of a cell with three antapical plates. (D) Drawing of antapical view of SvFL 1. All scale bars = 1 μm. Fig. S8. The pyrenoid (PY) in the cells of isolates (A) SvFL 1 and (B) CCMP 421 possessed two stalks. The thylakoids from associated chloroplast do not intrude. Table S1. Primers and TaqMan probes for qPCR detection of Symbiodinium voratum (clade E). Table S2. Symbiodinium spp. used to test the cross-reactivity of clade E primers and Taqman probe in qPCR detection.
Ecological Disturbance Research Program
Korea Institute of Marine Science & Technology Promotion/KMLTM
istex:8A79EA2EA39D1DF0FA8104F3FCC09874A2BEC602
The National Science Foundation - No. OCE-0928764
Mid-career Researcher Program - No. 2012-R1A2A2A01010987
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 24460699
PQID 1492686990
PQPubID 23479
PageCount 20
ParticipantIDs proquest_miscellaneous_1500800873
proquest_miscellaneous_1492686990
crossref_primary_10_1111_jeu_12088
pubmed_primary_24460699
wiley_primary_10_1111_jeu_12088_JEU12088
istex_primary_ark_67375_WNG_LH2F3ZGQ_F
PublicationCentury 2000
PublicationDate January/February 2014
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – month: 01
  year: 2014
  text: January/February 2014
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of eukaryotic microbiology
PublicationTitleAlternate J. Eukaryot. Microbiol
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Udy, J. W., Hinde, R. & Vesk, M. 1993. Chromosomes and DNA in Symbiodinium from Australian hosts. J. Phycol., 29:314-320.
Wang, L. H., Liu, Y. H., Ju, Y. M., Hsiao, Y. Y., Fang, L. S. & Chen, C. S. 2008. Cell cycle propagation is driven by light-dark stimulation in a cultured symbiotic dinoflagellate isolated from corals. Coral Reefs, 27:823-835.
Chang, F. H. 1983. Winter phytoplankton and microzooplankton populations off the coast of Westland, New Zealand, 1979. N. Z. J. Mar. Freshw. Res., 17:279-304.
Finney, J. C., Pettay, T., Sampayo, E. M., Warner, M. E., Oxenford, H. & LaJeunesse, T. C. 2010. The relative significance of host-habitat, depth, and geography on the ecology, endemism and speciation of coral endosymbionts. Microb. Ecol., 60:250-263.
Trench, R. K. & Blank, R. J. 1987. Symbiodinium microadriaticum Freudenthal, S. goreauii sp. nov., S. kawagutii sp. nov., and S. pilosum sp. nov.: Gymnodinioid dinoflagellate symbionts of marine invertebrates. J. Phycol., 23:469-481.
Zhang, H., Bhattacharya, D. & Lin, S. 2005. Phylogeny of dinoflagellates based on mitochondrial cytochrome b and nuclear small subunit rDNA sequence comparisons. J. Phycol., 41:411-420.
LaJeunesse, T. C., Thornhill, D. J., Cox, E. F., Stanton, F. G., Fitt, W. K. & Schmidt, G. W. 2004b. High diversity and host specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii. Coral Reefs, 23:596-603.
Hansen, G. & Daugbjerg, N. 2009. Symbiodinium natans sp. nov.: a free-living dinoflagellate from Tenerife (northeast-Atlantic Ocean). J. Phycol., 45:251-263.
Loeblich, A. R. III & Sherley, J. L. 1979. Observations on the theca of the mobile phase of free-living and symbiotic isolates of Zooxanthella microadriaticum (Freudenthal) comb.nov. J. Mar. Biol. Assoc. U.K., 59:195-205.
Rodriguez-Lanetty, M., Chang, S. J. & Song, J. I. 2003. Specificity of two temperate dinoflagellate-anthozoan associations from the north-western Pacific Ocean. Mar. Biol., 143:1193-1199.
Bayer, T., Aranda, M., Sunagawa, S., Yum, L. K., DeSalvo, M. K., Lundquist, E., Coffroth, M. A., Voolstra, C. R. & Medina, M. 2012. Symbiodinium transcriptomes: genome insights into the dinoflagellate symbionts of reef-building corals. PLoS ONE, 7:e35269.
Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J. & Higgins, D. G. 2007. Clustal w and clustal x version 2.0. Bioinformatics, 23:2947-2948.
McBride, B. B., Muller-Parker, G. & Jakobsen, H. H. 2009. Low thermal limit of growth rate of Symbiodinium californium (Dinophyta) in culture may restrict the symbiont to southern populations of its host anemones (Anthopleura spp.; Anthozoa, Cnidaria). J. Phycol., 45:855-863.
Clode, P. L., Saunders, M., Maker, G., Ludwig, M. & Atkins, C. 2009. Uric acid deposits in symbiotic marine algae. Plant Cell Environ., 32:170-177.
Muller-Parker, G., Lee, K. W. & Cook, C. B. 1996. Changes in the ultrastructure of symbiotic zooxanthellae (Symbiodinium sp., Dinophyceae) in fed and starved sea anemones maintained under high and low light. J. Phycol., 32:987-994.
Muscatine, L., McCloskey, L. R. & Marian, R. E. 1981. Estimating the daily contribution of carbon to coral animal respiration. Limnol. Oceanogr., 26:601-611.
Porter, K. G. & Feig, Y. S. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr., 25:943-948.
Lilly, E. L., Halanych, K. M. & Anderson, D. M. 2005. Phylogeny, biogeography, and species boundaries within the Alexandrium minutum group. Harmful Algae, 4:1004-1020.
Park, T. G., Park, G. H., Park, Y. T., Kang, Y. S., Bae, H. M., Kim, C. H., Jeong, H. J. & Lee, Y. 2009. Identification of the dinoflagellate community during Cochlodinium polykrikoides (Dinophyceae) blooms using amplified rDNA melting curve analysis and real-time PCR probes. Harmful Algae, 8:430-440.
Pochon, X. & Gates, R. D. 2010. A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai'i. Mol. Phylogenet. Evol., 56:492-497.
Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22:2688-2690.
Banaszak, A. T. & Trench, R. K. 1995. Effects of ultraviolet (UV) radiation on marine microalgal-invertebrate symbioses. I. Response of the algal symbionts in culture and in hospite. J. Exp. Mar. Biol. Ecol., 194:233-250.
Gou, W. L., Sun, J., Li, X. Q., Zhen, Y., Xin, Z., Yu, Z. G. & Li, R. X. 2003. Phylogenetic analysis of a free-living strain of Symbiodinium isolated from Jiaozhou Bay, P.R. China. J. Exp. Mar. Biol. Ecol., 296:135-144.
