Enhanced fermentative capacity of yeasts engineered in storage carbohydrate metabolism
During yeast biomass production, cells are grown through several batch and fed‐batch cultures on molasses. This industrial process produces several types of stresses along the process, including thermic, osmotic, starvation, and oxidative stress. It has been shown that Saccharomyces cerevisiae strai...
Saved in:
Published in: | Biotechnology progress Vol. 31; no. 1; pp. 20 - 24 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Blackwell Publishing Ltd
01-01-2015
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | During yeast biomass production, cells are grown through several batch and fed‐batch cultures on molasses. This industrial process produces several types of stresses along the process, including thermic, osmotic, starvation, and oxidative stress. It has been shown that Saccharomyces cerevisiae strains with enhanced stress resistance present enhanced fermentative capacity of yeast biomass produced. On the other hand, storage carbohydrates have been related to several types of stress resistance in S. cerevisiae. Here we have engineered industrial strains in storage carbohydrate metabolism by overexpressing the GSY2 gene, that encodes the glycogen synthase enzyme, and deleting NTH1 gene, that encodes the neutral trehalase enzyme. Industrial biomass production process simulations were performed with control and modified strains to measure cellular carbohydrates and fermentation capacity of the produced biomass. These modifications increased glycogen and trehalose levels respectively during bench‐top trials of industrial biomass propagation. We finally show that these strains display an improved fermentative capacity than its parental strain after biomass production. Modification of storage carbohydrate content increases fermentation or metabolic capacity of yeast which can be an interesting application for the food industry. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:20–24, 2015 |
---|---|
AbstractList | During yeast biomass production, cells are grown through several batch and fed-batch cultures on molasses. This industrial process produces several types of stresses along the process, including thermic, osmotic, starvation, and oxidative stress. It has been shown that Saccharomyces cerevisiae strains with enhanced stress resistance present enhanced fermentative capacity of yeast biomass produced. On the other hand, storage carbohydrates have been related to several types of stress resistance in S. cerevisiae. Here we have engineered industrial strains in storage carbohydrate metabolism by overexpressing the GSY2 gene, that encodes the glycogen synthase enzyme, and deleting NTH1 gene, that encodes the neutral trehalase enzyme. Industrial biomass production process simulations were performed with control and modified strains to measure cellular carbohydrates and fermentation capacity of the produced biomass. These modifications increased glycogen and trehalose levels respectively during bench-top trials of industrial biomass propagation. We finally show that these strains display an improved fermentative capacity than its parental strain after biomass production. Modification of storage carbohydrate content increases fermentation or metabolic capacity of yeast which can be an interesting application for the food industry. During yeast biomass production, cells are grown through several batch and fed-batch cultures on molasses. This industrial process produces several types of stresses along the process, including thermic, osmotic, starvation, and oxidative stress. It has been shown that Saccharomyces cerevisiae strains with enhanced stress resistance present enhanced fermentative capacity of yeast biomass produced. On the other hand, storage carbohydrates have been related to several types of stress resistance in S. cerevisiae. Here we have engineered industrial strains in storage carbohydrate metabolism by overexpressing the GSY2 gene, that encodes the glycogen synthase enzyme, and deleting NTH1 gene, that encodes the neutral trehalase enzyme. Industrial biomass production process simulations were performed with control and modified strains to measure cellular carbohydrates and fermentation capacity of the produced biomass. These modifications increased glycogen and trehalose levels respectively during bench-top trials of industrial biomass propagation. We finally show that these strains display an improved fermentative capacity than its parental strain after biomass production. Modification of storage carbohydrate content increases fermentation or metabolic capacity of yeast which can be an interesting application for the food industry. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:20-24, 2015 During yeast biomass production, cells are grown through several batch and fed‐batch cultures on molasses. This industrial process produces several types of stresses along the process, including thermic, osmotic, starvation, and oxidative stress. It has been shown that Saccharomyces cerevisiae strains with enhanced stress resistance present enhanced fermentative capacity of yeast biomass produced. On the other hand, storage carbohydrates have been related to several types of stress resistance in S. cerevisiae . Here we have engineered industrial strains in storage carbohydrate metabolism by overexpressing the GSY2 gene, that encodes the glycogen synthase enzyme, and deleting NTH1 gene, that encodes the neutral trehalase enzyme. Industrial biomass production process simulations were performed with control and modified strains to measure cellular carbohydrates and fermentation capacity of the produced biomass. These modifications increased glycogen and trehalose levels respectively during bench‐top trials of industrial biomass propagation. We finally show that these strains display an improved fermentative capacity than its parental strain after biomass production. Modification of storage carbohydrate content increases fermentation or metabolic capacity of yeast which can be an interesting application for the food industry. © 2014 American Institute of Chemical Engineers Biotechnol. Prog ., 31:20–24, 2015 During yeast biomass production, cells are grown through several batch and fed-batch cultures on molasses. This industrial process produces several types of stresses along the process, including thermic, osmotic, starvation, and oxidative stress. It has been shown that Saccharomyces cerevisiae strains with enhanced stress resistance present enhanced fermentative capacity of yeast biomass produced. On the other hand, storage carbohydrates have been related to several types of stress resistance in S. cerevisiae. Here we have engineered industrial strains in storage carbohydrate metabolism by overexpressing the GSY2 gene, that encodes the glycogen synthase enzyme, and deleting NTH1 gene, that encodes the neutral trehalase enzyme. Industrial biomass production process simulations were performed with control and modified strains to measure cellular carbohydrates and fermentation capacity of the produced biomass. These modifications increased glycogen and trehalose levels respectively during bench-top trials of industrial biomass propagation. We finally show that these strains display an improved fermentative capacity than its parental strain after biomass production. Modification of storage carbohydrate content increases fermentation or metabolic capacity of yeast which can be an interesting application for the food industry. copyright 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:20-24, 2015 |
Author | Matallana, Emilia Pérez-Torrado, Roberto |
Author_xml | – sequence: 1 givenname: Roberto surname: Pérez-Torrado fullname: Pérez-Torrado, Roberto email: rober@iata.csic.es organization: Dept. de Biotecnología, Inst. de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Valencia, Spain – sequence: 2 givenname: Emilia surname: Matallana fullname: Matallana, Emilia organization: Dept. de Biotecnología, Inst. de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Valencia, Spain |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25219977$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0UFPFDEcBfDGYGRBD34BM4kXPQy0007bOQqBhQRRCeqx6XT-hcGZdmm7ynx7OtmVA4mJp6bJ7720eXtox3kHCL0l-IBgXB22aRUOSNPQF2hB6gqXHFO6gxZS1LwUDZW7aC_GO4yxxLx6hXaruspciAX6ceJutTPQFRbCCC7p1P-GwuiVNn2aCm-LCXRMsQB30zuAkGnviph80DczDK2_nbqgExQjJN36oY_ja_TS6iHCm-25j76fnlwfn5UXX5bnx58uSsM4oSWT0LY2v6uzpK1rrS1mjFBqu5ZpazrLSVNX88U0UBEjWttIQ0VO1ZRwSffRh03vKvj7NcSkxj4aGAbtwK-jIpyzClPZiP-gtWSENxRn-v4ZvfPr4PJHZiUYo5KSrD5ulAk-xgBWrUI_6jApgtW8i5p3UfMu2b7bNq7bEbon-XeIDA434E8_wPTvJnV0_fVqW1luEn1M8PCU0OGX4oKKWv28XKrP3_iSnV4dKUwfAdwbqUk |
