Enhanced fermentative capacity of yeasts engineered in storage carbohydrate metabolism

During yeast biomass production, cells are grown through several batch and fed‐batch cultures on molasses. This industrial process produces several types of stresses along the process, including thermic, osmotic, starvation, and oxidative stress. It has been shown that Saccharomyces cerevisiae strai...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology progress Vol. 31; no. 1; pp. 20 - 24
Main Authors: Pérez-Torrado, Roberto, Matallana, Emilia
Format: Journal Article
Language:English
Published: United States Blackwell Publishing Ltd 01-01-2015
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract During yeast biomass production, cells are grown through several batch and fed‐batch cultures on molasses. This industrial process produces several types of stresses along the process, including thermic, osmotic, starvation, and oxidative stress. It has been shown that Saccharomyces cerevisiae strains with enhanced stress resistance present enhanced fermentative capacity of yeast biomass produced. On the other hand, storage carbohydrates have been related to several types of stress resistance in S. cerevisiae. Here we have engineered industrial strains in storage carbohydrate metabolism by overexpressing the GSY2 gene, that encodes the glycogen synthase enzyme, and deleting NTH1 gene, that encodes the neutral trehalase enzyme. Industrial biomass production process simulations were performed with control and modified strains to measure cellular carbohydrates and fermentation capacity of the produced biomass. These modifications increased glycogen and trehalose levels respectively during bench‐top trials of industrial biomass propagation. We finally show that these strains display an improved fermentative capacity than its parental strain after biomass production. Modification of storage carbohydrate content increases fermentation or metabolic capacity of yeast which can be an interesting application for the food industry. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:20–24, 2015
AbstractList During yeast biomass production, cells are grown through several batch and fed-batch cultures on molasses. This industrial process produces several types of stresses along the process, including thermic, osmotic, starvation, and oxidative stress. It has been shown that Saccharomyces cerevisiae strains with enhanced stress resistance present enhanced fermentative capacity of yeast biomass produced. On the other hand, storage carbohydrates have been related to several types of stress resistance in S. cerevisiae. Here we have engineered industrial strains in storage carbohydrate metabolism by overexpressing the GSY2 gene, that encodes the glycogen synthase enzyme, and deleting NTH1 gene, that encodes the neutral trehalase enzyme. Industrial biomass production process simulations were performed with control and modified strains to measure cellular carbohydrates and fermentation capacity of the produced biomass. These modifications increased glycogen and trehalose levels respectively during bench-top trials of industrial biomass propagation. We finally show that these strains display an improved fermentative capacity than its parental strain after biomass production. Modification of storage carbohydrate content increases fermentation or metabolic capacity of yeast which can be an interesting application for the food industry.
During yeast biomass production, cells are grown through several batch and fed-batch cultures on molasses. This industrial process produces several types of stresses along the process, including thermic, osmotic, starvation, and oxidative stress. It has been shown that Saccharomyces cerevisiae strains with enhanced stress resistance present enhanced fermentative capacity of yeast biomass produced. On the other hand, storage carbohydrates have been related to several types of stress resistance in S. cerevisiae. Here we have engineered industrial strains in storage carbohydrate metabolism by overexpressing the GSY2 gene, that encodes the glycogen synthase enzyme, and deleting NTH1 gene, that encodes the neutral trehalase enzyme. Industrial biomass production process simulations were performed with control and modified strains to measure cellular carbohydrates and fermentation capacity of the produced biomass. These modifications increased glycogen and trehalose levels respectively during bench-top trials of industrial biomass propagation. We finally show that these strains display an improved fermentative capacity than its parental strain after biomass production. Modification of storage carbohydrate content increases fermentation or metabolic capacity of yeast which can be an interesting application for the food industry. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:20-24, 2015
