An approach for the improved immobilization of penicillin G acylase onto macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) as a potential industrial biocatalyst
The use of penicillin G acylase (PGA) covalently linked to insoluble carrier is expected to produce major advances in pharmaceutical processing industry and the enzyme stability enhancement is still a significant challenge. The objective of this study was to improve catalytic performance of the cova...
Saved in:
Published in: | Biotechnology progress Vol. 32; no. 1; pp. 43 - 53 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Blackwell Publishing Ltd
01-01-2016
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The use of penicillin G acylase (PGA) covalently linked to insoluble carrier is expected to produce major advances in pharmaceutical processing industry and the enzyme stability enhancement is still a significant challenge. The objective of this study was to improve catalytic performance of the covalently immobilized PGA on a potential industrial carrier, macroporous poly(glycidyl methacrylate‐co‐ethylene glycol dimethacrylate) [poly(GMA‐co‐EGDMA)], by optimizing the copolymerization process and the enzyme attachment procedure. This synthetic copolymer could be a very promising alternative for the development of low‐cost, easy‐to‐prepare, and stable biocatalyst compared to expensive commercially available epoxy carriers such as Eupergit or Sepabeads. The PGA immobilized on poly(GMA‐co‐EGDMA) in the shape of microbeads obtained by suspension copolymerization appeared to have higher activity yield compared to copolymerization in a cast. Optimal conditions for the immobilization of PGA on poly(GMA‐co‐EGDMA) microbeads were 1 mg/mL of PGA in 0.75 mol/L phosphate buffer pH 6.0 at 25°C for 24 h, leading to the active biocatalyst with the specific activity of 252.7 U/g dry beads. Chemical amination of the immobilized PGA could contribute to the enhanced stability of the biocatalyst by inducing secondary interactions between the enzyme and the carrier, ensuring multipoint attachment. The best balance between the activity yield (51.5%), enzyme loading (25.6 mg/g), and stability (stabilization factor 22.2) was achieved for the partially modified PGA. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:43–53, 2016 |
---|---|
AbstractList | The use of penicillin G acylase (PGA) covalently linked to insoluble carrier is expected to produce major advances in pharmaceutical processing industry and the enzyme stability enhancement is still a significant challenge. The objective of this study was to improve catalytic performance of the covalently immobilized PGA on a potential industrial carrier, macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) [poly(GMA-co-EGDMA)], by optimizing the copolymerization process and the enzyme attachment procedure. This synthetic copolymer could be a very promising alternative for the development of low-cost, easy-to-prepare, and stable biocatalyst compared to expensive commercially available epoxy carriers such as Eupergit or Sepabeads. The PGA immobilized on poly(GMA-co-EGDMA) in the shape of microbeads obtained by suspension copolymerization appeared to have higher activity yield compared to copolymerization in a cast. Optimal conditions for the immobilization of PGA on poly(GMA-co-EGDMA) microbeads were 1 mg/mL of PGA in 0.75 mol/L phosphate buffer pH 6.0 at 25°C for 24 h, leading to the active biocatalyst with the specific activity of 252.7 U/g dry beads. Chemical amination of the immobilized PGA could contribute to the enhanced stability of the biocatalyst by inducing secondary interactions between the enzyme and the carrier, ensuring multipoint attachment. The best balance between the activity yield (51.5%), enzyme loading (25.6 mg/g), and stability (stabilization factor 22.2) was achieved for the partially modified PGA. The use of penicillin G acylase (PGA) covalently linked to insoluble carrier is expected to produce major advances in pharmaceutical processing industry and the enzyme stability enhancement is still a significant challenge. The objective of this study was to improve catalytic performance of the covalently immobilized PGA on a potential industrial carrier, macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) [poly(GMA-co-EGDMA)], by optimizing the copolymerization process and the enzyme attachment procedure. This synthetic copolymer could be a very promising alternative for the development of low-cost, easy-to-prepare, and stable biocatalyst compared to expensive commercially available epoxy carriers such as Eupergit or Sepabeads. The PGA immobilized on poly(GMA-co-EGDMA) in the shape of microbeads obtained by suspension copolymerization appeared to have higher activity yield compared to copolymerization in a cast. Optimal conditions for the immobilization of PGA on poly(GMA-co-EGDMA) microbeads were 1 mg/mL of PGA in 0.75 mol/L phosphate buffer pH 6.0 at 25°C for 24 h, leading to the active biocatalyst with the specific activity of 252.7 U/g dry beads. Chemical amination of the immobilized PGA could contribute to the enhanced stability of the biocatalyst by inducing secondary interactions between the enzyme and the carrier, ensuring multipoint attachment. The best balance between the activity yield (51.5%), enzyme loading (25.6 mg/g), and stability (stabilization factor 22.2) was achieved for the partially modified PGA. