Genetics and Morphology Characterize the Dinoflagellate Symbiodinium voratum, n. sp., (Dinophyceae) as the Sole Representative of Symbiodinium Clade E
Dinoflagellates in the genus Symbiodinium are ubiquitous in shallow marine habitats where they commonly exist in symbiosis with cnidarians. Attempts to culture them often retrieve isolates that may not be symbiotic, but instead exist as free‐living species. In particular, cultures of Symbiodinium cl...
Saved in:
Published in: | The Journal of eukaryotic microbiology Vol. 61; no. 1; pp. 75 - 94 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Blackwell Publishing Ltd
01-01-2014
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Dinoflagellates in the genus Symbiodinium are ubiquitous in shallow marine habitats where they commonly exist in symbiosis with cnidarians. Attempts to culture them often retrieve isolates that may not be symbiotic, but instead exist as free‐living species. In particular, cultures of Symbiodinium clade E obtained from temperate environments were recently shown to feed phagotrophically on bacteria and microalgae. Genetic, behavioral, and morphological evidence indicate that strains of clade E obtained from the northwestern, southwestern, and northeastern temperate Pacific Ocean as well as the Mediterranean Sea constitute a single species: Symbiodinium voratum n. sp. Chloroplast ribosomal 23S and mitochondrial cytochrome b nucleotide sequences were the same for all isolates. The D1/D2 domains of nuclear ribosomal DNA were identical among Western Pacific strains, but single nucleotide substitutions differentiated isolates from California (USA) and Spain. Phylogenetic analyses demonstrated that S. voratum is well‐separated evolutionarily from other Symbiodinium spp. The motile, or mastigote, cells from different cultures were morphologically similar when observed using light, scanning, and transmission electron microscopy; and the first complete Kofoidian plate formula for a Symbiodinium sp. was characterized. As the largest of known Symbiodinium spp., the average coccoid cell diameters measured among cultured isolates ranged between 12.2 (± 0.2 SE) and 13.3 (± 0.2 SE) μm. Unique among species in the genus, a high proportion (approximately 10–20%) of cells remain motile in culture during the dark cycle. Although S. voratum occurs on surfaces of various substrates and is potentially common in the plankton of coastal areas, it may be incapable of forming stable mutualistic symbioses. |
---|---|
AbstractList | Dinoflagellates in the genus Symbiodinium are ubiquitous in shallow marine habitats where they commonly exist in symbiosis with cnidarians. Attempts to culture them often retrieve isolates that may not be symbiotic, but instead exist as free-living species. In particular, cultures of Symbiodinium clade E obtained from temperate environments were recently shown to feed phagotrophically on bacteria and microalgae. Genetic, behavioral, and morphological evidence indicate that strains of clade E obtained from the northwestern, southwestern, and northeastern temperate Pacific Ocean as well as the Mediterranean Sea constitute a single species: Symbiodinium voratum n. sp. Chloroplast ribosomal 23S and mitochondrial cytochrome b nucleotide sequences were the same for all isolates. The D1/D2 domains of nuclear ribosomal DNA were identical among Western Pacific strains, but single nucleotide substitutions differentiated isolates from California (USA) and Spain. Phylogenetic analyses demonstrated that S. voratum is well-separated evolutionarily from other Symbiodinium spp. The motile, or mastigote, cells from different cultures were morphologically similar when observed using light, scanning, and transmission electron microscopy; and the first complete Kofoidian plate formula for a Symbiodinium sp. was characterized. As the largest of known Symbiodinium spp., the average coccoid cell diameters measured among cultured isolates ranged between 12.2 (± 0.2 SE) and 13.3 (± 0.2 SE) μm. Unique among species in the genus, a high proportion (approximately 10-20%) of cells remain motile in culture during the dark cycle. Although S. voratum occurs on surfaces of various substrates and is potentially common in the plankton of coastal areas, it may be incapable of forming stable mutualistic symbioses. Dinoflagellates in the genus Symbiodinium are ubiquitous in shallow marine habitats where they commonly exist in symbiosis with cnidarians. Attempts to culture them often retrieve isolates that may not be symbiotic, but instead exist as free‐living species. In particular, cultures of Symbiodinium clade E obtained from temperate environments were recently shown to feed phagotrophically on bacteria and microalgae. Genetic, behavioral, and morphological evidence indicate that strains of clade E obtained from the northwestern, southwestern, and northeastern temperate Pacific Ocean as well as the Mediterranean Sea constitute a single species: Symbiodinium voratum n. sp. Chloroplast ribosomal 23S and mitochondrial cytochrome b nucleotide sequences were the same for all isolates. The D1/D2 domains of nuclear ribosomal DNA were identical among Western Pacific strains, but single nucleotide substitutions differentiated isolates from California (USA) and Spain. Phylogenetic analyses demonstrated that S. voratum is well‐separated evolutionarily from other Symbiodinium spp. The motile, or mastigote, cells from different cultures were morphologically similar when observed using light, scanning, and transmission electron microscopy; and the first complete Kofoidian plate formula for a Symbiodinium sp. was characterized. As the largest of known Symbiodinium spp., the average coccoid cell diameters measured among cultured isolates ranged between 12.2 (± 0.2 SE) and 13.3 (± 0.2 SE) μm. Unique among species in the genus, a high proportion (approximately 10–20%) of cells remain motile in culture during the dark cycle. Although S. voratum occurs on surfaces of various substrates and is potentially common in the plankton of coastal areas, it may be incapable of forming stable mutualistic symbioses. Dinoflagellates in the genus Symbiodinium are ubiquitous in shallow marine habitats where they commonly exist in symbiosis with cnidarians. Attempts to culture them often retrieve isolates that may not be symbiotic, but instead exist as free-living species. In particular, cultures of Symbiodinium clade E obtained from temperate environments were recently shown to feed phagotrophically on bacteria and microalgae. Genetic, behavioral, and morphological evidence indicate that strains of clade E obtained from the northwestern, southwestern, and northeastern temperate Pacific Ocean as well as the Mediterranean Sea constitute a single species: Symbiodinium voratum n. sp. Chloroplast ribosomal 23S and mitochondrial cytochrome b nucleotide sequences were the same for all isolates. The D1/D2 domains of nuclear ribosomal DNA were identical among Western Pacific strains, but single nucleotide substitutions differentiated isolates from California (USA) and Spain. Phylogenetic analyses demonstrated that S. voratum is well-separated evolutionarily from other Symbiodinium spp. The motile, or mastigote, cells from different cultures were morphologically similar when observed using light, scanning, and transmission electron microscopy; and the first complete Kofoidian plate formula for a Symbiodinium sp. was characterized. As the largest of known Symbiodinium spp., the average coccoid cell diameters measured among cultured isolates ranged between 12.2 ( plus or minus 0.2 SE) and 13.3 ( plus or minus 0.2 SE) mu m. Unique among species in the genus, a high proportion (approximately 10-20%) of cells remain motile in culture during the dark cycle. Although S. voratum occurs on surfaces of various substrates and is potentially common in the plankton of coastal areas, it may be incapable of forming stable mutualistic symbioses. Dinoflagellates in the genus Symbiodinium are ubiquitous in shallow marine habitats where they commonly exist in symbiosis with cnidarians. Attempts to culture them often retrieve isolates that may not be symbiotic, but instead exist as free‐living species. In particular, cultures of Symbiodinium clade E obtained from temperate environments were recently shown to feed phagotrophically on bacteria and