During yeast biomass production, cells are grown through several batch and fed‐batch cultures on molasses. This industrial process produces several types of stresses along the process, including thermic, osmotic, starvation, and oxidative stress. It has been shown that Saccharomyces cerevisiae strains with enhanced stress resistance present enhanced fermentative capacity of yeast biomass produced. On the other hand, storage carbohydrates have been related to several types of stress resistance in S. cerevisiae . Here we have engineered industrial strains in storage carbohydrate metabolism by overexpressing the GSY2 gene, that encodes the glycogen synthase enzyme, and deleting NTH1 gene, that encodes the neutral trehalase enzyme. Industrial biomass production process simulations were performed with control and modified strains to measure cellular carbohydrates and fermentation capacity of the produced biomass. These modifications increased glycogen and trehalose levels respectively during bench‐top trials of industrial biomass propagation. We finally show that these strains display an improved fermentative capacity than its parental strain after biomass production. Modification of storage carbohydrate content increases fermentation or metabolic capacity of yeast which can be an interesting application for the food industry. © 2014 American Institute of Chemical Engineers Biotechnol. Prog ., 31:20–24, 2015
During yeast biomass production, cells are grown through several batch and fed-batch cultures on molasses. This industrial process produces several types of stresses along the process, including thermic, osmotic, starvation, and oxidative stress. It has been shown that Saccharomyces cerevisiae strains with enhanced stress resistance present enhanced fermentative capacity of yeast biomass produced. On the other hand, storage carbohydrates have been related to several types of stress resistance in S. cerevisiae. Here we have engineered industrial strains in storage carbohydrate metabolism by overexpressing the GSY2 gene, that encodes the glycogen synthase enzyme, and deleting NTH1 gene, that encodes the neutral trehalase enzyme. Industrial biomass production process simulations were performed with control and modified strains to measure cellular carbohydrates and fermentation capacity of the produced biomass. These modifications increased glycogen and trehalose levels respectively during bench-top trials of industrial biomass propagation. We finally show that these strains display an improved fermentative capacity than its parental strain after biomass production. Modification of storage carbohydrate content increases fermentation or metabolic capacity of yeast which can be an interesting application for the food industry. copyright 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:20-24, 2015
Author Matallana, Emilia
Pérez-Torrado, Roberto
Author_xml – sequence: 1
  givenname: Roberto
  surname: Pérez-Torrado
  fullname: Pérez-Torrado, Roberto
  email: rober@iata.csic.es
  organization: Dept. de Biotecnología, Inst. de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Valencia, Spain
– sequence: 2
  givenname: Emilia
  surname: Matallana
  fullname: Matallana, Emilia
  organization: Dept. de Biotecnología, Inst. de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Valencia, Spain
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25219977$$D View this record in MEDLINE/PubMed
BookMark eNqN0UFPFDEcBfDGYGRBD34BM4kXPQy0007bOQqBhQRRCeqx6XT-hcGZdmm7ynx7OtmVA4mJp6bJ7720eXtox3kHCL0l-IBgXB22aRUOSNPQF2hB6gqXHFO6gxZS1LwUDZW7aC_GO4yxxLx6hXaruspciAX6ceJutTPQFRbCCC7p1P-GwuiVNn2aCm-LCXRMsQB30zuAkGnviph80DczDK2_nbqgExQjJN36oY_ja_TS6iHCm-25j76fnlwfn5UXX5bnx58uSsM4oSWT0LY2v6uzpK1rrS1mjFBqu5ZpazrLSVNX88U0UBEjWttIQ0VO1ZRwSffRh03vKvj7NcSkxj4aGAbtwK-jIpyzClPZiP-gtWSENxRn-v4ZvfPr4PJHZiUYo5KSrD5ulAk-xgBWrUI_6jApgtW8i5p3UfMu2b7bNq7bEbon-XeIDA434E8_wPTvJnV0_fVqW1luEn1M8PCU0OGX4oKKWv28XKrP3_iSnV4dKUwfAdwbqUk
CitedBy_id crossref_primary_10_1002_bit_28421
crossref_primary_10_1186_s12934_016_0453_3
crossref_primary_10_1007_s12088_017_0679_8
crossref_primary_10_1007_s00284_016_1127_4
crossref_primary_10_1016_j_ijfoodmicro_2019_108462
crossref_primary_10_1111_ajgw_12189
crossref_primary_10_1016_j_lwt_2021_111183
crossref_primary_10_1021_acs_jafc_9b03790
crossref_primary_10_48130_fia_0024_0016
Cites_doi 10.1078/0723-2020-00087
10.1099/00221287-143-6-1891
10.1007/3-540-45611-2
10.4161/bbug.1.5.12384
10.1007/s00253-011-3738-9
10.1021/jf9706538
10.1111/j.1567-1364.2010.00667.x
10.1016/0014-5793(87)80886-4
10.1016/S1097-2765(00)80064-7
10.1128/AEM.68.7.3339-3344.2002
10.1002/btpr.1915
10.1128/AEM.71.11.6831-6837.2005
10.1016/S0168-1605(03)00253-8
10.1186/1475-2859-9-9
10.1093/glycob/cwg047
10.1016/S0723-2020(11)80219-5
10.1093/emboj/17.13.3556
10.1111/j.1574-6976.2001.tb00574.x
10.1146/annurev.ph.54.030192.003051
10.1111/j.1574-6968.2000.tb08864.x
10.1111/j.1567-1364.2008.00453.x
10.1093/nar/24.13.2519
10.1016/j.cbpa.2006.02.030
10.1007/978-94-009-1113-0_12
10.1007/s00253-008-1722-9
10.1128/JB.181.2.396-400.1999
10.1016/0304-4165(94)90130-9
10.1002/(SICI)1097-0061(199812)14:16<1511::AID-YEA356>3.0.CO;2-S
10.1128/jb.143.3.1384-1394.1980
10.1006/abio.1997.2138
10.1128/AEM.02651-06
10.1186/1471-2180-1-11
ContentType Journal Article
Copyright 2014 American Institute of Chemical Engineers
2014 American Institute of Chemical Engineers.
2015 American Institute of Chemical Engineers
Copyright_xml – notice: 2014 American Institute of Chemical Engineers
– notice: 2014 American Institute of Chemical Engineers.