Jeong, H. J., Yoo, Y. D., Kim, J. S., Seong, K. A., Kang, N. S. & Kim, T. H. 2010. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J., 45:65-91.
Litaker, R. W., Vandersea, M. W., Kibler, S. R., Reece, K. S., Stokes, N. A., Steidinger, K. A., Millie, D. F., Bendis, B. J., Pigg, R. J. & Tester, P. A. 2003. Identification of Pfiesteria piscicida (Dinophyceae) and Pfiesteria-like organisms using internal transcribed spacer-specific PCR assays. J. Phycol., 39:754-761.
Thornhill, D. J., Lewis, A., Wham, D. C. & LaJeunesse, T. C. 2013. Host-specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution. DOI: 10.1111/evo.12270 (in press)
Porto, I., Granados, C., Restrepo, J. C. & Sanchez, J. A. 2008. Macroalgal-associated dinoflagellates belonging to the genus Symbiodinium in Caribbean reefs. PLoS ONE, 3:e2160.
Thornhill, D. J., LaJeunesse, T. C. & Santos, S. R. 2007. Measuring rDNA diversity in eukaryotic microbial systems: how intragenomic variation, pseudogenes, and PCR artifacts confound biodiversity estimates. Mol. Ecol., 16:5326-5340.
Schoenberg, D. A. & Trench, R. K. 1980b. Genetic variation in Symbiodinium (=Gymnodinium) microadriaticum Freudenthal, and specificity in its symbiosis with marine invertebrates. II. Morphological variation in S. microadriaticum. Proc. R. Soc. Lond. B, 207:429-444.
Schoenberg, D. A. & Trench, R. K. 1980a. Genetic variation in Symbiodinium (=Gymnodinium) microadriaticum Freudenthal, and specificity in its symbiosis with marine invertebrates. I. Isoenzyme and soluble protein patterns of axenic cultures of S. microadriaticum. Proc. R. Soc. Lond. B, 207:405-427.
Lien, Y. T., Fukami, H. & Yamashita, Y. 2012. Symbiodinium Clade C dominates zooxanthellate corals (Scleractinia) in the temperate region of Japan. Zool. Sci., 29:173-180.
Spurr, A. R. 1969. A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res., 26:31-42.
Trench, R. K. 1993. Microalgal-invertebrate symbioses: a review. Endocyt. Cell Res., 9:135-175.
Hollingsworth, L. L., Kinzie III, R. A., Lewis, T. D., Krupp, D. A. & Leong, J. A. 2005. Phototaxis of motile zooxanthellae to green light may facilitate symbiont capture by coral larvae. Coral Reefs, 24:523.
Pochon, X., Garcia-Cuestos, L., Baker, A. C., Castella, E. & Pawlowski, J. 2007. One-year survey of a single Micronesian reef reveals extraordinarily rich diversity of Symbiodinium types in sorited foraminifera. Coral Reefs, 26:867-882.
Xiang, T., Hambleton, E. A., DeNofrio, J. C., Pringle, J. R. & Grossman, A. R. 2013. Isolation of clonal, axenic strains of the symbiotic dinoflagellate Symbiodinium and their growth and host specificity. J. Phycol., 49:447-458.
Blank, R. J. & Huss, V. A. R. 1989. DNA divergency and speciation in Symbiodinium (Dinophyceae). Plant Syst. Evol., 163:213-232.
Fitt, W. K., Chang, S. S. & Trench, R. K. 1981. Motility patterns of different strains of the symbiotic dinoflagellate Symbiodinium (=Gymnodinium) microadriaticum (Freudenthal) in culture. Bull. Mar. Sci., 31:436-443.
Trench, R. K. & Thinh, L. V. 1995. Gymnodinium linucheae sp. nov.: the dinoflagellate symbiont of the jellyfish Linuche unguiculata. Eur. J. Phycol., 30:149-154.
Haywood, A. J., Steidinger, K. A., Truby, E. W., Bergquist, P. R., Bergquist, P. L., Adamson, J. & MacKenzie, L. 2004. Coparative morphology and molecular phylogenetic analysis of three new species of the genus Karenia (Dinophyceae) from New Zealand. J. Phycol., 40:165-179.
Shao, P., Chen, Y. Q., Zhou, H., Yuan, J., Qu, L. H., Zhao, D. & Lin, Y. S. 2004. Genetic variability in the Gymnodiniaceae ITS regions: implications for species identification and phylogenetic analysis. Mar. Biol., 144:215-224.
Stoecker, D. K. 1999. Mixotrophy among dinoflagellates. J. Eukaryot. Microbiol., 46:397-401.
Pochon, X., Pawlowski, J., Zaninetti, L. & Rowan, R. 2001. High genetic diversity and relative specificity among Symbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferans. Mar. Biol., 139:1069-1078.
Blank, R. J. & Trench, R. K. 1985. Speciation in symbiotic dinoflagellates. Science, 229:656-658.
Stern, R. F., Horak, A., Andrew, R. L., Coffroth, M. A., Andersen, R. A., Kupper, F. C., Jameson, I., Hoppenrath, M., Veron, B., Kasai, F., Brand, J., James, E. R. & Keeling, P. J. 2010. Environmental barcoding reveals massive dinoflagellate diversity in marine environments. PLoS ONE, 5:e13991.
Stat, M., Pochon, X., Cowie, R. O. M. & Gates, R. D. 2009. Specificity in communities of Symbiodinium in corals from Johnston Atoll. Mar. Ecol. Prog. Ser., 386:83-96.
LaJeunesse, T. C. & Trench, R. K. 2000. Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegantissima (Brandt). Biol. Bull., 199:126-134.
Swofford, D. 2000. PAUP*, Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0b10. Sinauer Associates, Sunderland, MA.
Jeong, H. J., Yoo, Y. D., Kang, N. S., Lim, A. S., Seong, K. A., Lee, S. Y., Lee, M. J., Lee, K. H., Kim, H. S., Shin, W. G., Nam, S. W., Yih, W. H. & Lee, K. 2012. Heterotrophic feeding as a newly identified survival strategy of the dinoflagellate Symbiodinium. Proc. Natl Acad. Sci. USA, 109:12604-12609.