microalgae. Genetic, behavioral, and morphological evidence indicate that strains of clade E obtained from the northwestern, southwestern, and northeastern temperate Pacific Ocean as well as the Mediterranean Sea constitute a single species: Symbiodinium voratum n. sp. Chloroplast ribosomal 23S and mitochondrial cytochrome b nucleotide sequences were the same for all isolates. The D1/D2 domains of nuclear ribosomal DNA were identical among Western Pacific strains, but single nucleotide substitutions differentiated isolates from California ( USA ) and Spain. Phylogenetic analyses demonstrated that S. voratum is well‐separated evolutionarily from other Symbiodinium spp. The motile, or mastigote, cells from different cultures were morphologically similar when observed using light, scanning, and transmission electron microscopy; and the first complete Kofoidian plate formula for a Symbiodinium sp. was characterized. As the largest of known Symbiodinium spp., the average coccoid cell diameters measured among cultured isolates ranged between 12.2 (± 0.2 SE ) and 13.3 (± 0.2 SE ) μm. Unique among species in the genus, a high proportion (approximately 10–20%) of cells remain motile in culture during the dark cycle. Although S. voratum occurs on surfaces of various substrates and is potentially common in the plankton of coastal areas, it may be incapable of forming stable mutualistic symbioses. |
Author | Lim, An Suk Kang, Nam Seon Yoo, Yeong Du Lee, Sung Yeon Lee, Moo Joon Kim, Hyung Seop LaJeunesse, Todd C. Jeong, Hae Jin Yih, Wonho Yamashita, Hiroshi |
Author_xml | – sequence: 1 givenname: Hae Jin surname: Jeong fullname: Jeong, Hae Jin organization: School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University, 151-747, Seoul, Korea – sequence: 2 givenname: Sung Yeon surname: Lee fullname: Lee, Sung Yeon organization: School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University, 151-747, Seoul, Korea – sequence: 3 givenname: Nam Seon surname: Kang fullname: Kang, Nam Seon organization: School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University, 151-747, Seoul, Korea – sequence: 4 givenname: Yeong Du surname: Yoo fullname: Yoo, Yeong Du organization: School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University, 151-747, Seoul, Korea – sequence: 5 givenname: An Suk surname: Lim fullname: Lim, An Suk organization: School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University, 151-747, Seoul, Korea – sequence: 6 givenname: Moo Joon surname: Lee fullname: Lee, Moo Joon organization: School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University, 151-747, Seoul, Korea – sequence: 7 givenname: Hyung Seop surname: Kim fullname: Kim, Hyung Seop organization: Department of Oceanography, Kunsan National University, 573-701, Kunsan, Korea – sequence: 8 givenname: Wonho surname: Yih fullname: Yih, Wonho organization: Department of Oceanography, Kunsan National University, 573-701, Kunsan, Korea – sequence: 9 givenname: Hiroshi surname: Yamashita fullname: Yamashita, Hiroshi organization: Seikai National Fisheries Research Institute, Fisheries Research Agency, Fukai-Ohta, 907-0451, Ishigaki Okinawa, Japan – sequence: 10 givenname: Todd C. surname: LaJeunesse fullname: LaJeunesse, Todd C. email: tcl3@psu.edu organization: Department of Biology, 327 Mueller Laboratory, Pennsylvania State University, PA, 16802, University Park, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24460699$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctu1DAUhi1URC-w4AWQl63UTH2LnSzRdGYKGkBQKiQ2lpOcdFySONhOITwIz0um01ZigbAs2Yvv_6Rz_kO017kOEHpJyYxO5-wGhhllJMueoAOapiRRgmR7059ImaSMi310GMINIVQySp-hfSaEJDLPD9DvFXQQbRmw6Sr8zvl-4xp3PeL5xnhTRvD2F-C4AXxuO1c35hqaxkTAl2NbWFfZzg4tvnXexKE9xd0Mh352io-3dL8ZSzBwgk24M1y6BvAn6D0E6KKJ9hawq_82zRtTAV48R09r0wR4cf8eoavl4vP8Ill_WL2Zv14npZAsSwomspxUJieSpVCrUlRUQW2oKigIxUGlHEzFRZVlvCYSiiIVshAFySuluORH6Hjn7b37PkCIurWh3I7YgRuCpikh2XQV_z8qciazaalkQk92aOldCB5q3XvbGj9qSvS2MT01pu8am9hX99qhaKF6JB8qmoCzHfDDNjD-26TfLq4elMkuYUOEn48J479pqbhK9Zf3K72-YEv-dfVRL_kfNG2xkQ |
CitedBy_id | crossref_primary_10_1111_jpy_12486 crossref_primary_10_1080_09670262_2015_1054892 crossref_primary_10_1111_mec_15719 crossref_primary_10_2216_13_186_1 crossref_primary_10_4490_algae_2020_35_8_20 crossref_primary_10_1016_j_hal_2014_04_001 crossref_primary_10_1111_1755_0998_13004 crossref_primary_10_1016_j_hal_2024_102658 crossref_primary_10_1016_j_cub_2018_07_008 crossref_primary_10_1016_j_oceano_2016_04_006 crossref_primary_10_1111_jpy_13007 crossref_primary_10_1111_jpy_12999 crossref_primary_10_4490_algae_2014_29_2_075 crossref_primary_10_1086_696977 crossref_primary_10_1111_jpy_12570 crossref_primary_10_1111_mec_14055 crossref_primary_10_1007_s00227_015_2736_3 crossref_primary_10_1007_s00338_020_01911_z crossref_primary_10_4490_algae_2019_34_5_25 crossref_primary_10_7717_peerj_15023 crossref_primary_10_1016_j_hal_2014_04_017 crossref_primary_10_1016_j_protis_2015_10_003 crossref_primary_10_1093_gbe_evw019 crossref_primary_10_1029_2020JG006172 crossref_primary_10_3389_fmicb_2014_00445 crossref_primary_10_1007_s00338_015_1286_y crossref_primary_10_1007_s00248_015_0724_2 crossref_primary_10_1016_j_seares_2018_11_010 crossref_primary_10_1007_s00338_016_1458_4 crossref_primary_10_1111_mec_13676 crossref_primary_10_1111_mec_13631 crossref_primary_10_1073_pnas_2100493118 crossref_primary_10_1039_D2LC00130F crossref_primary_10_7717_peerj_14006 crossref_primary_10_1111_nph_13483 crossref_primary_10_1111_jpy_12340 crossref_primary_10_1007_s10126_014_9581_0 crossref_primary_10_1111_mec_12869 crossref_primary_10_3755_galaxea_18_1_13 crossref_primary_10_1371_journal_pone_0187707 crossref_primary_10_1007_s12601_017_0025_4 crossref_primary_10_2108_zs230045 crossref_primary_10_1371_journal_pone_0290649 crossref_primary_10_3389_fmicb_2020_00847 crossref_primary_10_1016_j_cub_2018_09_024 crossref_primary_10_4490_algae_2014_29_4_299 crossref_primary_10_1016_j_marpolbul_2022_114032 crossref_primary_10_1038_s41396_021_01007_8 crossref_primary_10_1093_ismejo_wrae059 crossref_primary_10_1038_s41598_020_76621_1 crossref_primary_10_1134_S1063074021020127 crossref_primary_10_1111_jpy_12232 crossref_primary_10_3389_fevo_2024_1333028 crossref_primary_10_1016_j_hal_2018_03_009 crossref_primary_10_1038_srep32366 crossref_primary_10_3390_su12093928 crossref_primary_10_7554_eLife_42507 crossref_primary_10_4490_algae_2014_29_2_137 crossref_primary_10_1186_s12866_020_01765_z crossref_primary_10_1080_09670262_2015_1025857 crossref_primary_10_1016_j_tim_2022_02_001 crossref_primary_10_1038_s41396_020_0629_z crossref_primary_10_1080_09670262_2018_1466200 crossref_primary_10_1086_710349 crossref_primary_10_1007_s13199_014_0308_9 crossref_primary_10_1007_s00338_022_02222_1 crossref_primary_10_1111_jpy_12749 crossref_primary_10_4490_algae_2015_30_3_183 crossref_primary_10_1080_09670262_2015_1018336 crossref_primary_10_3389_fmars_2021_740416 crossref_primary_10_1111_jeu_12692 crossref_primary_10_1007_s00338_021_02092_z |
Cites_doi | 10.1371/journal.pone.0002160 10.1111/j.0022-3646.1991.00552.x 10.1007/s00338-010-0635-0 10.1111/j.0908-8857.2004.03297.x 10.1111/j.1529-8817.2008.00621.x 10.1186/1471-2148-12-217 10.1371/journal.pone.0029013 10.1016/0022-0981(95)00073-9 10.1111/j.1529-8817.1969.tb02624.x 10.1016/S1055-7903(02)00010-6 10.3354/meps284147 10.1111/j.1529-8817.2009.00716.x 10.1371/journal.pone.0006303 10.1007/BF00175822 10.1111/j.1550-7408.2011.00544.x 10.1111/j.1365-294X.2007.03576.x 10.1016/j.jembe.2003.08.003 10.1111/j.0022-3646.1996.00987.x 10.1017/S0025315400046270 10.4319/lo.1981.26.4.0601 10.4319/lo.1980.25.5.0943 10.1201/9780849379901.ch12 10.1126/science.229.4714.656 10.1016/j.protis.2010.01.002 10.1016/j.ympev.2011.01.006 10.1046/j.1529-8817.2001.01031.x 10.1016/0378-1119(88)90066-2 10.1098/rspb.1980.0032 10.1098/rspb.1980.0033 10.1371/journal.pone.0035269 10.2307/1542872 10.1016/j.hal.2005.02.001 10.1111/j.1529-8817.1993.tb00153.x 10.1111/j.1529-8817.2005.04168.x 10.1007/s00338-005-0063-8 10.1016/S0022-0981(03)00242-9 10.3354/meps08934 10.1093/molbev/msm092 10.1080/00288330.1983.9516003 10.1098/rspb.1980.0031 10.3354/meps08080 10.1007/s10126-002-0076-z 10.1111/j.0022-3646.1994.00999.x 10.1046/j.1529-8817.2003.02112.x 10.1016/j.ympev.2005.04.028 10.1080/09670269500650911 10.1111/j.1550-7408.1962.tb02579.x 10.1111/j.1550-7408.1999.tb04619.x 10.1111/j.0022-3646.1993.00314.x 10.1073/pnas.89.8.3639 10.1111/pre.12004 10.1007/s12601-010-0007-2 10.1111/j.1529-8817.2012.01217.x 10.1111/j.0022-3646.2004.02-149.x 10.1111/j.1365-2699.2010.02273.x 10.1086/BBLv220n3p199 10.1093/bioinformatics/btl446 10.1093/bioinformatics/17.8.754 10.1007/s00248-010-9681-y 10.1016/j.jembe.2011.12.002 10.1007/s002270100674 10.1016/S0022-5320(69)90033-1 10.1371/journal.pone.0013991 10.1073/pnas.0402907101 10.1007/s00227-002-0829-2 10.1111/j.1550-7408.2009.00462.x 10.1007/s00227-003-1165-x 10.1093/bioinformatics/btm404 10.1111/j.1469-8137.1983.tb03456.x 10.1007/s00338-007-0279-x 10.1007/s00227-008-1011-2 10.1111/j.1365-3040.2008.01909.x 10.1007/s00227-003-1157-x 10.1111/j.1529-8817.2004.03186.x 10.1073/pnas.1204302109 10.1111/jpy.12055 10.1016/j.ympev.2010.03.040 10.1128/AEM.01578-08 10.1111/j.1529-8817.1987.tb02534.x 10.1007/s00338-004-0389-7 10.2108/zsj.29.173 10.1371/journal.pone.0042780 10.1007/s11802-007-0033-6 10.1016/j.hal.2008.09.003 10.1126/science.251.4999.1348 10.1007/BF00936511 10.1111/j.1365-294X.2008.04037.x 10.1111/evo.12270 10.1007/s00338-008-0434-z |