– notice: 2015 American Institute of Chemical Engineers
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7QO
7T7
7U7
8FD
C1K
FR3
M7N
P64
7X8
DOI 10.1002/btpr.1993
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Biotechnology Research Abstracts

CrossRef
Biotechnology Research Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1520-6033
EndPage 24
ExternalDocumentID 3602158791
10_1002_btpr_1993
25219977
BTPR1993
ark_67375_WNG_MQ6G4FRB_0
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministerio de Educación y Ciencia
  funderid: AGL2002‐01109; AGL 2005‐00508
– fundername: Generalitat Valenciana
  funderid: GVACOMP2007‐157
GroupedDBID ---
-~X
.DC
05W
0R~
1L6
1OB
1OC
1WB
23N
31~
33P
3SF
3WU
4.4
52U
52V
53G
55A
5GY
5VS
66C
6J9
8-1
A00
A8Z
AABXI
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABHMW
ABJNI
ABQWH
ABTAH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACJ
ACMXC
ACPOU
ACPRK
ACS
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADMGS
ADOZA
ADXAS
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AGXLV
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZFZN
AZVAB
BAANH
BDRZF
BFHJK
BHBCM
BLYAC
BMXJE
BNHUX
BOGZA
BRXPI
BSCLL
C45
CS3
DCZOG
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EDH
EJD
EMOBN
ESTFP
F5P
FEDTE
FUBAC
G-S
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IHE
ITG
ITH
IX1
JG~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
ML0
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
NDZJH
NNB
O9-
OIG
OVD
P2P
P2W
P4E
PALCI
QRW
RIWAO
RJQFR
ROL
RWI
SAMSI
SUPJJ
SV3
TAE
TEORI
TN5
TUS
W99
WBKPD
WIH
WIJ
WIK
WOHZO
WSB
WXSBR
WYJ
XV2
Y6R
ZCA
ZY4
ZZTAW
~02
~KM
~S-
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7QL
7QO
7T7
7U7
8FD
C1K
FR3
M7N
P64
7X8
ID FETCH-LOGICAL-c4613-48ebbf000df1b55aaf044133fdb4afcdf61952db4ac9e21c7bf98c37ebb531683
IEDL.DBID 33P
ISSN 8756-7938
IngestDate Fri Aug 16 09:55:21 EDT 2024
Fri Aug 16 22:03:26 EDT 2024
Thu Nov 21 04:19:32 EST 2024
Thu Nov 21 20:45:39 EST 2024
Sat Sep 28 08:15:08 EDT 2024
Sat Aug 24 00:55:50 EDT 2024
Wed Oct 30 10:05:06 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords fermentative capacity
storage carbohydrates
S. cerevisiae
Language English
License 2014 American Institute of Chemical Engineers.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4613-48ebbf000df1b55aaf044133fdb4afcdf61952db4ac9e21c7bf98c37ebb531683
Notes Generalitat Valenciana - No. GVACOMP2007-157
ark:/67375/WNG-MQ6G4FRB-0
istex:95E3AA80851263CF9AF4C3B0FC476029E5E3B68C
ArticleID:BTPR1993
Ministerio de Educación y Ciencia - No. AGL2002-01109; No. AGL 2005-00508
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25219977
PQID 1657443831
PQPubID 2034897
PageCount 5
ParticipantIDs proquest_miscellaneous_1664203897
proquest_miscellaneous_1658416930
proquest_journals_1657443831
crossref_primary_10_1002_btpr_1993
pubmed_primary_25219977
wiley_primary_10_1002_btpr_1993_BTPR1993
istex_primary_ark_67375_WNG_MQ6G4FRB_0
PublicationCentury 2000
PublicationDate 2015-01
January/February 2015
2015 Jan-Feb
2015-01-00
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: 2015-01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Biotechnology progress
PublicationTitleAlternate Biotechnol Progress
PublicationYear 2015
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Gómez-Pastor R, Pérez-Torrado R, Cabiscol E, Matallana E. Transcriptomic and proteomic insights of the wine yeast biomass propagation process. FEMS Yeast Res. 2010;10:870-884.
Hottinger T, Boller T, Wiemken A. Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevesiae. FEBS Lett. 1987;220:113-115.
François JM, Parrou JL. Reserve carbohydrates metabolism in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev. 2001;25:125-45.
Gómez-Pastor R, Pérez-Torrado R, Cabiscol E, Ros J, Matallana E. Reduction of oxidative cellular damage by overexpression of the thioredoxin TRX2 gene improves yield and quality of wine yeast dry active biomass. Microb Cell Fact. 2010;12:9
Elbein AD, Pan YT, Pastuszak I Carroll D. New insights on trehalose: a multifunctional molecule. Glycobiol. 2003;13:17R-7R.
Novo MT, Beltran G, Torija MJ, Poblet M, Rozès N, Guillamón JM, Mas A. Changes in wine yeast storage carbohydrate levels during preadaptation, rehydration and low temperature fermentations. Int J Food Microbiol. 2003;86:153-161.