Abramoff, M. D., Magalhaes, P. J. & Ram, S. J. 2004. Image process
2009; 45
2010; 56
1995; 30
1993; 9
1993; 29
2010; 57
1980c; 207
2006; 38
2013; 61
1999; 46
1980b; 207
1983; 94
2011; 59
2008; 3
2003; 19
2011; 58
1983; 17
2007; 75
2012; 12
1988; 71
1996; 32
2005; 24
2010b; 37
2010; 60
2004; 298
2000
2002; 141
2006; 22
1969; 5
2008; 27
2007; 6
2003; 5
1984
2004a; 284
2012; 29
2001; 17
2008; 155
2012; 413
2010; 5
2007; 23
1992; 89
1994; 30
2007; 24
1981; 31
2001; 139
2007; 26
2009; 18
1980a; 207
2004; 101
2004; 144
1991; 251
1980; 25
2004; 40
1979; 59
2013; 49
2005; 41
1981; 26
2003; 39
2010; 161
1962; 9
2000; 199
1985; 229
2011; 6
2004b; 23
1995; 194
2003; 296
2012; 109
2007; 16
2010; 45
2004; 11
1995; 41
2011; 422
1987; 23
1991; 27
2009; 32
2009; 75
1989; 163
2002; 23
2005; 4
2009; 386
2010a; 29
2009; 8
2001; 37
1969; 26
2012; 48
2013
2009; 4
2012; 7
2003; 143
2011; 220
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
e_1_2_7_62_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_87_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_89_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
Abramoff M. D. (e_1_2_7_2_1) 2004; 11
Spector D. L. (e_1_2_7_74_1) 1984
e_1_2_7_90_1
e_1_2_7_73_1
e_1_2_7_94_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_92_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_96_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
e_1_2_7_6_1
Swofford D (e_1_2_7_81_1) 2000
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_88_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_91_1
e_1_2_7_72_1
e_1_2_7_95_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_93_1
Fitt W. K. (e_1_2_7_14_1) 1981; 31
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_76_1
e_1_2_7_24_1
e_1_2_7_32_1
LaJeunesse T. C. (e_1_2_7_38_1) 2004; 23
e_1_2_7_55_1
Trench R. K. (e_1_2_7_86_1) 1993; 9
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_78_1
References_xml – volume: 12
  start-page: 217
  year: 2012
  article-title: Protein evolution in two co‐occurring types of : an exploration into the genetic basis of thermal tolerance in clade D
  publication-title: BMC Evol. Biol.
– volume: 298
  start-page: 35
  year: 2004
  end-page: 48
  article-title: Motility of zooxanthellae isolated from the Red Sea soft coral Hetroxenia fuscescens (Cnidaria)
  publication-title: J. Exp. Mar. Biol. Ecol.
– volume: 16
  start-page: 5326
  year: 2007
  end-page: 5340
  article-title: Measuring rDNA diversity in eukaryotic microbial systems: how intragenomic variation, pseudogenes, and PCR artifacts confound biodiversity estimates
  publication-title: Mol. Ecol.
– volume: 46
  start-page: 397
  year: 1999
  end-page: 401
  article-title: Mixotrophy among dinoflagellates
  publication-title: J. Eukaryot. Microbiol.
– volume: 24
  start-page: 11
  year: 2005
  end-page: 22
  article-title: Symbiont diversity in scleractinian corals from tropical reefs and subtropical non‐reef communities in Taiwan
  publication-title: Coral Reefs
– volume: 71
  start-page: 491
  year: 1988
  end-page: 499
  article-title: The characterization of enzymatically amplified eukaryokic 16S‐like rRNAcoding regions
  publication-title: Gene
– volume: 220
  start-page: 199
  year: 2011
  end-page: 208
  article-title: Populations of show strong biogeographic structuring in the intertidal anemone
  publication-title: Biol. Bull.
– volume: 161
  start-page: 385
  year: 2010
  end-page: 399
  article-title: gen. nov. and comb. nov. a dinoflagellate symbiont of planktonic foraminifera
  publication-title: Protist
– volume: 57
  start-page: 121
  year: 2010
  end-page: 144
  article-title: Description of a new planktonic mixotrophic dinoflagellate n. gen., n. sp. from the coastal waters off western Korea: morphology, pigments, and ribosomal DNA gene sequence
  publication-title: J. Eukaryot. Microbiol.
– year: 2013
  article-title: Host‐specialist lineages dominate the adaptive radiation of reef coral endosymbionts
  publication-title: Evolution.
– volume: 194
  start-page: 233
  year: 1995
  end-page: 250
  article-title: Effects of ultraviolet (UV) radiation on marine microalgal‐invertebrate symbioses. I. Response of the algal symbionts in culture and in hospite
  publication-title: J. Exp. Mar. Biol. Ecol.
– volume: 3
  start-page: e2160
  year: 2008
  article-title: Macroalgal‐associated dinoflagellates belonging to the genus in Caribbean reefs
  publication-title: PLoS ONE
– volume: 26
  start-page: 601
  year: 1981
  end-page: 611
  article-title: Estimating the daily contribution of carbon to coral animal respiration
  publication-title: Limnol. Oceanogr.
– volume: 24
  start-page: 1596
  year: 2007
  end-page: 1599
  article-title: MEGA4: molecular evolutionary genetics analysis (MEGA) software v. 4.0
  publication-title: Mol. Biol. Evol.
– volume: 37
  start-page: 785
  year: 2010b
  end-page: 800
  article-title: Long‐standing environmental conditions, geographic isolation and host–symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus
  publication-title: J. Biogeogr.
– volume: 61
  start-page: 68
  year: 2013
  end-page: 80
  article-title: The genetic identity of free‐living obtained over a broad latitudinal range in the Japanese coast
  publication-title: Phycol. Res.
– volume: 7
  start-page: e35269
  year: 2012
  article-title: transcriptomes: genome insights into the dinoflagellate symbionts of reef‐building corals
  publication-title: PLoS ONE
– volume: 207
  start-page: 445
  year: 1980c
  end-page: 460
  article-title: Genetic variation in (= ) Freudenthal, and specificity in its symbiosis with marine invertebrates. III. Specificity and infectivity of
  publication-title: Proc. R. Soc. Lond. B
– volume: 19
  start-page: 1572
  year: 2003
  end-page: 1574
  article-title: MRBAYES 3: Bayesian phylogenetic inference under mixed models
  publication-title: Bioinformatics
– volume: 284
  start-page: 147
  year: 2004a
  end-page: 161
  article-title: Closely related spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients
  publication-title: Mar. Ecol. Prog. Ser.