ContentType | Journal Article |
Copyright | 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists. |
Copyright_xml | – notice: 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists – notice: 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7TN 8FD F1W FR3 H95 L.G M7N P64 RC3 |
DOI | 10.1111/jeu.12088 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Oceanic Abstracts Technology Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE - Academic MEDLINE Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology Biology |
EISSN | 1550-7408 |
EndPage | 94 |
ExternalDocumentID | 10_1111_jeu_12088 24460699 JEU12088 ark_67375_WNG_LH2F3ZGQ_F |
Genre | article Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Pacific Ocean California Mediterranean Sea Spain INE, USA, California ANE, Spain |
GeographicLocations_xml | – name: Mediterranean Sea – name: Spain – name: California – name: Pacific Ocean – name: INE, USA, California – name: ANE, Spain |
GrantInformation_xml | – fundername: Mid‐career Researcher Program funderid: 2012‐R1A2A2A01010987 – fundername: National Research Foundation/Ministry of Science, ICT & Future Planning funderid: NRF‐C1ABA001‐2010‐0020702 – fundername: Ecological Disturbance Research Program – fundername: Korea Institute of Marine Science & Technology Promotion/KMLTM – fundername: The National Science Foundation funderid: OCE‐0928764 |
GroupedDBID | --- -DZ -JH -~X .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29K 31~ 33P 36B 3O- 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 702 7PT 8-0 8-1 8-3 8-4 8-5 85S 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AANLZ AAONW AAPSS AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACKIV ACNCT ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADHSS ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEPYG AEQDE AEUQT AEUYR AFBPY AFEBI AFFIJ AFFNX AFFPM AFGKR AFNWH AFPWT AFZJQ AGCDD AHBTC AHEFC AI. AITYG AIURR AIWBW AJBDE AJXKR AKPMI ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CAG COF CS3 D-E D-F D-I D0L DC7 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EJD EMB EMOBN F00 F01 F04 F5P FEDTE FSRTE FZ0 G-S G.N GODZA H.T H.X H13 HF~ HGLYW HVGLF HZI HZ~ H~9 J0M K48 L7B LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MM. MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OHT OIG P2P P2W P2X P4D PALCI PQ0 Q.N Q11 Q5J QB0 R.K RBO RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TN5 TWZ UB1 UKR UPT VH1 W8V W99 WBKPD WH7 WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XJT XOL YHZ YQT YZZ ZCG ZXP ZZTAW ~IA ~KM ~WT CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7X8 7TN 8FD F1W FR3 H95 L.G M7N P64 RC3 |
ID | FETCH-LOGICAL-c4628-b24890da90625ef7c4d17efa17b1e473e753ead34d883f06ebb546b4b09d77363 |
IEDL.DBID | 33P |
ISSN | 1066-5234 |
IngestDate | Fri Aug 16 02:08:16 EDT 2024 Fri Aug 16 09:46:21 EDT 2024 Thu Nov 21 20:53:31 EST 2024 Sat Sep 28 07:59:38 EDT 2024 Sat Aug 24 00:53:26 EDT 2024 Wed Oct 30 09:56:39 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | phylogeny plastid genes taxonomy systematics species |
Language | English |
License | 2013 The Author(s) Journal of Eukaryotic Microbiology © 2013 International Society of Protistologists. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4628-b24890da90625ef7c4d17efa17b1e473e753ead34d883f06ebb546b4b09d77363 |
Notes | National Research Foundation/Ministry of Science, ICT & Future Planning - No. NRF-C1ABA001-2010-0020702 ArticleID:JEU12088 ark:/67375/WNG-LH2F3ZGQ-F Fig. S1. Temperate Pacific Ocean and Mediterranean Sea origins of cultured isolates assigned to Symbiodinium clade E and used in this research to investigate genetic, morphological, ecological, and behavioral traits (designated by solid circles). Open white circles represent additional locals where clade E was reported to be cultured from water samples, but these cultures were not investigated in this study. Fig. S2. Consensus Bayesian tree based on 1,814 bp aligned positions of the small subunit (SSU) region, using the GTR + G + I model with Prorocentrum micans as an outgroup taxa. The parameters were as follows: assumed nucleotide frequency with equal; substitution rate matrix with A-C substitutions = 0.0586, A-G substitutions = 0.2383, A-T substitutions = 0.0869, C-G substitutions = 0.0578, C-T substitutions = 0.5156, G-T substitutions = 0.0428; proportion of sites assumed to be invariable = 0.7004; and rates for variable sites assumed to follow a gamma distribution with shape parameter = 0.0800. The branch lengths are proportional to the amount of character changes. The numbers above the branches indicate the Bayesian posterior probability (left) and maximum likelihood (ML) bootstrap values (right). Posterior probabilities ≥ 0.5 are shown. The rDNA sequences of the strains shown in bold were analyzed in this study. Fig. S3. Consensus Bayesian tree based on 853 bp aligned positions of the internal transcribed spacer 1 (ITS1), 5.8s, and internal transcribed spacer 2 (ITS2) regions, using the GTR + G + I model and Akashiwo sanguinea as an outgroup taxa. The parameters were as follows: assumed nucleotide frequency with equal; substitution rate matrix with A-C substitutions = 0.1038, A-G substitutions = 0.2646, A-T substitutions = 0.1320, C-G substitutions = 0.0625, C-T substitutions = 0.3480, G-T substitutions = 0.0892; proportion of sites assumed to be invariable = 0.1153; and rates for variable sites assumed to follow a gamma distribution with shape parameter = 1.5640. The branch lengths are proportional to the amount of character changes. The numbers above the branches indicate the Bayesian posterior probability (left) and maximum likelihood (ML) bootstrap values (right). Posterior probabilities ≥ 0.5 are shown. Strain EU074907 marked with an asterisk represents a combination of other similar species (EU074916, EU074917, EU074919, EU074920, EU074921, EU074922, EU074923, and EU074924). Fig. S4. Partial psbA and psbAncr alignments identify four distinct haplotypes (hap1-hap4). The start of gray areas indicates regions where chromatograms change abruptly from a high quality to non-interpretable multipeak sequences. Fig. S5. Position of the nucleus in mastigotes of SvFL 1. (A-C) light micrographs of flagellated cells and (D-F) corresponding epi-fluorescent micrographs showing the variable location of DAPI stained nuclei. Fig. S6. Scanning electron micrographs of the motile cell of CCMP 421. (A) Apical view showing the rare example of a cell with seven apical plates. (B) Enlarged figure of apical plate in S4. (C) Apical view showing a cell with six apical plates. (D) Enlarged figure of apical plate in S6. All scale bars = 1 μm. Fig. S7. Scanning electron micrographs of motile cells of SvFL 1. (A) Antapical view showing the hyposome. Micrograph showing a rare cell with seven postcingular plates and heptagonal 2″″ plates. (B). Drawing of antapical view of SvFL 1. (C) Micrograph showing an example of a cell with three antapical plates. (D) Drawing of antapical view of SvFL 1. All scale bars = 1 μm. Fig. S8. The pyrenoid (PY) in the cells of isolates (A) SvFL 1 and (B) CCMP 421 possessed two stalks. The thylakoids from associated chloroplast do not intrude. Table S1. Primers and TaqMan probes for qPCR detection of Symbiodinium voratum (clade E). Table S2. Symbiodinium spp. used to test the cross-reactivity of clade E primers and Taqman probe in qPCR detection. Ecological Disturbance Research Program Korea Institute of Marine Science & Technology Promotion/KMLTM istex:8A79EA2EA39D1DF0FA8104F3FCC09874A2BEC602 The National Science Foundation - No. OCE-0928764 Mid-career Researcher Program - No. 2012-R1A2A2A01010987 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 24460699 |