Gómez-Pastor R, Pérez-Torrado R, Cabiscol E, Ros J, Matallana E. Engineered Trx2p industrial yeast strain protects glycolysis and fermentation proteins from oxidative carbonylation during biomass propagation. Microb Cell Fact. 2012:9:11-14.
Guldener U, Heck S, Fielder T, Beinhauer J, Hegemann JH. A new efficient gene disruption cassette for repeated use in budding yeast. Nucleic Acids Res. 1996;24:2519-2524.
Jamieson DJ. Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast. 1998;14:1511-27.
Panadero J, Hernández-López MJ, Prieto JA, Randez-Gil F. Overexpression of the calcineurin target CRZ1 provides freeze tolerance and enhances the fermentative capacity of baker's yeast. Appl Environ Microbiol. 2007;73:4824-4831
Pérez-Torrado R, Carrasco P, Aranda A, Gimeno-Alcañiz JV, Pérez-Ortín JE, Matallana E, del Olmo M. Study of the first hours of microvinification by the use of osmotic stress-response genes as probes. System Appl Microbiol. 2002;25:153-161.
Gómez-Pastor R, Pérez-Torrado R, Matallana E. Modification of the TRX2 gene dose in Saccharomyces cerevisiae affects hexokinase 2 gene regulation during wine yeast biomass production. Appl Microbiol Biotechnol. 2012;94:773-787.
Pereira MD, Eleutherio ECA, Panek AD. Acquisition of tolerance against oxidative damage in Saccharomyces cerevisiae. BMC Microbiol. 2001;1:11.
Smith A, Ward MP, Garrett S. Yeast PKA represses Msn2p/Msn4p-dependent gene expression to regulate growth, stress response and glycogen accumulation. EMBO J. 1998;17:3556-3564.
Blomberg A. Metabolic surprises in Saccharomyces cerevisiae during adaptation to saline conditions: questions, some answers and a model. FEMS Microbiol Lett. 2000;182:1-8.
Pérez-Torrado R, Gimeno-Alcañiz JV, Matallana E. Wine yeast strains engineered for glycogen overproduction display enhanced viability under glucose deprivation conditions. Appl Environ Microbiol. 2002;68:3339-3344.
Garre E, Pérez-Torrado R, Gimeno-Alcañiz JV, Matallana E. Acid trehalase is involved in intracellular trehalose mobilization during postdiauxic growth and severe saline stress in Saccharomyces cerevisiae. FEMS Yeast Res. 2009;9:52-62.
Singer MA, Lindquist S. Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell. 1998;1:639-648.
Pérez-Torrado R, Bruno-Barcena JM, Matallana E. Monitoring stress-related genes during the process of biomass propagation of Saccharomyces cerevisiae strains used for wine making. Appl Environ Microbiol. 2005;71:6831-6837.
Querol A, Barrio E. Ramón D. A Comparative-study of different methods of yeast-strain characterization. System Appl Microbiol. 1992;15:439-446.
Hohmann S, Mager WH. Yeast Stress Responses. Topics in Current Genetics Series, Vol.1. Heidelberg: Springer Verlag; 2003.
Lillie SH, Pringle JR. Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol. 1980;143:1384-1394.
Parrou JL, Francois J. A simplified procedure for a rapid and reliable assay of both glycogen and trehalose in whole yeast cells. Anal Biochem. 1997;248:186-188.
Parrou JL, Teste MA, François J. Effects of various types of stress on the metabolism of reserve carbohydrates in Saccharomyces cerevisiae: genetic evidence for a stress-induced recycling of glycogen and trehalose. Microbiol. 1997;143:1891-1900.
Jorgensen H, Olsson L, Ronnow B, Palmqvist EA. Fed-batch cultivation of baker's yeast followed by nitrogen or carbon starvation: effects on fermentative capacity and content of trehalose and glycogen. Appl Environ Microbiol. 2002;59:310-317.
Crowe JH, Hoekstra FA Crowe LM. Anhydrobiosis. Ann Rev Physiol. 1992;54:579-599.
Silljé HHW, Paalman JWG, Schure EG, Olsthoorn SQB, Verkleij AJ, Boonstra J, Verrips CT. Function of trehalose and glycogen in cell cycle progression and cell viability in Saccharomyces cerevisiae. J Bacteriol. 1999;181:396-400.
San Miguel PF, Argüelles JC. Differential changes in the activity of cytosolic and vacuolar trehalases along the growth cycle of Saccharomyces cerevisiae. Biochim Biophys Acta. 1994;1200:155-160.
López-Malo M, García-Rios E, Chiva R, Guillamon JM, Martí-Raga M. Effect of deletion and overexpression of tryptophan metabolism genes on growth and fermentation capacity at low temperature in wine yeast. Biotechnol Prog. 2014;30:776-783.
França MB, Panek AD, Eleutherio EC. Oxidative stress and its effects during dehydration. Comp Biochem Physiol A Mol Integr Physiol. 2007;146:621-631.