CitedBy_id | crossref_primary_10_1002_bit_28421 crossref_primary_10_1186_s12934_016_0453_3 crossref_primary_10_1007_s12088_017_0679_8 crossref_primary_10_1007_s00284_016_1127_4 crossref_primary_10_1016_j_ijfoodmicro_2019_108462 crossref_primary_10_1111_ajgw_12189 crossref_primary_10_1016_j_lwt_2021_111183 crossref_primary_10_1021_acs_jafc_9b03790 crossref_primary_10_48130_fia_0024_0016 |
Cites_doi | 10.1078/0723-2020-00087 10.1099/00221287-143-6-1891 10.1007/3-540-45611-2 10.4161/bbug.1.5.12384 10.1007/s00253-011-3738-9 10.1021/jf9706538 10.1111/j.1567-1364.2010.00667.x 10.1016/0014-5793(87)80886-4 10.1016/S1097-2765(00)80064-7 10.1128/AEM.68.7.3339-3344.2002 10.1002/btpr.1915 10.1128/AEM.71.11.6831-6837.2005 10.1016/S0168-1605(03)00253-8 10.1186/1475-2859-9-9 10.1093/glycob/cwg047 10.1016/S0723-2020(11)80219-5 10.1093/emboj/17.13.3556 10.1111/j.1574-6976.2001.tb00574.x 10.1146/annurev.ph.54.030192.003051 10.1111/j.1574-6968.2000.tb08864.x 10.1111/j.1567-1364.2008.00453.x 10.1093/nar/24.13.2519 10.1016/j.cbpa.2006.02.030 10.1007/978-94-009-1113-0_12 10.1007/s00253-008-1722-9 10.1128/JB.181.2.396-400.1999 10.1016/0304-4165(94)90130-9 10.1002/(SICI)1097-0061(199812)14:16<1511::AID-YEA356>3.0.CO;2-S 10.1128/jb.143.3.1384-1394.1980 10.1006/abio.1997.2138 10.1128/AEM.02651-06 10.1186/1471-2180-1-11 |
ContentType | Journal Article |
Copyright | 2014 American Institute of Chemical Engineers 2014 American Institute of Chemical Engineers. 2015 American Institute of Chemical Engineers |
Copyright_xml | – notice: 2014 American Institute of Chemical Engineers – notice: 2014 American Institute of Chemical Engineers. – notice: 2015 American Institute of Chemical Engineers |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7QO 7T7 7U7 8FD C1K FR3 M7N P64 7X8 |
DOI | 10.1002/btpr.1993 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Biotechnology Research Abstracts CrossRef Biotechnology Research Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1520-6033 |
EndPage | 24 |
ExternalDocumentID | 3602158791 10_1002_btpr_1993 25219977 BTPR1993 ark_67375_WNG_MQ6G4FRB_0 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Ministerio de Educación y Ciencia funderid: AGL2002‐01109; AGL 2005‐00508 – fundername: Generalitat Valenciana funderid: GVACOMP2007‐157 |
GroupedDBID | --- -~X .DC 05W 0R~ 1L6 1OB 1OC 1WB 23N 31~ 33P 3SF 3WU 4.4 52U 52V 53G 55A 5GY 5VS 66C 6J9 8-1 A00 A8Z AABXI AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABEFU ABHMW ABJNI ABQWH ABTAH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACJ ACMXC ACPOU ACPRK ACS ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADMGS ADOZA ADXAS ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AGXLV AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZFZN AZVAB BAANH BDRZF BFHJK BHBCM BLYAC BMXJE BNHUX BOGZA BRXPI BSCLL C45 CS3 DCZOG DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EDH EJD EMOBN ESTFP F5P FEDTE FUBAC G-S GODZA HF~ HGLYW HHY HVGLF HZ~ I-F IHE ITG ITH IX1 JG~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI ML0 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ NDZJH NNB O9- OIG OVD P2P P2W P4E PALCI QRW RIWAO RJQFR ROL RWI SAMSI SUPJJ SV3 TAE TEORI TN5 TUS W99 WBKPD WIH WIJ WIK WOHZO WSB WXSBR WYJ XV2 Y6R ZCA ZY4 ZZTAW ~02 ~KM ~S- CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7QL 7QO 7T7 7U7 8FD C1K FR3 M7N P64 7X8 |
ID | FETCH-LOGICAL-c4613-48ebbf000df1b55aaf044133fdb4afcdf61952db4ac9e21c7bf98c37ebb531683 |
IEDL.DBID | 33P |
ISSN | 8756-7938 |
IngestDate | Fri Aug 16 09:55:21 EDT 2024 Fri Aug 16 22:03:26 EDT 2024 Thu Nov 21 04:19:32 EST 2024 Thu Nov 21 20:45:39 EST 2024 Sat Sep 28 08:15:08 EDT 2024 Sat Aug 24 00:55:50 EDT 2024 Wed Oct 30 10:05:06 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | fermentative capacity storage carbohydrates S. cerevisiae |
Language | English |
