The effect of basic fibroblast growth factor on bone regeneration when released from a novel in situ setting tricalcium phosphate cement
The osteostimulative effect of the basic fibroblast growth factor is well known, but it is dose dependent, and release kinetic depends on interactions with the used carrier. The aim of our study was to determine the osteostimulative effect of a composite, consisting of an in situ setting tricalcium...
Saved in:
Published in: | Journal of biomedical materials research. Part A Vol. 69A; no. 4; pp. 680 - 685 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
15-06-2004
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The osteostimulative effect of the basic fibroblast growth factor is well known, but it is dose dependent, and release kinetic depends on interactions with the used carrier. The aim of our study was to determine the osteostimulative effect of a composite, consisting of an in situ setting tricalcium phosphate cement and basic fibroblast growth factor. A trepanation defect of 1.5 mm in the femur diaphysis of Sprague‐Dawley rats was filled with the in situ setting TCP cement combined with 0, 0.25, 2.5, or 25 μg rh bFGF, an autologous bone graft or left empty. The rats were euthanized after 1 and 3 weeks and examined by radiography, histology, histomorphometry, and bending test. The data were analyzed by the Wilcoxon and Kruskal‐Wallis test. All TCP groups with or without bFGF showed a good bony ingrowth with a close bone–cement contact. Osseous ingrowth was not influenced by the addition of the different doses of bFGF as shown by histomorphometry. Also, mechanical strength was not affected. In conclusion, the combination of this in situ setting cement with bFGF is not useful for clinical application. The reason of these negative results remains unclear: the osteostimulative effect of bFGF is well known, and the TCP–cement was used as a carrier for rhBMP‐2 successfully. These negative results may be due to a too slow or too fast release of bFGF from the cement. © 2004 Wiley Periodicals, Inc. J Biomed Mater Res 69A: 680–685, 2004 |
---|---|
Bibliography: | START-program 99/97, and TV 28/98 of the Medical Faculty, RWTH Aachen, Germany ark:/67375/WNG-161G5L3M-0 istex:479002628B30719807B577AC5F6254C10C2BD6E9 ArticleID:JBM30037 Interdisciplinary Center for Clinical Research in Biomaterials and Tissue-Material-Interaction in Implants - No. 01 KS 9503/9 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1549-3296 1552-4965 |
DOI: | 10.1002/jbm.a.30037 |