Gómez-Pastor R, Pérez-Torrado R, Matallana, E. Improving yield of industrial biomass propagation by increasing the Trx2p dosage. Bioeng Bugs. 2010;1:352-353.
Walker GM. Yeast Physiology and Biotechnology. Chichester: Wiley; 1998.
Pérez-Torrado R, Gómez-Pastor R, Larsson C, and Matallana E. Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth. Appl Microbiol Biotechnol. 2009;81:951-60
Puig S, Ramón D, Pérez-Ortín JE. Optimized method to obtain stable food-safe recombinant wine yeast strains. J Agric Food Chem. 1998;46:1689-1693.
2010; 12
2010; 10
2002; 59
2007; 146
1987; 220
2009; 81
1998
2003; 13
1994; 1200
1993
1992; 15
2007; 73
1992; 54
2001; 25
1993; 5
1998; 46
2012; 94
2002; 25
1998; 17
1997; 248
2010; 1
1990
1997; 143
2002; 68
1999; 181
2000; 182
2009; 9
2001; 1
2005; 71
1998; 1
2003; 1
2014; 30
1996; 24
1980; 143
2003; 86
1989
1998; 14
2012; 9
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_9_1
Gómez‐Pastor R (e_1_2_7_10_1) 2012; 9
e_1_2_7_8_1
e_1_2_7_19_1
e_1_2_7_17_1
Jorgensen H (e_1_2_7_34_1) 2002; 59
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Degre R (e_1_2_7_38_1) 1993
Silljé HHW (e_1_2_7_18_1) 1999; 181
Walker GM (e_1_2_7_7_1) 1998
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
Rose AH (e_1_2_7_6_1) 1993
e_1_2_7_37_1
e_1_2_7_39_1
Beudeker RF (e_1_2_7_3_1) 1990
References_xml – volume: 1
  year: 2003
– volume: 10
  start-page: 870
  year: 2010
  end-page: 884
  article-title: Transcriptomic and proteomic insights of the wine yeast biomass propagation process
  publication-title: FEMS Yeast Res.
– volume: 181
  start-page: 396
  year: 1999
  end-page: 400
  article-title: Function of trehalose and glycogen in cell cycle progression and cell viability in
  publication-title: J Bacteriol.
– start-page: 169
  year: 1989
  end-page: 187
– volume: 71
  start-page: 6831
  year: 2005
  end-page: 6837
  article-title: Monitoring stress‐related genes during the process of biomass propagation of strains used for wine making
  publication-title: Appl Environ Microbiol.
– volume: 54
  start-page: 579
  year: 1992
  end-page: 599
  article-title: Anhydrobiosis
  publication-title: Ann Rev Physiol.
– volume: 5
  start-page: 357
  year: 1993
  end-page: 397
– volume: 9
  start-page: 52
  year: 2009
  end-page: 62
  article-title: Acid trehalase is involved in intracellular trehalose mobilization during postdiauxic growth and severe saline stress in
  publication-title: FEMS Yeast Res.
– volume: 1
  start-page: 639
  year: 1998
  end-page: 648
  article-title: Multiple effects of trehalose on protein folding in vitro and in vivo
  publication-title: Mol Cell.
– volume: 59
  start-page: 310
  year: 2002
  end-page: 317
  article-title: Fed‐batch cultivation of baker's yeast followed by nitrogen or carbon starvation: effects on fermentative capacity and content of trehalose and glycogen
  publication-title: Appl Environ Microbiol.
– volume: 25
  start-page: 125
  year: 2001
  end-page: 45
  article-title: Reserve carbohydrates metabolism in the yeast
  publication-title: FEMS Microbiol Rev.
– start-page: 421
  year: 1993
  end-page: 447
– volume: 146
  start-page: 621
  year: 2007
  end-page: 631
  article-title: Oxidative stress and its effects during dehydration
  publication-title: Comp Biochem Physiol A Mol Integr Physiol.
– volume: 14
  start-page: 1511
  year: 1998
  end-page: 27
  article-title: Oxidative stress responses of the yeast
  publication-title: Yeast.
– volume: 12
  start-page: 9
  year: 2010
  article-title: Reduction of oxidative cellular damage by overexpression of the thioredoxin gene improves yield and quality of wine yeast dry active biomass
  publication-title: Microb Cell Fact.
– year: 1998
– volume: 86
  start-page: 153
  year: 2003
  end-page: 161
  article-title: Changes in wine yeast storage carbohydrate levels during preadaptation, rehydration and low temperature fermentations
  publication-title: Int J Food Microbiol.
– volume: 94
  start-page: 773
  year: 2012
  end-page: 787
  article-title: Modification of the gene dose in affects hexokinase 2 gene regulation during wine yeast biomass production
  publication-title: Appl Microbiol Biotechnol.
– volume: 24
  start-page: 2519
  year: 1996
  end-page: 2524
  article-title: A new efficient gene disruption cassette for repeated use in budding yeast
  publication-title: Nucleic Acids Res.
– volume: 1
  start-page: 352
  year: 2010
  end-page: 353
  article-title: Improving yield of industrial biomass propagation by increasing the Trx2p dosage
  publication-title: Bioeng Bugs.