License | 2014 American Institute of Chemical Engineers. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4613-48ebbf000df1b55aaf044133fdb4afcdf61952db4ac9e21c7bf98c37ebb531683 |
Notes | Generalitat Valenciana - No. GVACOMP2007-157 ark:/67375/WNG-MQ6G4FRB-0 istex:95E3AA80851263CF9AF4C3B0FC476029E5E3B68C ArticleID:BTPR1993 Ministerio de Educación y Ciencia - No. AGL2002-01109; No. AGL 2005-00508 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 25219977 |
PQID | 1657443831 |
PQPubID | 2034897 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1664203897 proquest_miscellaneous_1658416930 proquest_journals_1657443831 crossref_primary_10_1002_btpr_1993 pubmed_primary_25219977 wiley_primary_10_1002_btpr_1993_BTPR1993 istex_primary_ark_67375_WNG_MQ6G4FRB_0 |
PublicationCentury | 2000 |
PublicationDate | 2015-01 January/February 2015 2015 Jan-Feb 2015-01-00 20150101 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: 2015-01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Biotechnology progress |
PublicationTitleAlternate | Biotechnol Progress |
PublicationYear | 2015 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Gómez-Pastor R, Pérez-Torrado R, Cabiscol E, Matallana E. Transcriptomic and proteomic insights of the wine yeast biomass propagation process. FEMS Yeast Res. 2010;10:870-884. Hottinger T, Boller T, Wiemken A. Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevesiae. FEBS Lett. 1987;220:113-115. François JM, Parrou JL. Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev. 2001;25:125-45. Gómez-Pastor R, Pérez-Torrado R, Cabiscol E, Ros J, Matallana E. Reduction of oxidative cellular damage by overexpression of the thioredoxin TRX2 gene improves yield and quality of wine yeast dry active biomass. Microb Cell Fact. 2010;12:9 Elbein AD, Pan YT, Pastuszak I Carroll D. New insights on trehalose: a multifunctional molecule. Glycobiol. 2003;13:17R-7R. Novo MT, Beltran G, Torija MJ, Poblet M, Rozès N, Guillamón JM, Mas A. Changes in wine yeast storage carbohydrate levels during preadaptation, rehydration and low temperature fermentations. Int J Food Microbiol. 2003;86:153-161. Gómez-Pastor R, Pérez-Torrado R, Cabiscol E, Ros J, Matallana E. Engineered Trx2p industrial yeast strain protects glycolysis and fermentation proteins from oxidative carbonylation during biomass propagation. Microb Cell Fact. 2012:9:11-14. Guldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 1996;24:2519-2524. Jamieson DJ. Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast. 1998;14:1511-27. Panadero J, Hernández-López MJ, Prieto JA, Randez-Gil F. Overexpression of the calcineurin target CRZ1 provides freeze tolerance and enhances the fermentative capacity of baker's yeast. Appl Environ Microbiol. 2007;73:4824-4831 Pérez-Torrado R, Carrasco P, Aranda A, Gimeno-Alcañiz JV, Pérez-Ortín JE, Matallana E, del Olmo M. Study of the first hours of microvinification by the use of osmotic stress-response genes as probes. System Appl Microbiol. 2002;25:153-161. Gómez-Pastor R, Pérez-Torrado R, Matallana E. Modification of the TRX2 gene dose in Saccharomyces cerevisiae affects hexokinase 2 gene regulation during wine yeast biomass production. Appl Microbiol Biotechnol. 2012;94:773-787. Pereira MD, Eleutherio ECA, Panek AD. Acquisition of tolerance against oxidative damage in Saccharomyces cerevisiae. BMC Microbiol. 2001;1:11. Smith A, Ward MP, Garrett S. Yeast PKA represses Msn2p/Msn4p-dependent gene expression to regulate growth, stress response and glycogen accumulation. EMBO J. 1998;17:3556-3564. Blomberg A. Metabolic surprises in Saccharomyces cerevisiae during adaptation to saline conditions: questions, some answers and a model. FEMS Microbiol Lett. 2000;182:1-8. Pérez-Torrado R, Gimeno-Alcañiz JV, Matallana E. Wine yeast strains engineered for glycogen overproduction display enhanced viability under glucose deprivation conditions. Appl Environ Microbiol. 2002;68:3339-3344. Garre E, Pérez-Torrado R, Gimeno-Alcañiz JV, Matallana E. Acid trehalase is involved in intracellular trehalose mobilization during postdiauxic growth and severe saline stress in Saccharomyces cerevisiae. FEMS Yeast Res. 2009;9:52-62. Singer MA, Lindquist S. Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell. 1998;1:639-648. Pérez-Torrado R, Bruno-Barcena JM, Matallana E. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making. Appl Environ Microbiol. 2005;71:6831-6837. Querol A, Barrio E. Ramón D. A Comparative-study of different methods of yeast-strain characterization. System Appl Microbiol. 1992;15:439-446. Hohmann S, Mager WH. Yeast Stress Responses. Topics in Current Genetics Series, Vol.1. Heidelberg: Springer Verlag; 2003. Lillie SH, Pringle JR. Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol. 1980;143:1384-1394. Parrou JL, Francois J. A simplified procedure for a rapid and reliable assay of both glycogen and trehalose in whole yeast cells. Anal Biochem. 1997;248:186-188. Parrou JL, Teste MA, François J. Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiol. 1997;143:1891-1900. Jorgensen H, Olsson L, Ronnow B, Palmqvist EA. Fed-batch cultivation of baker's yeast followed by nitrogen or carbon starvation: effects on fermentative capacity and content of trehalose and glycogen. Appl Environ Microbiol. 2002;59:310-317. Crowe JH, Hoekstra FA Crowe LM. Anhydrobiosis. Ann Rev Physiol. 1992;54:579-599. Silljé HHW, Paalman JWG, Schure EG, Olsthoorn SQB, Verkleij AJ, Boonstra J, Verrips CT. Function of trehalose and glycogen in cell cycle progression and cell viability in Saccharomyces cerevisiae. J Bacteriol. 1999;181:396-400. San Miguel PF, Argüelles JC. Differential changes in the activity of cytosolic and vacuolar trehalases along the growth cycle of Saccharomyces cerevisiae. Biochim Biophys Acta. 1994;1200:155-160. López-Malo M, García-Rios E, Chiva R, Guillamon JM, Martí-Raga M. Effect of deletion and overexpression of tryptophan metabolism genes on growth and fermentation capacity at low temperature in wine yeast. Biotechnol Prog. 2014;30:776-783. França MB, Panek AD, Eleutherio EC. Oxidative stress and its effects during dehydration. Comp Biochem Physiol A Mol Integr Physiol. 2007;146:621-631. Gómez-Pastor R, Pérez-Torrado R, Matallana, E. Improving yield of industrial biomass propagation by increasing the Trx2p dosage. Bioeng Bugs. 2010;1:352-353. Walker GM. Yeast Physiology and Biotechnology. Chichester: Wiley; 1998. Pérez-Torrado R, Gómez-Pastor R, Larsson C, and Matallana E. Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth. Appl Microbiol Biotechnol. 2009;81:951-60 Puig S, Ramón D, Pérez-Ortín JE. Optimized method to obtain stable food-safe recombinant wine yeast strains. J Agric Food Chem. 1998;46:1689-1693. 2010; 12 2010; 10 2002; 59 2007; 146 1987; 220 2009; 81 1998 2003; 13 1994; 1200 1993 1992; 15 2007; 73 1992; 54 2001; 25 1993; 5 1998; 46 2012; 94 2002; 25 1998; 17 1997; 248 2010; 1 1990 1997; 143 2002; 68 1999; 181 2000; 182 2009; 9 2001; 1 2005; 71 1998; 1 2003; 1 2014; 30 1996; 24 1980; 143 2003; 86 1989 1998; 14 2012; 9 e_1_2_7_5_1 e_1_2_7_4_1 e_1_2_7_9_1 Gómez‐Pastor R (e_1_2_7_10_1) 2012; 9 e_1_2_7_8_1 e_1_2_7_19_1 e_1_2_7_17_1 Jorgensen H (e_1_2_7_34_1) 2002; 59 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Degre R (e_1_2_7_38_1) 1993 Silljé HHW (e_1_2_7_18_1) 1999; 181 Walker GM (e_1_2_7_7_1) 1998 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 Rose AH (e_1_2_7_6_1) 1993 e_1_2_7_37_1 e_1_2_7_39_1 Beudeker RF (e_1_2_7_3_1) 1990 |
References_xml | – volume: 1 year: 2003 – volume: 10 start-page: 870 year: 2010 end-page: 884 article-title: Transcriptomic and proteomic insights of the wine yeast biomass propagation process publication-title: FEMS Yeast Res. – volume: 181 start-page: 396 year: 1999 end-page: 400 article-title: Function of trehalose and glycogen in cell cycle progression and cell viability in publication-title: J Bacteriol. – start-page: 169 year: 1989 end-page: 187 – volume: 71 start-page: 6831 year: 2005 end-page: 6837 article-title: Monitoring stress‐related genes during the process of biomass propagation of strains used for wine making publication-title: Appl Environ Microbiol. – volume: 54 start-page: 579 year: 1992 end-page: 599 article-title: Anhydrobiosis publication-title: Ann Rev Physiol. – volume: 5 start-page: 357 year: 1993 end-page: 397 – volume: 9 start-page: 52 year: 2009 end-page: 62 article-title: Acid trehalase is involved in intracellular