PQID | 1492686990 |
PQPubID | 23479 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_1500800873 proquest_miscellaneous_1492686990 crossref_primary_10_1111_jeu_12088 pubmed_primary_24460699 wiley_primary_10_1111_jeu_12088_JEU12088 istex_primary_ark_67375_WNG_LH2F3ZGQ_F |
PublicationCentury | 2000 |
PublicationDate | January/February 2014 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – month: 01 year: 2014 text: January/February 2014 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of eukaryotic microbiology |
PublicationTitleAlternate | J. Eukaryot. Microbiol |
PublicationYear | 2014 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | Udy, J. W., Hinde, R. & Vesk, M. 1993. Chromosomes and DNA in Symbiodinium from Australian hosts. J. Phycol., 29:314-320. Wang, L. H., Liu, Y. H., Ju, Y. M., Hsiao, Y. Y., Fang, L. S. & Chen, C. S. 2008. Cell cycle propagation is driven by light-dark stimulation in a cultured symbiotic dinoflagellate isolated from corals. Coral Reefs, 27:823-835. Chang, F. H. 1983. Winter phytoplankton and microzooplankton populations off the coast of Westland, New Zealand, 1979. N. Z. J. Mar. Freshw. Res., 17:279-304. Finney, J. C., Pettay, T., Sampayo, E. M., Warner, M. E., Oxenford, H. & LaJeunesse, T. C. 2010. The relative significance of host-habitat, depth, and geography on the ecology, endemism and speciation of coral endosymbionts. Microb. Ecol., 60:250-263. Trench, R. K. & Blank, R. J. 1987. Symbiodinium microadriaticum Freudenthal, S. goreauii sp. nov., S. kawagutii sp. nov., and S. pilosum sp. nov.: Gymnodinioid dinoflagellate symbionts of marine invertebrates. J. Phycol., 23:469-481. Zhang, H., Bhattacharya, D. & Lin, S. 2005. Phylogeny of dinoflagellates based on mitochondrial cytochrome b and nuclear small subunit rDNA sequence comparisons. J. Phycol., 41:411-420. LaJeunesse, T. C., Thornhill, D. J., Cox, E. F., Stanton, F. G., Fitt, W. K. & Schmidt, G. W. 2004b. High diversity and host specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii. Coral Reefs, 23:596-603. Hansen, G. & Daugbjerg, N. 2009. Symbiodinium natans sp. nov.: a free-living dinoflagellate from Tenerife (northeast-Atlantic Ocean). J. Phycol., 45:251-263. Loeblich, A. R. III & Sherley, J. L. 1979. Observations on the theca of the mobile phase of free-living and symbiotic isolates of Zooxanthella microadriaticum (Freudenthal) comb.nov. J. Mar. Biol. Assoc. U.K., 59:195-205. Rodriguez-Lanetty, M., Chang, S. J. & Song, J. I. 2003. Specificity of two temperate dinoflagellate-anthozoan associations from the north-western Pacific Ocean. Mar. Biol., 143:1193-1199. Bayer, T., Aranda, M., Sunagawa, S., Yum, L. K., DeSalvo, M. K., Lundquist, E., Coffroth, M. A., Voolstra, C. R. & Medina, M. 2012. Symbiodinium transcriptomes: genome insights into the dinoflagellate symbionts of reef-building corals. PLoS ONE, 7:e35269. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J. & Higgins, D. G. 2007. Clustal w and clustal x version 2.0. Bioinformatics, 23:2947-2948. McBride, B. B., Muller-Parker, G. & Jakobsen, H. H. 2009. Low thermal limit of growth rate of Symbiodinium californium (Dinophyta) in culture may restrict the symbiont to southern populations of its host anemones (Anthopleura spp.; Anthozoa, Cnidaria). J. Phycol., 45:855-863. Clode, P. L., Saunders, M., Maker, G., Ludwig, M. & Atkins, C. 2009. Uric acid deposits in symbiotic marine algae. Plant Cell Environ., 32:170-177. Muller-Parker, G., Lee, K. W. & Cook, C. B. 1996. Changes in the ultrastructure of symbiotic zooxanthellae (Symbiodinium sp., Dinophyceae) in fed and starved sea anemones maintained under high and low light. J. Phycol., 32:987-994. Muscatine, L., McCloskey, L. R. & Marian, R. E. 1981. Estimating the daily contribution of carbon to coral animal respiration. Limnol. Oceanogr., 26:601-611. Porter, K. G. & Feig, Y. S. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr., 25:943-948. Lilly, E. L., Halanych, K. M. & Anderson, D. M. 2005. Phylogeny, biogeography, and species boundaries within the Alexandrium minutum group. Harmful Algae, 4:1004-1020. Park, T. G., Park, G. H., Park, Y. T., Kang, Y. S., Bae, H. M., Kim, C. H., Jeong, H. J. & Lee, Y. 2009. Identification of the dinoflagellate community during Cochlodinium polykrikoides (Dinophyceae) blooms using amplified rDNA melting curve analysis and real-time PCR probes. Harmful Algae, 8:430-440. Pochon, X. & Gates, R. D. 2010. A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai'i. Mol. Phylogenet. Evol., 56:492-497. Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22:2688-2690. Banaszak, A. T. & Trench, R. K. 1995. Effects of ultraviolet (UV) radiation on marine microalgal-invertebrate symbioses. I. Response of the algal symbionts in culture and in hospite. J. Exp. Mar. Biol. Ecol., 194:233-250. Gou, W. L., Sun, J., Li, X. Q., Zhen, Y., Xin, Z., Yu, Z. G. & Li, R. X. 2003. Phylogenetic analysis of a free-living strain of Symbiodinium isolated from Jiaozhou Bay, P.R. China. J. Exp. Mar. Biol. Ecol., 296:135-144. Jeong, H. J., Yoo, Y. D., Kim, J. S., Seong, K. A., Kang, N. S. & Kim, T. H. 2010. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J., 45:65-91. Litaker, R. W., Vandersea, M. W., Kibler, S. R., Reece, K. S., Stokes, N. A., Steidinger, K. A., Millie, D. F., Bendis, B. J., Pigg, R. J. & Tester, P. A. 2003. Identification of Pfiesteria piscicida (Dinophyceae) and Pfiesteria-like organisms using internal transcribed spacer-specific PCR assays. J. Phycol., 39:754-761. Thornhill, D. J., Lewis, A., Wham, D. C. & LaJeunesse, T. C. 2013. Host-specialist lineages dominate the adaptive radiation of reef coral endosymbionts. Evolution. DOI: 10.1111/evo.12270 (in press) Porto, I., Granados, C., Restrepo, J. C. & Sanchez, J. A. 2008. Macroalgal-associated dinoflagellates belonging to the genus Symbiodinium in Caribbean reefs. PLoS ONE, 3:e2160. Thornhill, D. J., LaJeunesse, T. C. & Santos, S. R. 2007. Measuring rDNA diversity in eukaryotic microbial systems: how intragenomic variation, pseudogenes, and PCR artifacts confound biodiversity estimates. Mol. Ecol., 16:5326-5340. Schoenberg, D. A. & Trench, R. K. 1980b. Genetic variation in Symbiodinium (=Gymnodinium) microadriaticum Freudenthal, and specificity in its symbiosis with marine invertebrates. II. Morphological variation in S. microadriaticum. Proc. R. Soc. Lond. B, 207:429-444. Schoenberg, D. A. & Trench, R. K. 1980a. Genetic variation in Symbiodinium (=Gymnodinium) microadriaticum Freudenthal, and specificity in its symbiosis with marine invertebrates. I. Isoenzyme and soluble protein patterns of axenic cultures of S. microadriaticum. Proc. R. Soc. Lond. B, 207:405-427. Lien, Y. T., Fukami, H. & Yamashita, Y. 2012. Symbiodinium Clade C dominates zooxanthellate corals (Scleractinia) in the temperate region of Japan. Zool. Sci., 29:173-180. Spurr, A. R. 1969. A low viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res., 26:31-42. Trench, R. K. 1993. Microalgal-invertebrate symbioses: a review. Endocyt. Cell Res., 9:135-175. Hollingsworth, L. L., Kinzie III, R. A., Lewis, T. D., Krupp, D. A. & Leong, J. A. 2005. Phototaxis of motile zooxanthellae to green light may facilitate symbiont capture by coral larvae. Coral Reefs, 24:523. Pochon, X., Garcia-Cuestos, L., Baker, A. C., Castella, E. & Pawlowski, J. 2007. One-year survey of a single Micronesian reef reveals extraordinarily rich diversity of Symbiodinium types in sorited foraminifera. Coral Reefs, 26:867-882. Xiang, T., Hambleton, E. A., DeNofrio, J. C., Pringle, J. R. & Grossman, A. R. 2013. Isolation of clonal, axenic strains of the symbiotic dinoflagellate Symbiodinium and their growth and host specificity. J. Phycol., 49:447-458. Blank, R. J. & Huss, V. A. R. 1989. DNA divergency and speciation in Symbiodinium (Dinophyceae). Plant Syst. Evol., 163:213-232. Fitt, W. K., Chang, S. S. & Trench, R. K. 