– volume: 1
  start-page: 11
  year: 2001
  article-title: Acquisition of tolerance against oxidative damage in
  publication-title: BMC Microbiol.
– volume: 81
  start-page: 951
  year: 2009
  end-page: 60
  article-title: Fermentative capacity of dry active wine yeast requires a specific oxidative stress response during industrial biomass growth
  publication-title: Appl Microbiol Biotechnol.
– volume: 143
  start-page: 1384
  year: 1980
  end-page: 1394
  article-title: Reserve carbohydrate metabolism in : responses to nutrient limitation
  publication-title: J Bacteriol.
– volume: 13
  start-page: 17R
  year: 2003
  end-page: 7R
  article-title: New insights on trehalose: a multifunctional molecule
  publication-title: Glycobiol.
– volume: 15
  start-page: 439
  year: 1992
  end-page: 446
  article-title: A Comparative‐study of different methods of yeast‐strain characterization
  publication-title: System Appl Microbiol.
– volume: 73
  start-page: 4824
  year: 2007
  end-page: 4831
  article-title: Overexpression of the calcineurin target provides freeze tolerance and enhances the fermentative capacity of baker's yeast
  publication-title: Appl Environ Microbiol.
– volume: 9
  start-page: 11
  year: 2012
  end-page: 14
  article-title: Engineered Trx2p industrial yeast strain protects glycolysis and fermentation proteins from oxidative carbonylation during biomass propagation
  publication-title: Microb Cell Fact.
– volume: 182
  start-page: 1
  year: 2000
  end-page: 8
  article-title: Metabolic surprises in during adaptation to saline conditions: questions, some answers and a model
  publication-title: FEMS Microbiol Lett.
– volume: 17
  start-page: 3556
  year: 1998
  end-page: 3564
  article-title: Yeast PKA represses Msn2p/Msn4p‐dependent gene expression to regulate growth, stress response and glycogen accumulation
  publication-title: EMBO J.
– volume: 30
  start-page: 776
  year: 2014
  end-page: 783
  article-title: Effect of deletion and overexpression of tryptophan metabolism genes on growth and fermentation capacity at low temperature in wine yeast
  publication-title: Biotechnol Prog.
– start-page: 103
  year: 1990
  end-page: 146
– volume: 46
  start-page: 1689
  year: 1998
  end-page: 1693
  article-title: Optimized method to obtain stable food‐safe recombinant wine yeast strains
  publication-title: J Agric Food Chem.
– volume: 143
  start-page: 1891
  year: 1997
  end-page: 1900
  article-title: Effects of various types of stress on the metabolism of reserve carbohydrates in : genetic evidence for a stress‐induced recycling of glycogen and trehalose
  publication-title: Microbiol.
– volume: 1200
  start-page: 155
  year: 1994
  end-page: 160
  article-title: Differential changes in the activity of cytosolic and vacuolar trehalases along the growth cycle of
  publication-title: Biochim Biophys Acta.
– volume: 25
  start-page: 153
  year: 2002
  end-page: 161
  article-title: Study of the first hours of microvinification by the use of osmotic stress‐response genes as probes
  publication-title: System Appl Microbiol.
– volume: 248
  start-page: 186
  year: 1997
  end-page: 188
  article-title: A simplified procedure for a rapid and reliable assay of both glycogen and trehalose in whole yeast cells
  publication-title: Anal Biochem.
– volume: 68
  start-page: 3339
  year: 2002
  end-page: 3344
  article-title: Wine yeast strains engineered for glycogen overproduction display enhanced viability under glucose deprivation conditions
  publication-title: Appl Environ Microbiol.
– volume: 220
  start-page: 113
  year: 1987
  end-page: 115
  article-title: Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevesiae
  publication-title: FEBS Lett.
– ident: e_1_2_7_16_1
  doi: 10.1078/0723-2020-00087
– ident: e_1_2_7_26_1
  doi: 10.1099/00221287-143-6-1891
– volume: 9
  start-page: 11
  year: 2012
  ident: e_1_2_7_10_1
  article-title: Engineered Trx2p industrial yeast strain protects glycolysis and fermentation proteins from oxidative carbonylation during biomass propagation
  publication-title: Microb Cell Fact.