trehalose mobilization during postdiauxic growth and severe saline stress in publication-title: FEMS Yeast Res. – volume: 1 start-page: 639 year: 1998 end-page: 648 article-title: Multiple effects of trehalose on protein folding in vitro and in vivo publication-title: Mol Cell. – volume: 59 start-page: 310 year: 2002 end-page: 317 article-title: Fed‐batch cultivation of baker's yeast followed by nitrogen or carbon starvation: effects on fermentative capacity and content of trehalose and glycogen publication-title: Appl Environ Microbiol. – volume: 25 start-page: 125 year: 2001 end-page: 45 article-title: Reserve carbohydrates metabolism in the yeast publication-title: FEMS Microbiol Rev. – start-page: 421 year: 1993 end-page: 447 – volume: 146 start-page: 621 year: 2007 end-page: 631 article-title: Oxidative stress and its effects during dehydration publication-title: Comp Biochem Physiol A Mol Integr Physiol. – volume: 14 start-page: 1511 year: 1998 end-page: 27 article-title: Oxidative stress responses of the yeast publication-title: Yeast. – volume: 12 start-page: 9 year: 2010 article-title: Reduction of oxidative cellular damage by overexpression of the thioredoxin gene improves yield and quality of wine yeast dry active biomass publication-title: Microb Cell Fact. – year: 1998 – volume: 86 start-page: 153 year: 2003 end-page: 161 article-title: Changes in wine yeast storage carbohydrate levels during preadaptation, rehydration and low temperature fermentations publication-title: Int J Food Microbiol. – volume: 94 start-page: 773 year: 2012 end-page: 787 article-title: Modification of the gene dose in affects hexokinase 2 gene regulation during wine yeast biomass production publication-title: Appl Microbiol Biotechnol. – volume: 24 start-page: 2519 year: 1996 end-page: 2524 article-title: A new efficient gene disruption cassette for repeated use in budding yeast publication-title: Nucleic Acids Res. – volume: 1 start-page: 352 year: 2010 end-page: 353 article-title: Improving yield of industrial biomass propagation by increasing the Trx2p dosage publication-title: Bioeng Bugs. – volume: 1 start-page: 11 year: 2001 article-title: Acquisition of tolerance against oxidative damage in publication-title: BMC Microbiol. – volume: 81 start-page: 951 year: 2009 end-page: 60 article-title: Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth publication-title: Appl Microbiol Biotechnol. – volume: 143 start-page: 1384 year: 1980 end-page: 1394 article-title: Reserve carbohydrate metabolism in : responses to nutrient limitation publication-title: J Bacteriol. – volume: 13 start-page: 17R year: 2003 end-page: 7R article-title: New insights on trehalose: a multifunctional molecule publication-title: Glycobiol. – volume: 15 start-page: 439 year: 1992 end-page: 446 article-title: A Comparative‐study of different methods of yeast‐strain characterization publication-title: System Appl Microbiol. – volume: 73 start-page: 4824 year: 2007 end-page: 4831 article-title: Overexpression of the calcineurin target provides freeze tolerance and enhances the fermentative capacity of baker's yeast publication-title: Appl Environ Microbiol. – volume: 9 start-page: 11 year: 2012 end-page: 14 article-title: Engineered Trx2p industrial yeast strain protects glycolysis and fermentation proteins from oxidative carbonylation during biomass propagation publication-title: Microb Cell Fact. – volume: 182 start-page: 1 year: 2000 end-page: 8 article-title: Metabolic surprises in during adaptation to saline conditions: questions, some answers and a model publication-title: FEMS Microbiol Lett. – volume: 17 start-page: 3556 year: 1998 end-page: 3564 article-title: Yeast PKA represses Msn2p/Msn4p‐dependent gene expression to regulate growth, stress response and glycogen accumulation publication-title: EMBO J. – volume: 30 start-page: 776 year: 2014 end-page: 783 article-title: Effect of deletion and overexpression of tryptophan metabolism genes on growth and fermentation capacity at low temperature in wine yeast publication-title: Biotechnol Prog. – start-page: 103 year: 1990 end-page: 146 – volume: 46 start-page: 1689 year: 1998 end-page: 1693 article-title: Optimized