– volume: 207
  start-page: 405
  year: 1980a
  end-page: 427
  article-title: Genetic variation in (= ) Freudenthal, and specificity in its symbiosis with marine invertebrates. I. Isoenzyme and soluble protein patterns of axenic cultures of
  publication-title: Proc. R. Soc. Lond. B
– volume: 4
  start-page: 1004
  year: 2005
  end-page: 1020
  article-title: Phylogeny, biogeography, and species boundaries within the group
  publication-title: Harmful Algae
– volume: 39
  start-page: 754
  year: 2003
  end-page: 761
  article-title: Identification of (Dinophyceae) and ‐like organisms using internal transcribed spacer‐specific PCR assays
  publication-title: J. Phycol.
– volume: 27
  start-page: 552
  year: 1991
  end-page: 554
  article-title: A novel technique for preparation of axenic cultures of (Pyrrophyta) through selective digestion by amoebae
  publication-title: J. Phycol.
– volume: 18
  start-page: 500
  year: 2009
  end-page: 519
  article-title: Cohesive molecular genetic data delineate species diversity in the dinoflagellate genus
  publication-title: Mol. Ecol.
– volume: 7
  start-page: e42780
  year: 2012
  article-title: Evaluating the ribosomal internal transcribed spacer (ITS) as a candidate dinoflagellate barcode marker
  publication-title: PLoS ONE
– volume: 9
  start-page: 135
  year: 1993
  end-page: 175
  article-title: Microalgal‐invertebrate symbioses: a review
  publication-title: Endocyt. Cell Res.
– volume: 40
  start-page: 395
  year: 2004
  end-page: 397
  article-title: Comment: phylogenetic analysis of a free‐living strain of isolated from Jiaozhou Bay, P.R. China
  publication-title: J. Phycol.
– volume: 56
  start-page: 492
  year: 2010
  end-page: 497
  article-title: A new clade (Dinophyceae) from soritid foraminifera in Hawai'i
  publication-title: Mol. Phylogenet. Evol.
– volume: 6
  start-page: 33
  year: 2007
  end-page: 39
  article-title: Preliminary identification of three new isolates in the genus (Dinophyceae) from the China Sea area
  publication-title: J. Ocean Univ. China
– volume: 40
  start-page: 165
  year: 2004
  end-page: 179
  article-title: Coparative morphology and molecular phylogenetic analysis of three new species of the genus (Dinophyceae) from New Zealand
  publication-title: J. Phycol.
– volume: 59
  start-page: 195
  year: 1979
  end-page: 205
  article-title: Observations on the theca of the mobile phase of free‐living and symbiotic isolates of (Freudenthal) comb.nov
  publication-title: J. Mar. Biol. Assoc. U.K.
– volume: 101
  start-page: 13531
  year: 2004
  end-page: 13535
  article-title: Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 45
  start-page: 251
  year: 2009
  end-page: 263
  article-title: sp. nov.: a free‐living dinoflagellate from Tenerife (northeast‐Atlantic Ocean)
  publication-title: J. Phycol.
– volume: 59
  start-page: 81
  year: 2011
  end-page: 88
  article-title: diversity among host clionaid sponges from Caribbean and Pacific reefs: evidence of heteroplasmy and putative host‐specific symbiont lineages
  publication-title: Mol. Phyl. Evol.
– volume: 109
  start-page: 12604
  year: 2012
  end-page: 12609
  article-title: Heterotrophic feeding as a newly identified survival strategy of the dinoflagellate
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 8
  start-page: 430
  year: 2009
  end-page: 440
  article-title: Identification of the dinoflagellate community during (Dinophyceae) blooms using amplified rDNA melting curve analysis and real‐time PCR probes
  publication-title: Harmful Algae
– volume: 413
  start-page: 169
  year: 2012
  end-page: 176
  article-title: Cultivating endosymbionts – host environment mimics support the survival of C15
  publication-title: J. Exp. Mar. Biol. Ecol.
– volume: 17
  start-page: 754
  year: 2001
  end-page: 755
  article-title: MrBayes: Bayesian inference of phylogeny
  publication-title: Bioinformatics
– volume: 29
  start-page: 627
  year: 2010a
  article-title: The reticulated chloroplasts of zooxanthellae ( ) and differences in chlorophyll localization among life cycle stages
  publication-title: Coral Reefs
– volume: 23
  start-page: 97
  year: 2002
  end-page: 111
  article-title: Molecular phylogeny of symbiotic dinoflagellates inferred from partial chloroplast large subunit (23S) rDNA sequences
  publication-title: Mol. Phylogenet. Evol.
– volume: 386
  start-page: 83
  year: 2009
  end-page: 96
  article-title: Specificity in communities of in corals from Johnston Atoll
  publication-title: Mar. Ecol. Prog. Ser.
– volume: 60
  start-page: 250
  year: 2010
  end-page: 263
  article-title: The relative significance of host‐habitat, depth, and geography on the ecology, endemism and speciation of coral endosymbionts
  publication-title: Microb. Ecol.
– volume: 6
  start-page: e29013
  year: 2011
  article-title: Improved resolution of reef‐coral endosymbiont ( ) species diversity, ecology, and evolution through non‐coding region genotyping
  publication-title: PLoS ONE
– volume: 29
  start-page: 517
  year: 1993
  end-page: 528
  article-title: sp. nov. (Peridiniales) and sp. nov. (Phytodiniales), dinoflagellate symbionts of two hydrozoans (Cnidarians)
  publication-title: J. Phycol.
– volume: 31
  start-page: 436
  year: 1981
  end-page: 443
  article-title: Motility patterns of different strains of the symbiotic dinoflagellate (= ) (Freudenthal) in culture
  publication-title: Bull. Mar. Sci.
– volume: 296
  start-page: 135
  year: 2003
  end-page: 144
  article-title: Phylogenetic analysis of a free‐living strain of isolated from Jiaozhou Bay, P.R. China
  publication-title: J. Exp. Mar. Biol. Ecol.
– volume: 5
  start-page: 341
  year: 1969
  end-page: 350
  article-title: Freudenthal, a revised taxonomic description, ultrastructure
  publication-title: J. Phycol.
– volume: 24
  start-page: 523
  year: 2005
  article-title: Phototaxis of motile zooxanthellae to green light may facilitate symbiont capture by coral larvae
  publication-title: Coral Reefs
– volume: 141
  start-page: 387
  year: 2002
  end-page: 400
  article-title: Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs
  publication-title: Mar. Biol.
– volume: 144
  start-page: 215
  year: 2004
  end-page: 224
  article-title: Genetic variability in the Gymnodiniaceae ITS regions: implications for species identification and phylogenetic analysis
  publication-title: Mar. Biol.