  contributor:
    fullname: Gómez‐Pastor R
– ident: e_1_2_7_14_1
  doi: 10.1007/3-540-45611-2
– ident: e_1_2_7_4_1
  doi: 10.4161/bbug.1.5.12384
– ident: e_1_2_7_11_1
  doi: 10.1007/s00253-011-3738-9
– ident: e_1_2_7_30_1
  doi: 10.1021/jf9706538
– ident: e_1_2_7_8_1
  doi: 10.1111/j.1567-1364.2010.00667.x
– ident: e_1_2_7_19_1
  doi: 10.1016/0014-5793(87)80886-4
– ident: e_1_2_7_23_1
  doi: 10.1016/S1097-2765(00)80064-7
– ident: e_1_2_7_29_1
  doi: 10.1128/AEM.68.7.3339-3344.2002
– ident: e_1_2_7_36_1
  doi: 10.1002/btpr.1915
– start-page: 103
  volume-title: Yeast: Biotechnology and Biocatalysis
  year: 1990
  ident: e_1_2_7_3_1
  contributor:
    fullname: Beudeker RF
– ident: e_1_2_7_12_1
  doi: 10.1128/AEM.71.11.6831-6837.2005
– ident: e_1_2_7_35_1
  doi: 10.1016/S0168-1605(03)00253-8
– ident: e_1_2_7_9_1
  doi: 10.1186/1475-2859-9-9
– ident: e_1_2_7_21_1
  doi: 10.1093/glycob/cwg047
– start-page: 421
  volume-title: Wine Microbiology and Biotechnology
  year: 1993
  ident: e_1_2_7_38_1
  contributor:
    fullname: Degre R
– ident: e_1_2_7_28_1
  doi: 10.1016/S0723-2020(11)80219-5
– ident: e_1_2_7_20_1
  doi: 10.1093/emboj/17.13.3556
– ident: e_1_2_7_37_1
  doi: 10.1111/j.1574-6976.2001.tb00574.x
– ident: e_1_2_7_22_1
  doi: 10.1146/annurev.ph.54.030192.003051
– ident: e_1_2_7_24_1
  doi: 10.1111/j.1574-6968.2000.tb08864.x
– ident: e_1_2_7_25_1
  doi: 10.1111/j.1567-1364.2008.00453.x
– ident: e_1_2_7_31_1
  doi: 10.1093/nar/24.13.2519
– ident: e_1_2_7_39_1
  doi: 10.1016/j.cbpa.2006.02.030
– ident: e_1_2_7_2_1
  doi: 10.1007/978-94-009-1113-0_12
– ident: e_1_2_7_13_1
  doi: 10.1007/s00253-008-1722-9
– volume-title: Yeast Physiology and Biotechnology
  year: 1998
  ident: e_1_2_7_7_1
  contributor:
    fullname: Walker GM
– volume: 181
  start-page: 396
  year: 1999
  ident: e_1_2_7_18_1
  article-title: Function of trehalose and glycogen in cell cycle progression and cell viability in Saccharomyces cerevisiae
  publication-title: J Bacteriol.
  doi: 10.1128/JB.181.2.396-400.1999
  contributor:
    fullname: Silljé HHW
– ident: e_1_2_7_27_1
  doi: 10.1016/0304-4165(94)90130-9
– ident: e_1_2_7_15_1
  doi: 10.1002/(SICI)1097-0061(199812)14:16<1511::AID-YEA356>3.0.CO;2-S
– ident: e_1_2_7_17_1
  doi: 10.1128/jb.143.3.1384-1394.1980
– ident: e_1_2_7_32_1
  doi: 10.1006/abio.1997.2138
– volume: 59
  start-page: 310
  year: 2002
  ident: e_1_2_7_34_1
  article-title: Fed‐batch cultivation of baker's yeast followed by nitrogen or carbon starvation: effects on fermentative capacity and content of trehalose and glycogen
  publication-title: Appl Environ Microbiol.
  contributor:
    fullname: Jorgensen H
– ident: e_1_2_7_33_1
  doi: 10.1128/AEM.02651-06
– start-page: 357
  year: 1993
  ident: e_1_2_7_6_1
  contributor:
    fullname: Rose AH
– ident: e_1_2_7_5_1
  doi: 10.1186/1471-2180-1-11
SSID ssj0008062
Score 2.2148576
Snippet During yeast biomass production, cells are grown through several batch and fed‐batch cultures on molasses. This industrial process produces several types of...