method to obtain stable food‐safe recombinant wine yeast strains publication-title: J Agric Food Chem. – volume: 143 start-page: 1891 year: 1997 end-page: 1900 article-title: Effects of various types of stress on the metabolism of reserve carbohydrates in : genetic evidence for a stress‐induced recycling of glycogen and trehalose publication-title: Microbiol. – volume: 1200 start-page: 155 year: 1994 end-page: 160 article-title: Differential changes in the activity of cytosolic and vacuolar trehalases along the growth cycle of publication-title: Biochim Biophys Acta. – volume: 25 start-page: 153 year: 2002 end-page: 161 article-title: Study of the first hours of microvinification by the use of osmotic stress‐response genes as probes publication-title: System Appl Microbiol. – volume: 248 start-page: 186 year: 1997 end-page: 188 article-title: A simplified procedure for a rapid and reliable assay of both glycogen and trehalose in whole yeast cells publication-title: Anal Biochem. – volume: 68 start-page: 3339 year: 2002 end-page: 3344 article-title: Wine yeast strains engineered for glycogen overproduction display enhanced viability under glucose deprivation conditions publication-title: Appl Environ Microbiol. – volume: 220 start-page: 113 year: 1987 end-page: 115 article-title: Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevesiae publication-title: FEBS Lett. – ident: e_1_2_7_16_1 doi: 10.1078/0723-2020-00087 – ident: e_1_2_7_26_1 doi: 10.1099/00221287-143-6-1891 – volume: 9 start-page: 11 year: 2012 ident: e_1_2_7_10_1 article-title: Engineered Trx2p industrial yeast strain protects glycolysis and fermentation proteins from oxidative carbonylation during biomass propagation publication-title: Microb Cell Fact. contributor: fullname: Gómez‐Pastor R – ident: e_1_2_7_14_1 doi: 10.1007/3-540-45611-2 – ident: e_1_2_7_4_1 doi: 10.4161/bbug.1.5.12384 – ident: e_1_2_7_11_1 doi: 10.1007/s00253-011-3738-9 – ident: e_1_2_7_30_1 doi: 10.1021/jf9706538 – ident: e_1_2_7_8_1 doi: 10.1111/j.1567-1364.2010.00667.x – ident: e_1_2_7_19_1 doi: 10.1016/0014-5793(87)80886-4 – ident: e_1_2_7_23_1 doi: 10.1016/S1097-2765(00)80064-7 – ident: e_1_2_7_29_1 doi: 10.1128/AEM.68.7.3339-3344.2002 – ident: e_1_2_7_36_1 doi: 10.1002/btpr.1915 – start-page: 103 volume-title: Yeast: Biotechnology and Biocatalysis year: 1990 ident: e_1_2_7_3_1 contributor: fullname: Beudeker RF – ident: e_1_2_7_12_1 doi: 10.1128/AEM.71.11.6831-6837.2005 – ident: e_1_2_7_35_1 doi: 10.1016/S0168-1605(03)00253-8 – ident: e_1_2_7_9_1 doi: 10.1186/1475-2859-9-9 – ident: e_1_2_7_21_1 doi: 10.1093/glycob/cwg047 – start-page: 421 volume-title: Wine Microbiology and Biotechnology year: 1993 ident: e_1_2_7_38_1 contributor: fullname: Degre R – ident: e_1_2_7_28_1 doi: 10.1016/S0723-2020(11)80219-5 – ident: e_1_2_7_20_1 doi: 10.1093/emboj/17.13.3556 – ident: e_1_2_7_37_1 doi: 10.1111/j.1574-6976.2001.tb00574.x – ident: e_1_2_7_22_1 doi: 10.1146/annurev.ph.54.030192.003051 – ident: e_1_2_7_24_1 doi: 10.1111/j.1574-6968.2000.tb08864.x – ident: e_1_2_7_25_1 doi: 10.1111/j.1567-1364.2008.00453.x – ident: e_1_2_7_31_1 doi: 10.1093/nar/24.13.2519 – ident: e_1_2_7_39_1 doi: 10.1016/j.cbpa.2006.02.030 – ident: e_1_2_7_2_1 doi: 10.1007/978-94-009-1113-0_12 – ident: e_1_2_7_13_1 doi: 10.1007/s00253-008-1722-9 – volume-title: Yeast Physiology and Biotechnology year: 1998 ident: e_1_2_7_7_1 contributor: fullname: Walker GM – volume: 181 start-page: 396 year: 1999 ident: e_1_2_7_18_1 article-title: Function of trehalose and glycogen in cell cycle progression and cell viability in Saccharomyces cerevisiae publication-title: J Bacteriol. doi: 10.1128/JB.181.2.396-400.1999 contributor: fullname: Silljé HHW – ident: e_1_2_7_27_1 doi: 10.1016/0304-4165(94)90130-9 – ident: e_1_2_7_15_1 doi: 10.1002/(SICI)1097-0061(199812)14:16<1511::AID-YEA356>3.0.CO;2-S – ident: e_1_2_7_17_1 doi: 10.1128/jb.143.3.1384-1394.1980 – ident: e_1_2_7_32_1 doi: 10.1006/abio.1997.2138 – volume: 59 start-page: 310 year: 2002 ident: e_1_2_7_34_1 article-title: Fed‐batch cultivation of baker's yeast followed by nitrogen or carbon starvation: effects on fermentative capacity and content of trehalose and glycogen publication-title: Appl Environ Microbiol. contributor: fullname: Jorgensen H – ident: e_1_2_7_33_1 doi: 10.1128/AEM.02651-06 – start-page: 357 year: 1993 ident: e_1_2_7_6_1 contributor: fullname: Rose AH – ident: e_1_2_7_5_1 doi: 10.1186/1471-2180-1-11 |