– volume: 17
  start-page: 279
  year: 1983
  end-page: 304
  article-title: Winter phytoplankton and microzooplankton populations off the coast of Westland, New Zealand, 1979
  publication-title: N. Z. J. Mar. Freshw. Res.
– volume: 23
  start-page: 596
  year: 2004b
  end-page: 603
  article-title: High diversity and host specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii
  publication-title: Coral Reefs
– volume: 207
  start-page: 429
  year: 1980b
  end-page: 444
  article-title: Genetic variation in (= ) Freudenthal, and specificity in its symbiosis with marine invertebrates. II. Morphological variation in
  publication-title: Proc. R. Soc. Lond. B
– volume: 89
  start-page: 3639
  year: 1992
  end-page: 3643
  article-title: Ribosomal‐RNA sequences and the diversity of symbiotic dinoflagellates (zooxanthellae)
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 27
  start-page: 823
  year: 2008
  end-page: 835
  article-title: Cell cycle propagation is driven by light‐dark stimulation in a cultured symbiotic dinoflagellate isolated from corals
  publication-title: Coral Reefs
– volume: 163
  start-page: 213
  year: 1989
  end-page: 232
  article-title: DNA divergency and speciation in (Dinophyceae)
  publication-title: Plant Syst. Evol.
– volume: 26
  start-page: 31
  year: 1969
  end-page: 42
  article-title: A low viscosity epoxy resin embedding medium for electron microscopy
  publication-title: J. Ultrastruct. Res.
– year: 2000
– volume: 23
  start-page: 469
  year: 1987
  end-page: 481
  article-title: Freudenthal, sp. nov., sp. nov., and sp. nov.: Gymnodinioid dinoflagellate symbionts of marine invertebrates
  publication-title: J. Phycol.
– volume: 26
  start-page: 867
  year: 2007
  end-page: 882
  article-title: One‐year survey of a single Micronesian reef reveals extraordinarily rich diversity of types in sorited foraminifera
  publication-title: Coral Reefs
– volume: 4
  start-page: e63003
  year: 2009
  article-title: Do uric acid deposits in zooxanthellae function as eye‐spots?
  publication-title: PLoS ONE
– volume: 94
  start-page: 421
  year: 1983
  end-page: 432
  article-title: The relation of diel patterns of cell division to diel patterns of motility in the symbiotic dinoflagellate Freudenthal in culture
  publication-title: New Phytol.
– volume: 199
  start-page: 126
  year: 2000
  end-page: 134
  article-title: Biogeography of two species of (Freudenthal) inhabiting the intertidal sea anemone (Brandt)
  publication-title: Biol. Bull.
– volume: 25
  start-page: 943
  year: 1980
  end-page: 948
  article-title: The use of DAPI for identifying and counting aquatic microflora
  publication-title: Limnol. Oceanogr.
– volume: 32
  start-page: 987
  year: 1996
  end-page: 994
  article-title: Changes in the ultrastructure of symbiotic zooxanthellae ( sp., Dinophyceae) in fed and starved sea anemones maintained under high and low light
  publication-title: J. Phycol.
– volume: 75
  start-page: 215
  year: 2007
  end-page: 230
– volume: 5
  start-page: e13991
  year: 2010
  article-title: Environmental barcoding reveals massive dinoflagellate diversity in marine environments
  publication-title: PLoS ONE
– volume: 48
  start-page: 1380
  year: 2012
  end-page: 1391
  article-title: A genetics‐based description of sp. nov. and sp. nov. (Dinophyceae), two dinoflagellates symbiotic with Cnidaria
  publication-title: J. Phycol.
– volume: 45
  start-page: 855
  year: 2009
  end-page: 863
  article-title: Low thermal limit of growth rate of (Dinophyta) in culture may restrict the symbiont to southern populations of its host anemones ( spp.; Anthozoa, Cnidaria)
  publication-title: J. Phycol.
– volume: 41
  start-page: 637
  year: 1995
  end-page: 645
  article-title: Revised dinoflagellate phylogeny inferred from molecular analysis of large subunit ribosomal RNA gene sequences
  publication-title: J. Mol. Evol.
– volume: 38
  start-page: 20
  year: 2006
  end-page: 30
  article-title: Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus
  publication-title: Mol. Phyl. Evol.
– year: 1984
– volume: 75
  start-page: 1279
  year: 2009
  end-page: 1290
  article-title: High‐level diversity of dinoflagellates in the natural environment, revealed by assessment of mitochondrial cox1 and cob genes for dinoflagellate DNA barcoding
  publication-title: Appl. Environ. Microbiol.
– volume: 29
  start-page: 314
  year: 1993
  end-page: 320
  article-title: Chromosomes and DNA in from Australian hosts
  publication-title: J. Phycol.
– volume: 37
  start-page: 866
  year: 2001
  end-page: 880
  article-title: Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus using the internal transcribed spacer region: in search of a “species” level marker
  publication-title: J. Phycol.
– volume: 155
  start-page: 105
  year: 2008
  end-page: 112
  article-title: Phylogenetic analyses of potentially free‐living spp. isolated from coral reef sand in Okinawa, Japan
  publication-title: Mar. Biol.
– volume: 22
  start-page: 2688
  year: 2006
  end-page: 2690
  article-title: RAxML‐VI‐HPC: maximum likelihood‐based phylogenetic analyses with thousands of taxa and mixed models
  publication-title: Bioinformatics
– volume: 229
  start-page: 656
  year: 1985
  end-page: 658
  article-title: Speciation in symbiotic dinoflagellates
  publication-title: Science
– volume: 251
  start-page: 1348
  year: 1991
  end-page: 1351
  article-title: A molecular genetic classification of zooxanthellae and the evolution of animal‐algal symbiosis
  publication-title: Science
– volume: 422
  start-page: 63
  year: 2011
  end-page: 75
  article-title: Novel algal symbiont ( spp.) diversity in reef corals of Western Australia
  publication-title: Mar. Ecol. Prog. Ser.
– volume: 5
  start-page: 130
  year: 2003
  end-page: 140
  article-title: Phylogenetic identification of symbiotic dinoflagellates via length heteroplasmy in domain V of chloroplast large subunit (cp23S) ribosomal DNA sequences
  publication-title: Mar. Biotech.
– volume: 41
  start-page: 411
  year: 2005
  end-page: 420
  article-title: Phylogeny of dinoflagellates based on mitochondrial cytochrome b and nuclear small subunit rDNA sequence comparisons
  publication-title: J. Phycol.