1981. Motility patterns of different strains of the symbiotic dinoflagellate Symbiodinium (=Gymnodinium) microadriaticum (Freudenthal) in culture. Bull. Mar. Sci., 31:436-443. Trench, R. K. & Thinh, L. V. 1995. Gymnodinium linucheae sp. nov.: the dinoflagellate symbiont of the jellyfish Linuche unguiculata. Eur. J. Phycol., 30:149-154. Haywood, A. J., Steidinger, K. A., Truby, E. W., Bergquist, P. R., Bergquist, P. L., Adamson, J. & MacKenzie, L. 2004. Coparative morphology and molecular phylogenetic analysis of three new species of the genus Karenia (Dinophyceae) from New Zealand. J. Phycol., 40:165-179. Shao, P., Chen, Y. Q., Zhou, H., Yuan, J., Qu, L. H., Zhao, D. & Lin, Y. S. 2004. Genetic variability in the Gymnodiniaceae ITS regions: implications for species identification and phylogenetic analysis. Mar. Biol., 144:215-224. Stoecker, D. K. 1999. Mixotrophy among dinoflagellates. J. Eukaryot. Microbiol., 46:397-401. Pochon, X., Pawlowski, J., Zaninetti, L. & Rowan, R. 2001. High genetic diversity and relative specificity among Symbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferans. Mar. Biol., 139:1069-1078. Blank, R. J. & Trench, R. K. 1985. Speciation in symbiotic dinoflagellates. Science, 229:656-658. Stern, R. F., Horak, A., Andrew, R. L., Coffroth, M. A., Andersen, R. A., Kupper, F. C., Jameson, I., Hoppenrath, M., Veron, B., Kasai, F., Brand, J., James, E. R. & Keeling, P. J. 2010. Environmental barcoding reveals massive dinoflagellate diversity in marine environments. PLoS ONE, 5:e13991. Stat, M., Pochon, X., Cowie, R. O. M. & Gates, R. D. 2009. Specificity in communities of Symbiodinium in corals from Johnston Atoll. Mar. Ecol. Prog. Ser., 386:83-96. LaJeunesse, T. C. & Trench, R. K. 2000. Biogeography of two species of Symbiodinium (Freudenthal) inhabiting the intertidal sea anemone Anthopleura elegantissima (Brandt). Biol. Bull., 199:126-134. Swofford, D. 2000. PAUP*, Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0b10. Sinauer Associates, Sunderland, MA. Jeong, H. J., Yoo, Y. D., Kang, N. S., Lim, A. S., Seong, K. A., Lee, S. Y., Lee, M. J., Lee, K. H., Kim, H. S., Shin, W. G., Nam, S. W., Yih, W. H. & Lee, K. 2012. Heterotrophic feeding as a newly identified survival strategy of the dinoflagellate Symbiodinium. Proc. Natl Acad. Sci. USA, 109:12604-12609. Abramoff, M. D., Magalhaes, P. J. & Ram, S. J. 2004. Image process 2009; 45 2010; 56 1995; 30 1993; 9 1993; 29 2010; 57 1980c; 207 2006; 38 2013; 61 1999; 46 1980b; 207 1983; 94 2011; 59 2008; 3 2003; 19 2011; 58 1983; 17 2007; 75 2012; 12 1988; 71 1996; 32 2005; 24 2010b; 37 2010; 60 2004; 298 2000 2002; 141 2006; 22 1969; 5 2008; 27 2007; 6 2003; 5 1984 2004a; 284 2012; 29 2001; 17 2008; 155 2012; 413 2010; 5 2007; 23 1992; 89 1994; 30 2007; 24 1981; 31 2001; 139 2007; 26 2009; 18 1980a; 207 2004; 101 2004; 144 1991; 251 1980; 25 2004; 40 1979; 59 2013; 49 2005; 41 1981; 26 2003; 39 2010; 161 1962; 9 2000; 199 1985; 229 2011; 6 2004b; 23 1995; 194 2003; 296 2012; 109 2007; 16 2010; 45 2004; 11 1995; 41 2011; 422 1987; 23 1991; 27 2009; 32 2009; 75 1989; 163 2002; 23 2005; 4 2009; 386 2010a; 29 2009; 8 2001; 37 1969; 26 2012; 48 2013 2009; 4 2012; 7 2003; 143 2011; 220 e_1_2_7_5_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_60_1 e_1_2_7_83_1 e_1_2_7_17_1 e_1_2_7_62_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_64_1 e_1_2_7_87_1 e_1_2_7_13_1 e_1_2_7_43_1 e_1_2_7_66_1 e_1_2_7_85_1 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_68_1 e_1_2_7_47_1 e_1_2_7_89_1 e_1_2_7_26_1 e_1_2_7_49_1 e_1_2_7_28_1 Abramoff M. D. (e_1_2_7_2_1) 2004; 11 Spector D. L. (e_1_2_7_74_1) 1984 e_1_2_7_90_1 e_1_2_7_73_1 e_1_2_7_94_1 e_1_2_7_50_1 e_1_2_7_71_1 e_1_2_7_92_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_77_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_75_1 e_1_2_7_96_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 e_1_2_7_79_1 e_1_2_7_39_1 e_1_2_7_6_1 Swofford D (e_1_2_7_81_1) 2000 e_1_2_7_4_1 e_1_2_7_80_1 e_1_2_7_8_1 e_1_2_7_18_1 e_1_2_7_84_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_61_1 e_1_2_7_82_1 e_1_2_7_42_1 e_1_2_7_63_1 e_1_2_7_88_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_65_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_67_1 e_1_2_7_48_1 e_1_2_7_69_1 e_1_2_7_27_1 e_1_2_7_29_1 e_1_2_7_91_1 e_1_2_7_72_1 e_1_2_7_95_1 e_1_2_7_51_1 e_1_2_7_70_1 e_1_2_7_93_1 Fitt W. K. (e_1_2_7_14_1) 1981; 31 e_1_2_7_30_1 e_1_2_7_53_1 e_1_2_7_76_1 e_1_2_7_24_1 e_1_2_7_32_1 LaJeunesse T. C. (e_1_2_7_38_1) 2004; 23 e_1_2_7_55_1 Trench R. K. (e_1_2_7_86_1) 1993; 9 e_1_2_7_22_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_59_1 e_1_2_7_78_1 |
References_xml | – volume: 12 start-page: 217 year: 2012 article-title: Protein evolution in two co‐occurring types of : an exploration into the genetic basis of thermal tolerance in clade D publication-title: BMC Evol. Biol. – volume: 298 start-page: 35 year: 2004 end-page: 48 article-title: Motility of zooxanthellae isolated from the Red Sea soft coral Hetroxenia fuscescens (Cnidaria) publication-title: J. Exp. Mar. Biol. Ecol. – volume: 16 start-page: 5326 year: 2007 end-page: 5340 article-title: Measuring rDNA diversity in eukaryotic microbial systems: how intragenomic variation, pseudogenes, and PCR artifacts confound biodiversity estimates publication-title: Mol. Ecol. – volume: 46 start-page: 397 year: 1999 end-page: 401 article-title: Mixotrophy among dinoflagellates publication-title: J. Eukaryot. Microbiol. – volume: 24 start-page: 11 year: 2005 end-page: 22 article-title: Symbiont diversity in scleractinian corals from tropical reefs and subtropical non‐reef communities in Taiwan publication-title: Coral Reefs – volume: 71 start-page: 491 year: 1988 end-page: 499 article-title: The characterization of enzymatically amplified eukaryokic 16S‐like rRNAcoding regions publication-title: Gene – volume: 220 start-page: 199 year: 2011 end-page: 208 article-title: Populations of show strong biogeographic structuring in the intertidal anemone publication-title: Biol. Bull. – volume: 161 start-page: 385 year: 2010 end-page: 399 article-title: gen. nov. and comb. nov. a dinoflagellate symbiont of planktonic foraminifera publication-title: Protist – volume: 57 start-page: 121 year: 2010 end-page: 144 article-title: Description of a new planktonic mixotrophic dinoflagellate n. gen., n. sp. from the coastal waters off western Korea: morphology, pigments, and ribosomal DNA gene sequence publication-title: J. Eukaryot. Microbiol. – year: 2013 article-title: Host‐specialist lineages dominate the adaptive radiation of reef coral endosymbionts publication-title: Evolution. – volume: 194 start-page: 233 year: 1995 end-page: 250 article-title: Effects of ultraviolet (UV) radiation on marine microalgal‐invertebrate symbioses. I. Response of the algal symbionts in culture and in hospite publication-title: J. Exp. Mar. Biol. Ecol. – volume: 3 start-page: e2160 year: 2008 article-title: Macroalgal‐associated dinoflagellates belonging to the genus in Caribbean reefs publication-title: PLoS ONE – volume: 26 start-page: 601 year: 1981 end-page: 611 article-title: Estimating the daily contribution of carbon to coral animal respiration publication-title: Limnol. Oceanogr. – volume: 24 start-page: 1596 year: 2007 end-page: 1599 article-title: MEGA4: molecular evolutionary genetics analysis (MEGA) software v. 4.0 publication-title: Mol. Biol. Evol. – volume: 37 start-page: 785 year: 2010b end-page: 800 article-title: Long‐standing environmental conditions, geographic isolation and host–symbiont specificity influence the relative ecological dominance and genetic diversification of coral endosymbionts in the genus publication-title: J. Biogeogr. – volume: 61 start-page: 68 year: 2013 end-page: 80 article-title: The genetic identity of free‐living obtained over a broad latitudinal range in the Japanese coast publication-title: Phycol. Res. – volume: 7 start-page: e35269 year: 2012 article-title: transcriptomes: genome insights into the dinoflagellate symbionts of reef‐building corals publication-title: PLoS ONE – volume: 207 start-page: 445 year: 1980c end-page: 460 article-title: Genetic variation in (= ) Freudenthal, and specificity in its symbiosis with marine invertebrates. III. Specificity and infectivity of publication-title: Proc. R. Soc. Lond. B – volume: 19 start-page: 1572 