SSID | ssj0008062 |
Score | 2.2148576 |
Snippet | During yeast biomass production, cells are grown through several batch and fed‐batch cultures on molasses. This industrial process produces several types of... During yeast biomass production, cells are grown through several batch and fed-batch cultures on molasses. This industrial process produces several types of... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 20 |
SubjectTerms | Biomass Carbohydrate Metabolism - genetics Carbohydrate Metabolism - physiology Fermentation fermentative capacity Glycogen - analysis Glycogen - metabolism Industrial Microbiology Metabolic Engineering - methods S. cerevisiae Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism storage carbohydrates Trehalose - analysis Trehalose - metabolism |
Title | Enhanced fermentative capacity of yeasts engineered in storage carbohydrate metabolism |
URI | https://api.istex.fr/ark:/67375/WNG-MQ6G4FRB-0/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbtpr.1993 https://www.ncbi.nlm.nih.gov/pubmed/25219977 https://www.proquest.com/docview/1657443831 https://search.proquest.com/docview/1658416930 https://search.proquest.com/docview/1664203897 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xuMChtEBpgFYGIdRLRBLHeain0u7CBcSb3qw4trUIyKLNLoJ_3xlnN4DUIiSkHBJlLCXjsecb2_MNwJaJRWjQr_voCjgGKFr5KolTvxCp4iKPLF60dHGaHv7JfneIJufHJBem4YdoF9xoZLj5mgZ4oeqdJ9JQNbwbUK4dMX1ilODSN_hROwtngSsminA88dEGswmrUBDttC1f-KJZUuvDv4DmS9zqHE934V2f_BE-jPEm-9kYyCeYMtUizD9jIVyCi07Vc-cAmMVpuslFujesRDdaIkZnfcseqcJPzcy4GYpeVYzOVeJshIID1e89aiKdYLdmiGZ1c1XfLsN5t3P2a98fl1vwyxiduh9nRimLqtM2VEIUhQ0QK3FutYoLW2qLsZaI6KHMTRSWqbJ5VvIUWwkqf8U_w0zVr8wXYDzhXGMgmOjSxtwEBYIwxAoCHWGuubEebE4UL-8aVg3Z8CdHkpQkSUkebLsuaSWKwTUdQ0uFvDzckwfHyV7cPdmVgQfrkz6T4xFYyzARaUw8rKEHG-1rHDu0IVJUpj9yMrTrmvPgNRmM0IiFMPVgpbGH9oMixD45AmgPvrtu__-_yN2zoxO6WX276BrMIToTzXrPOswMByPzFaZrPfrmTP0vMycA_g |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT9wwEB4VeIA-9ADapuUwCFV9iUhiO4fUlwK7gIAVxxb6ZsWxLVBLFu1RlX_fmWQ3gAQVUqU8JMpYSsYznm98fAOwYYUMLcZ1H0MBxwTFaF_HIvFzmWgus8jhRVMXZ0nnR7rTIpqcr5OzMDU_RDPhRp5Rjdfk4DQhvXnHGqqHN306bMenYEbEaIh0gIMfN-NwGlTlRBGQxz5aYTrhFQqizabpg2g0Q4r98xjUfIhcq9DTfv1_H_0GXo0hJ_tW28hbeGHLeXh5j4hwAc5b5WW1FYA5HKnr40i_LSswkhYI01nPsVsq8jNgdtwMRa9KRlsrcUBCwb7uXd4a4p1g13aIlvXranC9CN_bre72nj-uuOAXAuO6L1KrtUPdGRdqKfPcBQiXOHdGi9wVxmG6JSN6KDIbhUWiXZYWPMFWkipg8XcwXfZK-wEYjzk3mAvGpnCC2yBHHIZwQWIszAy3zoP1iebVTU2soWoK5UiRkhQpyYPPVZ80Enn_J-1ES6S66Oyqo5N4V7RPt1TgwdKk09TYCQcqjGUiiIo19GCteY3uQ2sieWl7o0qGFl4zHvxLBpM0IiJMPHhfG0TzQRHCnwwxtAdfqn5_-l_UVvf4lG4-Pl90FWb3ukeH6nC_c_AJ5hCsyXr6Zwmmh_2RXYapgRmtVHb_F2H9BSY |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT9wwEB5xSFV5aKGlkALFraqKl4gktnOIJ45dQLSrLaXQNyuObYEo2dUeFfz7ziS7AaS2QqqUh0QZS8l4xvONj28APlohQ4tx3cdQwDFBMdrXsUj8XCaayyxyeNHUxbek8yM9aBFNzs70LEzND9FMuJFnVOM1OXjfuO170lA96g_orB2fhXmBMJyI8znvNsNwGlTVRBGPxz4aYTqlFQqi7abpo2A0T3q9_RPSfAxcq8jTfvlf37wILyaAk-3WFrIEM7Z8BQsPaAhfw3mrvKw2AjCH43R9GOmXZQXG0QJBOus5dkclfobMTpqh6FXJaGMlDkcoONC9yztDrBPsxo7Qrn5eDW-W4Xu7dbZ_5E_qLfiFwKjui9Rq7VB1xoVayjx3AYIlzp3RIneFcZhsyYgeisxGYZFol6UFT7CVpPpX_A3Mlb3SrgLjMecGM8HYFE5wG-SIwhAsSIyEmeHWefBhqnjVr2k1VE2gHClSkiIlefCp6pJGIh9c0z60RKqLzqH68jU-FO3TPRV4sD7tMzVxwaEKY5kIImINPXjfvEbnoRWRvLS9cSVDy64ZD_4lgyka0RAmHqzU9tB8UITgJ0ME7cFW1e1__xe1d9Y9pZu3TxfdhGfdg7b6fNw5WYPniNRkPfezDnOjwdhuwOzQjN9VVv8bNpwDzA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+fermentative+capacity+of+yeasts+engineered+in+storage+carbohydrate+metabolism&rft.jtitle=Biotechnology+progress&rft.au=P%C3%A9rez%E2%80%90Torrado%2C+Roberto&rft.au=Matallana%2C+Emilia&rft.date=2015-01-01&rft.issn=8756-7938&rft.eissn=1520-6033&rft.volume=31&rft.issue=1&rft.spage=20&rft.epage=24&rft_id=info:doi/10.1002%2Fbtpr.1993&rft.externalDBID=10.1002%252Fbtpr.1993&rft.externalDocID=BTPR1993 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-7938&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-7938&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-7938&client=summon |