– volume: 49
  start-page: 447
  year: 2013
  end-page: 458
  article-title: Isolation of clonal, axenic strains of the symbiotic dinoflagellate and their growth and host specificity
  publication-title: J. Phycol.
– volume: 58
  start-page: 284
  year: 2011
  end-page: 309
  article-title: n. gen., n. sp., a new planktonic heterotrophic dinoflagellate from the coastal waters of western Korea: morphology and ribosomal DNA gene sequence
  publication-title: J. Eukaryot. Microbiol.
– volume: 32
  start-page: 170
  year: 2009
  end-page: 177
  article-title: Uric acid deposits in symbiotic marine algae
  publication-title: Plant Cell Environ.
– volume: 139
  start-page: 1069
  year: 2001
  end-page: 1078
  article-title: High genetic diversity and relative specificity among ‐like endosymbiotic dinoflagellates in soritid foraminiferans
  publication-title: Mar. Biol.
– volume: 9
  start-page: 45
  year: 1962
  end-page: 52
  article-title: gen. nov. and sp. nov., a zooxanthella: taxonomy, life cycle, and morphology
  publication-title: J. Protozool.
– volume: 45
  start-page: 65
  year: 2010
  end-page: 91
  article-title: Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs
  publication-title: Ocean Sci. J.
– volume: 11
  start-page: 36
  year: 2004
  end-page: 42
  article-title: Image processing with image
  publication-title: J. Biophotonics Int.
– volume: 30
  start-page: 999
  year: 1994
  end-page: 1011
  article-title: Identification of group and strain‐specific genetic makers for globally distributed (Dinophyceae) II. Sequence analysis of a fragment of the LSU rRNA gene
  publication-title: J. Phycol.
– volume: 29
  start-page: 173
  year: 2012
  end-page: 180
  article-title: Clade C dominates zooxanthellate corals (Scleractinia) in the temperate region of Japan
  publication-title: Zool. Sci.
– volume: 143
  start-page: 1193
  year: 2003
  end-page: 1199
  article-title: Specificity of two temperate dinoflagellate‐anthozoan associations from the north‐western Pacific Ocean
  publication-title: Mar. Biol.
– volume: 23
  start-page: 2947
  year: 2007
  end-page: 2948
  article-title: Clustal w and clustal x version 2.0
  publication-title: Bioinformatics
– volume: 30
  start-page: 149
  year: 1995
  end-page: 154
  article-title: sp. nov.: the dinoflagellate symbiont of the jellyfish
  publication-title: Eur. J. Phycol.
– ident: e_1_2_7_53_1
  doi: 10.1371/journal.pone.0002160
– ident: e_1_2_7_51_1
  doi: 10.1111/j.0022-3646.1991.00552.x
– ident: e_1_2_7_35_1
  doi: 10.1007/s00338-010-0635-0
– ident: e_1_2_7_59_1
  doi: 10.1111/j.0908-8857.2004.03297.x
– ident: e_1_2_7_17_1
  doi: 10.1111/j.1529-8817.2008.00621.x
– volume: 9
  start-page: 135
  year: 1993
  ident: e_1_2_7_86_1
  article-title: Microalgal‐invertebrate symbioses: a review
  publication-title: Endocyt. Cell Res.
  contributor:
    fullname: Trench R. K.
– ident: e_1_2_7_29_1
  doi: 10.1186/1471-2148-12-217
– ident: e_1_2_7_33_1
  doi: 10.1371/journal.pone.0029013
– ident: e_1_2_7_4_1
  doi: 10.1016/0022-0981(95)00073-9
– ident: e_1_2_7_27_1
  doi: 10.1111/j.1529-8817.1969.tb02624.x
– ident: e_1_2_7_66_1
  doi: 10.1016/S1055-7903(02)00010-6
– ident: e_1_2_7_37_1
  doi: 10.3354/meps284147
– ident: e_1_2_7_45_1
  doi: 10.1111/j.1529-8817.2009.00716.x
– ident: e_1_2_7_94_1
  doi: 10.1371/journal.pone.0006303
– ident: e_1_2_7_95_1
  doi: 10.1007/BF00175822
– ident: e_1_2_7_25_1
  doi: 10.1111/j.1550-7408.2011.00544.x
– ident: e_1_2_7_84_1
  doi: 10.1111/j.1365-294X.2007.03576.x
– ident: e_1_2_7_92_1
  doi: 10.1016/j.jembe.2003.08.003
– ident: e_1_2_7_48_1
  doi: 10.1111/j.0022-3646.1996.00987.x
– ident: e_1_2_7_44_1
  doi: 10.1017/S0025315400046270
– ident: e_1_2_7_49_1
  doi: 10.4319/lo.1981.26.4.0601
– ident: e_1_2_7_52_1
  doi: 10.4319/lo.1980.25.5.0943
– ident: e_1_2_7_47_1
  doi: 10.1201/9780849379901.ch12
– ident: e_1_2_7_7_1
  doi: 10.1126/science.229.4714.656
– ident: e_1_2_7_72_1
  doi: 10.1016/j.protis.2010.01.002
– ident: e_1_2_7_19_1
  doi: 10.1016/j.ympev.2011.01.006
– ident: e_1_2_7_31_1
  doi: 10.1046/j.1529-8817.2001.01031.x
– ident: e_1_2_7_46_1
  doi: 10.1016/0378-1119(88)90066-2
– ident: e_1_2_7_68_1
  doi: 10.1098/rspb.1980.0032
– ident: e_1_2_7_69_1
  doi: 10.1098/rspb.1980.0033
– ident: e_1_2_7_5_1
  doi: 10.1371/journal.pone.0035269
– ident: e_1_2_7_34_1
  doi: 10.2307/1542872
– volume: 11
  start-page: 36
  year: 2004
  ident: e_1_2_7_2_1
  article-title: Image processing with image
  publication-title: J. Biophotonics Int.
  contributor:
    fullname: Abramoff M. D.
– volume-title: Dinoflagellates
  year: 1984
  ident: e_1_2_7_74_1
  contributor:
    fullname: Spector D. L.