year: 2003 end-page: 1574 article-title: MRBAYES 3: Bayesian phylogenetic inference under mixed models publication-title: Bioinformatics – volume: 284 start-page: 147 year: 2004a end-page: 161 article-title: Closely related spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients publication-title: Mar. Ecol. Prog. Ser. – volume: 207 start-page: 405 year: 1980a end-page: 427 article-title: Genetic variation in (= ) Freudenthal, and specificity in its symbiosis with marine invertebrates. I. Isoenzyme and soluble protein patterns of axenic cultures of publication-title: Proc. R. Soc. Lond. B – volume: 4 start-page: 1004 year: 2005 end-page: 1020 article-title: Phylogeny, biogeography, and species boundaries within the group publication-title: Harmful Algae – volume: 39 start-page: 754 year: 2003 end-page: 761 article-title: Identification of (Dinophyceae) and ‐like organisms using internal transcribed spacer‐specific PCR assays publication-title: J. Phycol. – volume: 27 start-page: 552 year: 1991 end-page: 554 article-title: A novel technique for preparation of axenic cultures of (Pyrrophyta) through selective digestion by amoebae publication-title: J. Phycol. – volume: 18 start-page: 500 year: 2009 end-page: 519 article-title: Cohesive molecular genetic data delineate species diversity in the dinoflagellate genus publication-title: Mol. Ecol. – volume: 7 start-page: e42780 year: 2012 article-title: Evaluating the ribosomal internal transcribed spacer (ITS) as a candidate dinoflagellate barcode marker publication-title: PLoS ONE – volume: 9 start-page: 135 year: 1993 end-page: 175 article-title: Microalgal‐invertebrate symbioses: a review publication-title: Endocyt. Cell Res. – volume: 40 start-page: 395 year: 2004 end-page: 397 article-title: Comment: phylogenetic analysis of a free‐living strain of isolated from Jiaozhou Bay, P.R. China publication-title: J. Phycol. – volume: 56 start-page: 492 year: 2010 end-page: 497 article-title: A new clade (Dinophyceae) from soritid foraminifera in Hawai'i publication-title: Mol. Phylogenet. Evol. – volume: 6 start-page: 33 year: 2007 end-page: 39 article-title: Preliminary identification of three new isolates in the genus (Dinophyceae) from the China Sea area publication-title: J. Ocean Univ. China – volume: 40 start-page: 165 year: 2004 end-page: 179 article-title: Coparative morphology and molecular phylogenetic analysis of three new species of the genus (Dinophyceae) from New Zealand publication-title: J. Phycol. – volume: 59 start-page: 195 year: 1979 end-page: 205 article-title: Observations on the theca of the mobile phase of free‐living and symbiotic isolates of (Freudenthal) comb.nov publication-title: J. Mar. Biol. Assoc. U.K. – volume: 101 start-page: 13531 year: 2004 end-page: 13535 article-title: Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals publication-title: Proc. Natl Acad. Sci. USA – volume: 45 start-page: 251 year: 2009 end-page: 263 article-title: sp. nov.: a free‐living dinoflagellate from Tenerife (northeast‐Atlantic Ocean) publication-title: J. Phycol. – volume: 59 start-page: 81 year: 2011 end-page: 88 article-title: diversity among host clionaid sponges from Caribbean and Pacific reefs: evidence of heteroplasmy and putative host‐specific symbiont lineages publication-title: Mol. Phyl. Evol. – volume: 109 start-page: 12604 year: 2012 end-page: 12609 article-title: Heterotrophic feeding as a newly identified survival strategy of the dinoflagellate publication-title: Proc. Natl Acad. Sci. USA – volume: 8 start-page: 430 year: 2009 end-page: 440 article-title: Identification of the dinoflagellate community during (Dinophyceae) blooms using amplified rDNA melting curve analysis and real‐time PCR probes publication-title: Harmful Algae – volume: 413 start-page: 169 year: 2012 end-page: 176 article-title: Cultivating endosymbionts – host environment mimics support the survival of C15 publication-title: J. Exp. Mar. Biol. Ecol. – volume: 17 start-page: 754 year: 2001 end-page: 755 article-title: MrBayes: Bayesian inference of phylogeny publication-title: Bioinformatics – volume: 29 start-page: 627 year: 2010a article-title: The reticulated chloroplasts of zooxanthellae ( ) and differences in chlorophyll localization among life cycle stages publication-title: Coral Reefs – volume: 23 start-page: 97 year: 2002 end-page: 111 article-title: Molecular phylogeny of symbiotic dinoflagellates inferred from partial chloroplast large subunit (23S) rDNA sequences publication-title: Mol. Phylogenet. Evol. – volume: 386 start-page: 83 year: 2009 end-page: 96 article-title: Specificity in communities of in corals from Johnston Atoll publication-title: Mar. Ecol. Prog. Ser. – volume: 60 start-page: 250 year: 2010 end-page: 263 article-title: The relative significance of host‐habitat, depth, and geography on the ecology, endemism and speciation of coral endosymbionts publication-title: Microb. Ecol. – volume: 6 start-page: e29013 year: 2011 article-title: Improved resolution of reef‐coral endosymbiont ( ) species diversity, ecology, and evolution through non‐coding region genotyping publication-title: PLoS ONE – volume: 29 start-page: 517 year: 1993 end-page: 528 article-title: sp. nov. (Peridiniales) and sp. nov. (Phytodiniales), dinoflagellate symbionts of two hydrozoans (Cnidarians) publication-title: J. Phycol. – volume: 31 start-page: 436 year: 1981 end-page: 443 article-title: Motility patterns of different strains of the symbiotic dinoflagellate (= ) (Freudenthal) in culture publication-title: Bull. Mar. Sci. – volume: 296 start-page: 135 year: 2003 end-page: 144 article-title: Phylogenetic analysis of a free‐living strain of isolated from Jiaozhou Bay, P.R. China publication-title: J. Exp. Mar. Biol. Ecol. – volume: 5 start-page: 341 year: 1969 end-page: 350 article-title: Freudenthal, a revised taxonomic description, ultrastructure publication-title: J. Phycol. – volume: 24 start-page: 523 year: 2005 article-title: Phototaxis of motile zooxanthellae to green light may facilitate symbiont capture by coral larvae publication-title: Coral Reefs – volume: 141 start-page: 387 year: 2002 end-page: 400 article-title: Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs publication-title: Mar. Biol. – volume: 144 start-page: 215 year: 2004 end-page: 224 article-title: Genetic variability in the Gymnodiniaceae ITS regions: implications for species identification and phylogenetic analysis publication-title: Mar. Biol. – volume: 17 start-page: 279 year: 1983 end-page: 304 article-title: Winter phytoplankton and microzooplankton populations off the coast of Westland, New Zealand, 1979 publication-title: N. Z. J. Mar. Freshw. Res. – volume: 23 start-page: 596 year: 2004b end-page: 603 article-title: High diversity and host specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii publication-title: Coral Reefs – volume: 207 start-page: 429 year: 1980b end-page: 444 article-title: Genetic variation in (= ) Freudenthal, and specificity in its symbiosis with marine invertebrates. II. Morphological variation in publication-title: Proc. R. Soc. Lond. B – volume: 89 start-page: 3639 year: 1992 end-page: 3643 article-title: Ribosomal‐RNA sequences and the diversity of symbiotic dinoflagellates (zooxanthellae) publication-title: Proc. Natl Acad. Sci. USA – volume: 27 start-page: 823 year: 2008 end-page: 835 article-title: Cell cycle propagation is driven by light‐dark stimulation in a cultured symbiotic dinoflagellate isolated from corals publication-title: Coral Reefs – volume: 163 start-page: 213 year: 1989 end-page: 232 article-title: DNA divergency and speciation in (Dinophyceae) publication-title: Plant Syst. Evol. – volume: 26 start-page: 31 year: 1969 end-page: 42 article-title: A low viscosity epoxy resin embedding medium for electron microscopy publication-title: J. Ultrastruct. Res. – year: 2000 – volume: 23 start-page: 469 year: 1987 end-page: 481 article-title: Freudenthal, sp. nov., sp. nov., and sp. nov.: Gymnodinioid dinoflagellate symbionts of marine invertebrates publication-title: J. Phycol. – volume: 26 start-page: 867 year: 2007 end-page: 882 article-title: One‐year survey of a single Micronesian reef reveals extraordinarily rich diversity of types in sorited foraminifera publication-title: Coral Reefs – volume: 4 start-page: e63003 year: 2009 article-title: Do uric acid deposits in zooxanthellae function as eye‐spots? publication-title: PLoS ONE – volume: 94 start-page: 421 year: 1983 end-page: 432 article-title: The relation of diel patterns of cell division to diel patterns of motility in the symbiotic dinoflagellate Freudenthal in culture publication-title: New Phytol. – volume: 199 start-page: 126 year: 2000 end-page: 134 article-title: Biogeography of two species of (Freudenthal) inhabiting the intertidal sea anemone (Brandt) publication-title: Biol. Bull. – volume: 25 start-page: 943 year: 1980 end-page: 948 article-title: The use of DAPI for identifying and counting aquatic microflora publication-title: Limnol. Oceanogr. – volume: 32 start-page: 987 year: 1996 end-page: 994 article-title: Changes in the ultrastructure of symbiotic zooxanthellae ( sp., Dinophyceae) in fed and starved sea anemones maintained under high and low light publication-title: J. Phycol. – volume: 75 start-page: 215 year: 2007 end-page: 230 – volume: 5 start-page: e13991 year: 2010 article-title: Environmental barcoding reveals massive dinoflagellate diversity in marine environments publication-title: PLoS ONE – volume: 48 start-page: 1380 year: 2012 end-page: 1391 article-title: A genetics‐based description of sp. nov. and sp. nov. (Dinophyceae), two dinoflagellates symbiotic with Cnidaria publication-title: J. Phycol. – volume: 45 start-page: 855 year: 2009 end-page: 863 article-title: Low thermal limit of growth rate of (Dinophyta) in culture may restrict the symbiont to southern populations of its host anemones ( spp.; Anthozoa, Cnidaria) publication-title: J. Phycol. – volume: 41 start-page: 637 year: 1995 end-page: 645 article-title: Revised dinoflagellate phylogeny inferred from molecular analysis of large subunit ribosomal RNA gene sequences publication-title: J. Mol. Evol. – volume: 38 start-page: 20 year: 2006 end-page: 30 article-title: Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus publication-title: Mol. Phyl. Evol. – year: 1984 – volume: 75 start-page: 1279 year: 2009 end-page: 1290 article-title: High‐level diversity of dinoflagellates in the natural environment, revealed by assessment of mitochondrial cox1 and cob genes for dinoflagellate DNA barcoding publication-title: Appl. Environ. Microbiol. – volume: 29 start-page: 314 year: 1993 end-page: 320 article-title: Chromosomes and DNA in from Australian hosts publication-title: J. Phycol. – volume: 37 start-page: 866 year: 2001 end-page: 880 article-title: Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus using the internal transcribed spacer region: in search of a “species” level marker publication-title: J. Phycol. – volume: 155 start-page: 105 year: 2008 end-page: 112 article-title: Phylogenetic analyses of potentially free‐living spp. isolated from coral reef sand in Okinawa, Japan publication-title: Mar. Biol. – volume: 22 start-page: 2688 year: 2006 end-page: 2690 article-title: RAxML‐VI‐HPC: maximum likelihood‐based phylogenetic analyses with thousands of taxa and mixed models publication-title: Bioinformatics – volume: 229 start-page: 656 year: 1985 end-page: 658 article-title: Speciation in symbiotic dinoflagellates publication-title: Science – volume: 251 start-page: 1348 year: 1991 end-page: 1351 article-title: A molecular genetic classification of zooxanthellae and the evolution of animal‐algal symbiosis publication-title: Science – volume: 422 start-page: 63 year: 2011 end-page: 75 article-title: Novel algal symbiont ( spp.) diversity in reef corals of Western Australia publication-title: Mar. Ecol. Prog. Ser. – volume: 5 start-page: 130 year: 2003 end-page: 140 article-title: Phylogenetic identification of symbiotic dinoflagellates via length heteroplasmy in domain V of chloroplast large subunit (cp23S) ribosomal DNA sequences publication-title: Mar. Biotech. – volume: 41 start-page: 411 year: 2005 end-page: 420 article-title: Phylogeny of dinoflagellates based on mitochondrial cytochrome b and nuclear small subunit rDNA sequence comparisons publication-title: J. Phycol. – volume: 49 start-page: 447 year: 2013 end-page: 458 article-title: Isolation of clonal, axenic strains of the symbiotic dinoflagellate and their growth and host specificity publication-title: J. Phycol. – volume: 58 start-page: 284 year: 2011 end-page: 309 article-title: n. gen., n. sp., a new planktonic heterotrophic dinoflagellate from the coastal waters of western Korea: morphology and ribosomal DNA gene sequence publication-title: J. Eukaryot. Microbiol. – volume: 32 start-page: 170 year: 2009 end-page: 177 article-title: Uric acid deposits in symbiotic marine algae publication-title: Plant Cell Environ. – volume: 139 start-page: 1069 year: 2001 end-page: 1078 article-title: High genetic diversity and relative specificity among ‐like endosymbiotic dinoflagellates in soritid foraminiferans publication-title: Mar. Biol. – volume: 9 start-page: 45 year: 1962 end-page: 52 article-title: gen. nov. and sp. nov., a zooxanthella: taxonomy, life cycle, and morphology publication-title: J. Protozool. – volume: 45 start-page: 65 year: 2010 end-page: 91 article-title: Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs publication-title: Ocean Sci. J. – volume: 11 start-page: 36 year: 2004 end-page: 42 article-title: Image processing with image publication-title: J. Biophotonics Int. – volume: 30 start-page: 999 year: 1994 end-page: 1011 article-title: Identification of group and strain‐specific genetic makers for globally distributed (Dinophyceae) II. Sequence analysis of a fragment of the LSU rRNA gene publication-title: J. Phycol. – volume: 29 start-page: 173 year: 2012 end-page: 180 article-title: Clade C dominates zooxanthellate corals (Scleractinia) in the temperate region of Japan publication-title: Zool. Sci. – volume: 143 start-page: 1193 year: 2003 end-page: 1199 article-title: Specificity of two temperate dinoflagellate‐anthozoan associations from the north‐western Pacific Ocean publication-title: Mar. Biol. – volume: 23 start-page: 2947 year: 2007 end-page: 2948 article-title: Clustal w and clustal x version 2.0 publication-title: Bioinformatics – volume: 30 start-page: 149 year: 1995 end-page: 154 article-title: sp. nov.: the dinoflagellate symbiont of the jellyfish publication-title: Eur. J. Phycol. – ident: e_1_2_7_53_1 doi: 10.1371/journal.pone.0002160 – ident: e_1_2_7_51_1 doi: 10.1111/j.0022-3646.1991.00552.x – ident: e_1_2_7_35_1 doi: 10.1007/s00338-010-0635-0 – ident: e_1_2_7_59_1 doi: 10.1111/j.0908-8857.2004.03297.x – ident: e_1_2_7_17_1 doi: 10.1111/j.1529-8817.2008.00621.x – volume: 9 start-page: 135 year: 1993 ident: e_1_2_7_86_1 article-title: Microalgal‐invertebrate symbioses: a review publication-title: Endocyt. Cell Res. contributor: fullname: Trench R. K. – ident: e_1_2_7_29_1 doi: 10.1186/1471-2148-12-217 – ident: e_1_2_7_33_1 doi: 10.1371/journal.pone.0029013 – ident: e_1_2_7_4_1 doi: 10.1016/0022-0981(95)00073-9 – ident: e_1_2_7_27_1 doi: 10.1111/j.1529-8817.1969.tb02624.x – ident: e_1_2_7_66_1 doi: 10.1016/S1055-7903(02)00010-6 – ident: e_1_2_7_37_1 doi: 10.3354/meps284147 – ident: e_1_2_7_45_1 doi: 10.1111/j.1529-8817.2009.00716.x – ident: e_1_2_7_94_1 doi: 10.1371/journal.pone.0006303 – ident: e_1_2_7_95_1 doi: 10.1007/BF00175822 – ident: e_1_2_7_25_1 doi: 10.1111/j.1550-7408.2011.00544.x – ident: e_1_2_7_84_1 doi: 10.1111/j.1365-294X.2007.03576.x – ident: e_1_2_7_92_1 doi: 10.1016/j.jembe.2003.08.003 – ident: e_1_2_7_48_1 doi: 10.1111/j.0022-3646.1996.00987.x – ident: e_1_2_7_44_1 doi: 10.1017/S0025315400046270 – ident: e_1_2_7_49_1 doi: 10.4319/lo.1981.26.4.0601 – ident: e_1_2_7_52_1 doi: 10.4319/lo.1980.25.5.0943 – ident: e_1_2_7_47_1 doi: 10.1201/9780849379901.ch12 – ident: e_1_2_7_7_1 doi: 10.1126/science.229.4714.656 – ident: e_1_2_7_72_1 doi: 10.1016/j.protis.2010.01.002 – ident: e_1_2_7_19_1 doi: 10.1016/j.ympev.2011.01.006 – ident: e_1_2_7_31_1 doi: 10.1046/j.1529-8817.2001.01031.x – ident: e_1_2_7_46_1 doi: 10.1016/0378-1119(88)90066-2 – ident: e_1_2_7_68_1 doi: 10.1098/rspb.1980.0032 – ident: e_1_2_7_69_1 doi: 10.1098/rspb.1980.0033 – ident: e_1_2_7_5_1 doi: 10.1371/journal.pone.0035269 – ident: e_1_2_7_34_1 doi: 10.2307/1542872 – volume: 11 start-page: 36 year: 2004 ident: e_1_2_7_2_1 article-title: Image processing with image publication-title: J. Biophotonics Int. contributor: fullname: Abramoff