During yeast biomass production, cells are grown through several batch and fed-batch cultures on molasses. This industrial process produces several types of...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 20
SubjectTerms Biomass
Carbohydrate Metabolism - genetics
Carbohydrate Metabolism - physiology
Fermentation
fermentative capacity
Glycogen - analysis
Glycogen - metabolism
Industrial Microbiology
Metabolic Engineering - methods
S. cerevisiae
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
storage carbohydrates
Trehalose - analysis
Trehalose - metabolism
Title Enhanced fermentative capacity of yeasts engineered in storage carbohydrate metabolism
URI https://api.istex.fr/ark:/67375/WNG-MQ6G4FRB-0/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbtpr.1993
https://www.ncbi.nlm.nih.gov/pubmed/25219977
https://www.proquest.com/docview/1657443831
https://search.proquest.com/docview/1658416930
https://search.proquest.com/docview/1664203897
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xuMChtEBpgFYGIdRLRBLHeain0u7CBcSb3qw4trUIyKLNLoJ_3xlnN4DUIiSkHBJlLCXjsecb2_MNwJaJRWjQr_voCjgGKFr5KolTvxCp4iKPLF60dHGaHv7JfneIJufHJBem4YdoF9xoZLj5mgZ4oeqdJ9JQNbwbUK4dMX1ilODSN_hROwtngSsminA88dEGswmrUBDttC1f-KJZUuvDv4DmS9zqHE934V2f_BE-jPEm-9kYyCeYMtUizD9jIVyCi07Vc-cAmMVpuslFujesRDdaIkZnfcseqcJPzcy4GYpeVYzOVeJshIID1e89aiKdYLdmiGZ1c1XfLsN5t3P2a98fl1vwyxiduh9nRimLqtM2VEIUhQ0QK3FutYoLW2qLsZaI6KHMTRSWqbJ5VvIUWwkqf8U_w0zVr8wXYDzhXGMgmOjSxtwEBYIwxAoCHWGuubEebE4UL-8aVg3Z8CdHkpQkSUkebLsuaSWKwTUdQ0uFvDzckwfHyV7cPdmVgQfrkz6T4xFYyzARaUw8rKEHG-1rHDu0IVJUpj9yMrTrmvPgNRmM0IiFMPVgpbGH9oMixD45AmgPvrtu__-_yN2zoxO6WX276BrMIToTzXrPOswMByPzFaZrPfrmTP0vMycA_g
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT9wwEB4VeIA-9ADapuUwCFV9iUhiO4fUlwK7gIAVxxb6ZsWxLVBLFu1RlX_fmWQ3gAQVUqU8JMpYSsYznm98fAOwYYUMLcZ1H0MBxwTFaF_HIvFzmWgus8jhRVMXZ0nnR7rTIpqcr5OzMDU_RDPhRp5Rjdfk4DQhvXnHGqqHN306bMenYEbEaIh0gIMfN-NwGlTlRBGQxz5aYTrhFQqizabpg2g0Q4r98xjUfIhcq9DTfv1_H_0GXo0hJ_tW28hbeGHLeXh5j4hwAc5b5WW1FYA5HKnr40i_LSswkhYI01nPsVsq8jNgdtwMRa9KRlsrcUBCwb7uXd4a4p1g13aIlvXranC9CN_bre72nj-uuOAXAuO6L1KrtUPdGRdqKfPcBQiXOHdGi9wVxmG6JSN6KDIbhUWiXZYWPMFWkipg8XcwXfZK-wEYjzk3mAvGpnCC2yBHHIZwQWIszAy3zoP1iebVTU2soWoK5UiRkhQpyYPPVZ80Enn_J-1ES6S66Oyqo5N4V7RPt1TgwdKk09TYCQcqjGUiiIo19GCteY3uQ2sieWl7o0qGFl4zHvxLBpM0IiJMPHhfG0TzQRHCnwwxtAdfqn5_-l_UVvf4lG4-Pl90FWb3ukeH6nC_c_AJ5hCsyXr6Zwmmh_2RXYapgRmtVHb_F2H9BSY
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT9wwEB5xSFV5aKGlkALFraqKl4gktnOIJ45dQLSrLaXQNyuObYEo2dUeFfz7ziS7AaS2QqqUh0QZS8l4xvONj28APlohQ4tx3cdQwDFBMdrXsUj8XCaayyxyeNHUxbek8yM9aBFNzs70LEzND9FMuJFnVOM1OXjfuO170lA96g_orB2fhXmBMJyI8znvNsNwGlTVRBGPxz4aYTqlFQqi7abpo2A0T3q9_RPSfAxcq8jTfvlf37wILyaAk-3WFrIEM7Z8BQsPaAhfw3mrvKw2AjCH43R9GOmXZQXG0QJBOus5dkclfobMTpqh6FXJaGMlDkcoONC9yztDrBPsxo7Qrn5eDW-W4Xu7dbZ_5E_qLfiFwKjui9Rq7VB1xoVayjx3AYIlzp3RIneFcZhsyYgeisxGYZFol6UFT7CVpPpX_A3Mlb3SrgLjMecGM8HYFE5wG-SIwhAsSIyEmeHWefBhqnjVr2k1VE2gHClSkiIlefCp6pJGIh9c0z60RKqLzqH68jU-FO3TPRV4sD7tMzVxwaEKY5kIImINPXjfvEbnoRWRvLS9cSVDy64ZD_4lgyka0RAmHqzU9tB8UITgJ0ME7cFW1e1__xe1d9Y9pZu3TxfdhGfdg7b6fNw5WYPniNRkPfezDnOjwdhuwOzQjN9VVv8bNpwDzA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhanced+fermentative+capacity+of+yeasts+engineered+in+storage+carbohydrate+metabolism&rft.jtitle=Biotechnology+progress&rft.au=P%C3%A9rez%E2%80%90Torrado%2C+Roberto&rft.au=Matallana%2C+Emilia&rft.date=2015-01-01&rft.issn=8756-7938&rft.eissn=1520-6033&rft.volume=31&rft.issue=1&rft.spage=20&rft.epage=24&rft_id=info:doi/10.1002%2Fbtpr.1993&rft.externalDBID=10.1002%252Fbtpr.1993&rft.externalDocID=BTPR1993
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-7938&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-7938&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-7938&client=summon