– ident: e_1_2_7_41_1
  doi: 10.1016/j.hal.2005.02.001
– ident: e_1_2_7_3_1
  doi: 10.1111/j.1529-8817.1993.tb00153.x
– ident: e_1_2_7_96_1
  doi: 10.1111/j.1529-8817.2005.04168.x
– ident: e_1_2_7_21_1
  doi: 10.1007/s00338-005-0063-8
– ident: e_1_2_7_16_1
  doi: 10.1016/S0022-0981(03)00242-9
– ident: e_1_2_7_73_1
  doi: 10.3354/meps08934
– ident: e_1_2_7_82_1
  doi: 10.1093/molbev/msm092
– ident: e_1_2_7_8_1
  doi: 10.1080/00288330.1983.9516003
– ident: e_1_2_7_67_1
  doi: 10.1098/rspb.1980.0031
– ident: e_1_2_7_77_1
  doi: 10.3354/meps08080
– ident: e_1_2_7_65_1
  doi: 10.1007/s10126-002-0076-z
– ident: e_1_2_7_70_1
  doi: 10.1111/j.0022-3646.1994.00999.x
– ident: e_1_2_7_43_1
  doi: 10.1046/j.1529-8817.2003.02112.x
– ident: e_1_2_7_55_1
  doi: 10.1016/j.ympev.2005.04.028
– ident: e_1_2_7_88_1
  doi: 10.1080/09670269500650911
– ident: e_1_2_7_15_1
  doi: 10.1111/j.1550-7408.1962.tb02579.x
– volume-title: PAUP*, Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0b10
  year: 2000
  ident: e_1_2_7_81_1
  contributor:
    fullname: Swofford D
– ident: e_1_2_7_80_1
  doi: 10.1111/j.1550-7408.1999.tb04619.x
– ident: e_1_2_7_89_1
  doi: 10.1111/j.0022-3646.1993.00314.x
– ident: e_1_2_7_61_1
  doi: 10.1073/pnas.89.8.3639
– ident: e_1_2_7_93_1
  doi: 10.1111/pre.12004
– ident: e_1_2_7_23_1
  doi: 10.1007/s12601-010-0007-2
– ident: e_1_2_7_36_1
  doi: 10.1111/j.1529-8817.2012.01217.x
– ident: e_1_2_7_18_1
  doi: 10.1111/j.0022-3646.2004.02-149.x
– ident: e_1_2_7_39_1
  doi: 10.1111/j.1365-2699.2010.02273.x
– ident: e_1_2_7_63_1
  doi: 10.1086/BBLv220n3p199
– volume: 31
  start-page: 436
  year: 1981
  ident: e_1_2_7_14_1
  article-title: Motility patterns of different strains of the symbiotic dinoflagellate Symbiodinium (=Gymnodinium) microadriaticum (Freudenthal) in culture
  publication-title: Bull. Mar. Sci.
  contributor:
    fullname: Fitt W. K.
– ident: e_1_2_7_76_1
  doi: 10.1093/bioinformatics/btl446
– ident: e_1_2_7_22_1
  doi: 10.1093/bioinformatics/17.8.754
– ident: e_1_2_7_12_1
  doi: 10.1007/s00248-010-9681-y
– ident: e_1_2_7_28_1
  doi: 10.1016/j.jembe.2011.12.002
– ident: e_1_2_7_54_1
  doi: 10.1007/s002270100674
– ident: e_1_2_7_75_1
  doi: 10.1016/S0022-5320(69)90033-1
– ident: e_1_2_7_78_1
  doi: 10.1371/journal.pone.0013991
– ident: e_1_2_7_83_1
  doi: 10.1073/pnas.0402907101
– ident: e_1_2_7_32_1
  doi: 10.1007/s00227-002-0829-2
– ident: e_1_2_7_26_1
  doi: 10.1111/j.1550-7408.2009.00462.x
– ident: e_1_2_7_58_1
  doi: 10.1007/s00227-003-1165-x
– ident: e_1_2_7_30_1
  doi: 10.1093/bioinformatics/btm404
– ident: e_1_2_7_13_1
  doi: 10.1111/j.1469-8137.1983.tb03456.x
– ident: e_1_2_7_56_1
  doi: 10.1007/s00338-007-0279-x
– ident: e_1_2_7_20_1
  doi: 10.1007/s00227-008-1011-2
– ident: e_1_2_7_10_1
  doi: 10.1111/j.1365-3040.2008.01909.x
– ident: e_1_2_7_71_1
  doi: 10.1007/s00227-003-1157-x
– ident: e_1_2_7_64_1
  doi: 10.1111/j.1529-8817.2004.03186.x
– ident: e_1_2_7_24_1
  doi: 10.1073/pnas.1204302109
– ident: e_1_2_7_91_1
  doi: 10.1111/jpy.12055
– ident: e_1_2_7_57_1
  doi: 10.1016/j.ympev.2010.03.040
– ident: e_1_2_7_42_1
  doi: 10.1128/AEM.01578-08
– ident: e_1_2_7_87_1
  doi: 10.1111/j.1529-8817.1987.tb02534.x
– ident: e_1_2_7_9_1
  doi: 10.1007/s00338-004-0389-7
– ident: e_1_2_7_40_1
  doi: 10.2108/zsj.29.173
– ident: e_1_2_7_79_1
  doi: 10.1371/journal.pone.0042780
– ident: e_1_2_7_11_1
  doi: 10.1007/s11802-007-0033-6
– ident: e_1_2_7_50_1
  doi: 10.1016/j.hal.2008.09.003
– ident: e_1_2_7_60_1
  doi: 10.1126/science.251.4999.1348
– ident: e_1_2_7_6_1
  doi: 10.1007/BF00936511
– volume: 23
  start-page: 596
  year: 2004
  ident: e_1_2_7_38_1
  article-title: High diversity and host specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii
  publication-title: Coral Reefs
  contributor:
    fullname: LaJeunesse T. C.
– ident: e_1_2_7_62_1
  doi: 10.1111/j.1365-294X.2008.04037.x
– ident: e_1_2_7_85_1
  doi: 10.1111/evo.12270
– ident: e_1_2_7_90_1
  doi: 10.1007/s00338-008-0434-z
SSID ssj0016211
Score 2.393913
Snippet Dinoflagellates in the genus Symbiodinium are ubiquitous in shallow marine habitats where they commonly exist in symbiosis with cnidarians. Attempts to culture...