M. D. – volume-title: Dinoflagellates year: 1984 ident: e_1_2_7_74_1 contributor: fullname: Spector D. L. – ident: e_1_2_7_41_1 doi: 10.1016/j.hal.2005.02.001 – ident: e_1_2_7_3_1 doi: 10.1111/j.1529-8817.1993.tb00153.x – ident: e_1_2_7_96_1 doi: 10.1111/j.1529-8817.2005.04168.x – ident: e_1_2_7_21_1 doi: 10.1007/s00338-005-0063-8 – ident: e_1_2_7_16_1 doi: 10.1016/S0022-0981(03)00242-9 – ident: e_1_2_7_73_1 doi: 10.3354/meps08934 – ident: e_1_2_7_82_1 doi: 10.1093/molbev/msm092 – ident: e_1_2_7_8_1 doi: 10.1080/00288330.1983.9516003 – ident: e_1_2_7_67_1 doi: 10.1098/rspb.1980.0031 – ident: e_1_2_7_77_1 doi: 10.3354/meps08080 – ident: e_1_2_7_65_1 doi: 10.1007/s10126-002-0076-z – ident: e_1_2_7_70_1 doi: 10.1111/j.0022-3646.1994.00999.x – ident: e_1_2_7_43_1 doi: 10.1046/j.1529-8817.2003.02112.x – ident: e_1_2_7_55_1 doi: 10.1016/j.ympev.2005.04.028 – ident: e_1_2_7_88_1 doi: 10.1080/09670269500650911 – ident: e_1_2_7_15_1 doi: 10.1111/j.1550-7408.1962.tb02579.x – volume-title: PAUP*, Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4.0b10 year: 2000 ident: e_1_2_7_81_1 contributor: fullname: Swofford D – ident: e_1_2_7_80_1 doi: 10.1111/j.1550-7408.1999.tb04619.x – ident: e_1_2_7_89_1 doi: 10.1111/j.0022-3646.1993.00314.x – ident: e_1_2_7_61_1 doi: 10.1073/pnas.89.8.3639 – ident: e_1_2_7_93_1 doi: 10.1111/pre.12004 – ident: e_1_2_7_23_1 doi: 10.1007/s12601-010-0007-2 – ident: e_1_2_7_36_1 doi: 10.1111/j.1529-8817.2012.01217.x – ident: e_1_2_7_18_1 doi: 10.1111/j.0022-3646.2004.02-149.x – ident: e_1_2_7_39_1 doi: 10.1111/j.1365-2699.2010.02273.x – ident: e_1_2_7_63_1 doi: 10.1086/BBLv220n3p199 – volume: 31 start-page: 436 year: 1981 ident: e_1_2_7_14_1 article-title: Motility patterns of different strains of the symbiotic dinoflagellate Symbiodinium (=Gymnodinium) microadriaticum (Freudenthal) in culture publication-title: Bull. Mar. Sci. contributor: fullname: Fitt W. K. – ident: e_1_2_7_76_1 doi: 10.1093/bioinformatics/btl446 – ident: e_1_2_7_22_1 doi: 10.1093/bioinformatics/17.8.754 – ident: e_1_2_7_12_1 doi: 10.1007/s00248-010-9681-y – ident: e_1_2_7_28_1 doi: 10.1016/j.jembe.2011.12.002 – ident: e_1_2_7_54_1 doi: 10.1007/s002270100674 – ident: e_1_2_7_75_1 doi: 10.1016/S0022-5320(69)90033-1 – ident: e_1_2_7_78_1 doi: 10.1371/journal.pone.0013991 – ident: e_1_2_7_83_1 doi: 10.1073/pnas.0402907101 – ident: e_1_2_7_32_1 doi: 10.1007/s00227-002-0829-2 – ident: e_1_2_7_26_1 doi: 10.1111/j.1550-7408.2009.00462.x – ident: e_1_2_7_58_1 doi: 10.1007/s00227-003-1165-x – ident: e_1_2_7_30_1 doi: 10.1093/bioinformatics/btm404 – ident: e_1_2_7_13_1 doi: 10.1111/j.1469-8137.1983.tb03456.x – ident: e_1_2_7_56_1 doi: 10.1007/s00338-007-0279-x – ident: e_1_2_7_20_1 doi: 10.1007/s00227-008-1011-2 – ident: e_1_2_7_10_1 doi: 10.1111/j.1365-3040.2008.01909.x – ident: e_1_2_7_71_1 doi: 10.1007/s00227-003-1157-x – ident: e_1_2_7_64_1 doi: 10.1111/j.1529-8817.2004.03186.x – ident: e_1_2_7_24_1 doi: 10.1073/pnas.1204302109 – ident: e_1_2_7_91_1 doi: 10.1111/jpy.12055 – ident: e_1_2_7_57_1 doi: 10.1016/j.ympev.2010.03.040 – ident: e_1_2_7_42_1 doi: 10.1128/AEM.01578-08 – ident: e_1_2_7_87_1 doi: 10.1111/j.1529-8817.1987.tb02534.x – ident: e_1_2_7_9_1 doi: 10.1007/s00338-004-0389-7 – ident: e_1_2_7_40_1 doi: 10.2108/zsj.29.173 – ident: e_1_2_7_79_1 doi: 10.1371/journal.pone.0042780 – ident: e_1_2_7_11_1 doi: 10.1007/s11802-007-0033-6 – ident: e_1_2_7_50_1 doi: 10.1016/j.hal.2008.09.003 – ident: e_1_2_7_60_1 doi: 10.1126/science.251.4999.1348 – ident: e_1_2_7_6_1 doi: 10.1007/BF00936511 – volume: 23 start-page: 596 year: 2004 ident: e_1_2_7_38_1 article-title: High diversity and host specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii publication-title: Coral Reefs contributor: fullname: LaJeunesse T. C. – ident: e_1_2_7_62_1 doi: 10.1111/j.1365-294X.2008.04037.x – ident: e_1_2_7_85_1 doi: 10.1111/evo.12270 – ident: e_1_2_7_90_1 doi: 10.1007/s00338-008-0434-z |
SSID | ssj0016211 |
Score | 2.393913 |
Snippet | Dinoflagellates in the genus Symbiodinium are ubiquitous in shallow marine habitats where they commonly exist in symbiosis with cnidarians. Attempts to culture... Dinoflagellates in the genus Symbiodinium are ubiquitous in shallow marine habitats where they commonly exist in symbiosis with cnidarians. Attempts to culture... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 75 |
SubjectTerms | Alveolata - classification Alveolata - cytology Alveolata - genetics Alveolata - isolation & purification Animals California Cluster Analysis Cytochromes b - genetics Dinophyceae DNA, Protozoan - chemistry DNA, Protozoan - genetics DNA, Ribosomal - chemistry DNA, Ribosomal - genetics Genes, rRNA Mediterranean Sea Microscopy Molecular Sequence Data Organelles - ultrastructure Pacific Ocean Phylogeny plastid genes RNA, Protozoan - genetics RNA, Ribosomal, 23S Seawater - parasitology Sequence Analysis, DNA Spain species Symbiodinium systematics taxonomy |
Title | Genetics and Morphology Characterize the Dinoflagellate Symbiodinium voratum, n. sp., (Dinophyceae) as the Sole Representative of Symbiodinium Clade E |
URI | https://api.istex.fr/ark:/67375/WNG-LH2F3ZGQ-F/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fjeu.12088 https://www.ncbi.nlm.nih.gov/pubmed/24460699 https://search.proquest.com/docview/1492686990 https://search.proquest.com/docview/1500800873 |
Volume | 61 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1taxQxEA5aEfxS39utL0QRqdA9djfZTUI_letdD9GinkXplyXZncDRu93S7RbrD_H3OsneLR6oCH4L7GwSMjPJM0nmCSGvhLSR47wLEf3KkJdWh0rpIrTWyFQoY4zfzJlMxfFXeThyNDn7q1yYjh-i33BznuHna-fg2jS_Ojm0gzhBJ8H5F6MEn77BPvQnCFni397FiCdzwRZfsgr5WzyrP9fWoltuWL_9Dmiu41a_8Izv_leX75HNJd6kB52B3Cc3oHpAbncvUF5j6bT2pYfkhyOgdpzNVFclfV_j-PsvdNhTOn8HinCRHs6q2s5xHkILugQ6vV6YWY1L4Kxd0CtnUe1ij1YD2pwP9uiuk0ZVFqDhDdWNr2Faz4F-8ndwu9SnK6C1Xa9pONcl0NEjcjIefR5OwuWjDWHh0lxDk3CpolI7_uMUrCh4GQuwOhYmBi4YYHyE1st4KSWzUQbGpDwz3ESqFIJl7DHZqOoKtgmNdQGFjBTEouQM43jF0Hh0ZBwm41oE5OVKffl5x82R9zENOJJsHOqAvPaK7SX0xZm7zCbS_MvxUf5ukozZ6dHHfByQFyvN5-hi7txEV1C3DUZHKskkNh_9RSb12FsKFpCtzmz6FhFBYZioVEB2vXX8ubP529GJL-z8u-gTcgdBHO-2hZ6SjcuLFp6Rm03ZPvce8RMMGAxs |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwELbYJgQv_IYFBhiE0JCWKomd2JZ4QV27Al0FdBNoL5GdXKRqbTKty7TtD9nfy9lpIyoBQuLNUi625buzvzvbnwl5I2QRWM47H9Gv9HleaF8pnflFYWQslDHGJXMGYzH6IXd7libn_fIuTMMP0SbcrGe4-do6uE1I_-rlUHfCCL1kjWzwBA3RXuBgX9o9hCRyr-9izJPYcIsveIXcOZ7lryur0YYd2IvfQc1V5OqWnv7d_-v0PXJnATnph8ZG7pMbUD4gN5tHKC-xdFS50kNybTmoLW0z1WVO9ytUgftCuy2r8xVQRIx0d1JWxRSnIjSiM6Djy5mZVLgKTuoZPbdGVc92aNmh85PODt220qjNDDS8o3ruahhXU6Df3DHc5vbTOdCqWK2pO9U50N4jctjvHXQH_uLdBj-zN119E3GpglxbCuQYCpHxPBRQ6FCYELhggCESGjDjuZSsCBIwJuaJ4SZQuRAsYY_JelmVsEloqDPIZKAgFDlnGMorhvajA2NhGdfCI6-X-ktPGnqOtA1rwPJk41B75K3TbCuhT4_teTYRp99He-lwEPXZ0d7XtO-RV0vVp-hldutEl1DVcwyQVJRIbD74i0zs4LcUzCNPGrtpW0QQhZGiUh7Zdubx586mn3qHrvD030VfkluDg_1hOvw4-vyM3EZMx5ss0RZZPzut4TlZm-f1C-cePwH1mBCU |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbYJhAv3C_hahBCQ1qqJHZiWzyhtlmBUQ26CbSXyI5tqaJNqnWZGD-E38ux00ZUAoTEm6U4tuXzHfs7vnxG6AXjNnKadyGwXx5SbWUohCxDaxVPmVBK-cWc0YSNv_DB0MnkvF7fhWn1IboFN-cZfrx2Dr7Q9lcnN00vTsBJttAOBRruhPMJOey2ELLEP74LIU_moi26khXyx3jWv25MRjuuX7_9jmluElc_8-TX_6vNN9C1FeHEb1qE3ESXTHULXW6foLyA1EntU7fRD6dA7USbsaw0_lCDAfwX3O80nb8bDHwRD6ZVbWcwEAGEzgyeXMzVtIY5cNrM8bmDVDPfw1UPLxe9PbzrcoMtSyPNKyyXvoRJPTP4kz-E2959Oje4tpsl9WdSGzy8g47z4VF_FK5ebQhLd881VAnlItLSCSCnxrKS6pgZK2OmYkMZMRAgAXwJ1ZwTG2VGqZRmiqpIaMZIRu6i7aquzH2EY1makkfCxExTAoG8IIAeGSlHyqhkAXq-Nl-xaMU5ii6oMU4lG7o6QC-9Ybsc8vSrO83G0uLzeL84GCU5Odn_WOQBera2fAE-5jZOZGXqZgnhkUgyDtVHf8mTevLNGQnQvRY2XY1AoQCgQgRo16Pjz40t3g2PfeLBv2d9iq4cDvLi4O34_UN0FQgdbZeIHqHts9PGPEZbS9088c7xE5dzDzo |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Genetics+and+Morphology+Characterize+the+Dinoflagellate+Symbiodinium+voratum%2C+n.+sp.%2C+%28Dinophyceae%29+as+the+Sole+Representative+of+Symbiodinium+Clade+E&rft.jtitle=The+Journal+of+eukaryotic+microbiology&rft.au=Jeong%2C+Hae+Jin&rft.au=Lee%2C+Sung+Yeon&rft.au=Kang%2C+Nam+Seon&rft.au=Yoo%2C+Yeong+Du&rft.date=2014-01-01&rft.issn=1066-5234&rft.eissn=1550-7408&rft.volume=61&rft.issue=1&rft.spage=75&rft.epage=94&rft_id=info:doi/10.1111%2Fjeu.12088&rft.externalDBID=10.1111%252Fjeu.12088&rft.externalDocID=JEU12088 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-5234&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-5234&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-5234&client=summon |