Dinoflagellates in the genus Symbiodinium are ubiquitous in shallow marine habitats where they commonly exist in symbiosis with cnidarians. Attempts to culture...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 75
SubjectTerms Alveolata - classification
Alveolata - cytology
Alveolata - genetics
Alveolata - isolation & purification
Animals
California
Cluster Analysis
Cytochromes b - genetics
Dinophyceae
DNA, Protozoan - chemistry
DNA, Protozoan - genetics
DNA, Ribosomal - chemistry
DNA, Ribosomal - genetics
Genes, rRNA
Mediterranean Sea
Microscopy
Molecular Sequence Data
Organelles - ultrastructure
Pacific Ocean
Phylogeny
plastid genes
RNA, Protozoan - genetics
RNA, Ribosomal, 23S
Seawater - parasitology
Sequence Analysis, DNA
Spain
species
Symbiodinium
systematics
taxonomy
Title Genetics and Morphology Characterize the Dinoflagellate Symbiodinium voratum, n. sp., (Dinophyceae) as the Sole Representative of Symbiodinium Clade E
URI https://api.istex.fr/ark:/67375/WNG-LH2F3ZGQ-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjeu.12088
https://www.ncbi.nlm.nih.gov/pubmed/24460699
https://search.proquest.com/docview/1492686990
https://search.proquest.com/docview/1500800873
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1taxQxEA5aEfxS39utL0QRqdA9djfZTUI_letdD9GinkXplyXZncDRu93S7RbrD_H3OsneLR6oCH4L7GwSMjPJM0nmCSGvhLSR47wLEf3KkJdWh0rpIrTWyFQoY4zfzJlMxfFXeThyNDn7q1yYjh-i33BznuHna-fg2jS_Ojm0gzhBJ8H5F6MEn77BPvQnCFni397FiCdzwRZfsgr5WzyrP9fWoltuWL_9Dmiu41a_8Izv_leX75HNJd6kB52B3Cc3oHpAbncvUF5j6bT2pYfkhyOgdpzNVFclfV_j-PsvdNhTOn8HinCRHs6q2s5xHkILugQ6vV6YWY1L4Kxd0CtnUe1ij1YD2pwP9uiuk0ZVFqDhDdWNr2Faz4F-8ndwu9SnK6C1Xa9pONcl0NEjcjIefR5OwuWjDWHh0lxDk3CpolI7_uMUrCh4GQuwOhYmBi4YYHyE1st4KSWzUQbGpDwz3ESqFIJl7DHZqOoKtgmNdQGFjBTEouQM43jF0Hh0ZBwm41oE5OVKffl5x82R9zENOJJsHOqAvPaK7SX0xZm7zCbS_MvxUf5ukozZ6dHHfByQFyvN5-hi7txEV1C3DUZHKskkNh_9RSb12FsKFpCtzmz6FhFBYZioVEB2vXX8ubP529GJL-z8u-gTcgdBHO-2hZ6SjcuLFp6Rm03ZPvce8RMMGAxs
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELbYJgQv_IYFBhiE0JCWKomd2JZ4QV27Al0FdBNoL5GdXKRqbTKty7TtD9nfy9lpIyoBQuLNUi625buzvzvbnwl5I2QRWM47H9Gv9HleaF8pnflFYWQslDHGJXMGYzH6IXd7libn_fIuTMMP0SbcrGe4-do6uE1I_-rlUHfCCL1kjWzwBA3RXuBgX9o9hCRyr-9izJPYcIsveIXcOZ7lryur0YYd2IvfQc1V5OqWnv7d_-v0PXJnATnph8ZG7pMbUD4gN5tHKC-xdFS50kNybTmoLW0z1WVO9ytUgftCuy2r8xVQRIx0d1JWxRSnIjSiM6Djy5mZVLgKTuoZPbdGVc92aNmh85PODt220qjNDDS8o3ruahhXU6Df3DHc5vbTOdCqWK2pO9U50N4jctjvHXQH_uLdBj-zN119E3GpglxbCuQYCpHxPBRQ6FCYELhggCESGjDjuZSsCBIwJuaJ4SZQuRAsYY_JelmVsEloqDPIZKAgFDlnGMorhvajA2NhGdfCI6-X-ktPGnqOtA1rwPJk41B75K3TbCuhT4_teTYRp99He-lwEPXZ0d7XtO-RV0vVp-hldutEl1DVcwyQVJRIbD74i0zs4LcUzCNPGrtpW0QQhZGiUh7Zdubx586mn3qHrvD030VfkluDg_1hOvw4-vyM3EZMx5ss0RZZPzut4TlZm-f1C-cePwH1mBCU
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbYJhAv3C_hahBCQ1qqJHZiWzyhtlmBUQ26CbSXyI5tqaJNqnWZGD-E38ux00ZUAoTEm6U4tuXzHfs7vnxG6AXjNnKadyGwXx5SbWUohCxDaxVPmVBK-cWc0YSNv_DB0MnkvF7fhWn1IboFN-cZfrx2Dr7Q9lcnN00vTsBJttAOBRruhPMJOey2ELLEP74LIU_moi26khXyx3jWv25MRjuuX7_9jmluElc_8-TX_6vNN9C1FeHEb1qE3ESXTHULXW6foLyA1EntU7fRD6dA7USbsaw0_lCDAfwX3O80nb8bDHwRD6ZVbWcwEAGEzgyeXMzVtIY5cNrM8bmDVDPfw1UPLxe9PbzrcoMtSyPNKyyXvoRJPTP4kz-E2959Oje4tpsl9WdSGzy8g47z4VF_FK5ebQhLd881VAnlItLSCSCnxrKS6pgZK2OmYkMZMRAgAXwJ1ZwTG2VGqZRmiqpIaMZIRu6i7aquzH2EY1makkfCxExTAoG8IIAeGSlHyqhkAXq-Nl-xaMU5ii6oMU4lG7o6QC-9Ybsc8vSrO83G0uLzeL84GCU5Odn_WOQBera2fAE-5jZOZGXqZgnhkUgyDtVHf8mTevLNGQnQvRY2XY1AoQCgQgRo16Pjz40t3g2PfeLBv2d9iq4cDvLi4O34_UN0FQgdbZeIHqHts9PGPEZbS9088c7xE5dzDzo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetics+and+Morphology+Characterize+the+Dinoflagellate+Symbiodinium+voratum%2C+n.+sp.%2C+%28Dinophyceae%29+as+the+Sole+Representative+of+Symbiodinium+Clade+E&rft.jtitle=The+Journal+of+eukaryotic+microbiology&rft.au=Jeong%2C+Hae+Jin&rft.au=Lee%2C+Sung+Yeon&rft.au=Kang%2C+Nam+Seon&rft.au=Yoo%2C+Yeong+Du&rft.date=2014-01-01&rft.issn=1066-5234&rft.eissn=1550-7408&rft.volume=61&rft.issue=1&rft.spage=75&rft.epage=94&rft_id=info:doi/10.1111%2Fjeu.12088&rft.externalDBID=10.1111%252Fjeu.12088&rft.externalDocID=JEU12088
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-5234&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-5234&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-5234&client=summon