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:43-53, 2016 The use of penicillin G acylase (PGA) covalently linked to insoluble carrier is expected to produce major advances in pharmaceutical processing industry and the enzyme stability enhancement is still a significant challenge. The objective of this study was to improve catalytic performance of the covalently immobilized PGA on a potential industrial carrier, macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) [poly(GMA-co-EGDMA)], by optimizing the copolymerization process and the enzyme attachment procedure. This synthetic copolymer could be a very promising alternative for the development of low-cost, easy-to-prepare, and stable biocatalyst compared to expensive commercially available epoxy carriers such as Eupergit or Sepabeads. The PGA immobilized on poly(GMA-co-EGDMA) in the shape of microbeads obtained by suspension copolymerization appeared to have higher activity yield compared to copolymerization in a cast. Optimal conditions for the immobilization of PGA on poly(GMA-co-EGDMA) microbeads were 1 mg/mL of PGA in 0.75 mol/L phosphate buffer pH 6.0 at 25 degree C for 24 h, leading to the active biocatalyst with the specific activity of 252.7 U/g dry beads. Chemical amination of the immobilized PGA could contribute to the enhanced stability of the biocatalyst by inducing secondary interactions between the enzyme and the carrier, ensuring multipoint attachment. The best balance between the activity yield (51.5%), enzyme loading (25.6 mg/g), and stability (stabilization factor 22.2) was achieved for the partially modified PGA. copyright 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:43-53, 2016 The use of penicillin G acylase (PGA) covalently linked to insoluble carrier is expected to produce major advances in pharmaceutical processing industry and the enzyme stability enhancement is still a significant challenge. The objective of this study was to improve catalytic performance of the covalently immobilized PGA on a potential industrial carrier, macroporous poly(glycidyl methacrylate‐co‐ethylene glycol dimethacrylate) [poly(GMA‐co‐EGDMA)], by optimizing the copolymerization process and the enzyme attachment procedure. This synthetic copolymer could be a very promising alternative for the development of low‐cost, easy‐to‐prepare, and stable biocatalyst compared to expensive commercially available epoxy carriers such as Eupergit or Sepabeads. The PGA immobilized on poly(GMA‐co‐EGDMA) in the shape of microbeads obtained by suspension copolymerization appeared to have higher activity yield compared to copolymerization in a cast. Optimal conditions for the immobilization of PGA on poly(GMA‐co‐EGDMA) microbeads were 1 mg/mL of PGA in 0.75 mol/L phosphate buffer pH 6.0 at 25°C for 24 h, leading to the active biocatalyst with the specific activity of 252.7 U/g dry beads. Chemical amination of the immobilized PGA could contribute to the enhanced stability of the biocatalyst by inducing secondary interactions between the enzyme and the carrier, ensuring multipoint attachment. The best balance between the activity yield (51.5%), enzyme loading (25.6 mg/g), and stability (stabilization factor 22.2) was achieved for the partially modified PGA. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:43–53, 2016 |
Author | Žuža, Milena G. Džunuzović, Enis S. Stefanović, Andrea B. Jakovetić, Sonja M. Jovanović, Slobodan M. Knežević-Jugović, Zorica D. Jeremić, Katarina B. |
Author_xml | – sequence: 1 givenname: Zorica surname: Knezevic-Jugovic middlename: D fullname: Knezevic-Jugovic, Zorica D – sequence: 2 givenname: Milena surname: uza middlename: G fullname: uza, Milena G – sequence: 3 givenname: Sonja surname: Jakovetic middlename: M fullname: Jakovetic, Sonja M – sequence: 4 givenname: Andrea surname: Stefanovic middlename: B fullname: Stefanovic, Andrea B – sequence: 5 givenname: Enis surname: Dzunuzovic middlename: S fullname: Dzunuzovic, Enis S – sequence: 6 givenname: Katarina surname: Jeremic middlename: B fullname: Jeremic, Katarina B – sequence: 7 givenname: Slobodan surname: Jovanovic middlename: M fullname: Jovanovic, Slobodan M |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26439442$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1u1DAUhS1URKeFBS-ALLFpF2n9k9jxsh1gQFT8qcDSchyHcXHsEDtAeDIeD0czVAgJidW91_7ukc49R-DAB28AeIjRGUaInDdpGM8IrvEdsMIVQQVDlB6AVc0rVnBB60NwFOMNQqhGjNwDh4SVVJQlWYGfFx6qYRiD0lvYhRGmrYG2zw9fTZubPjTW2R8q2eBh6OBgvNXWOevhBio9OxUNDD4F2Cs9hiGMYYpwCG4--eRmbdvZwd6kbf7MbDKFDkUeZ2e8gQsRHGztn8QpVBGqLJGMT1Y5aH07xTQubWODVkm5Oab74G6nXDQP9vUYvH_29Hr9vLh6vXmxvrgqdMkwLsqqo6YVjGTDXDSm4wxTyoiuuW5FSTmqurbhiqJO1KpTosJIsbLBAlcd6ig9Bic73XySL5OJSfY2auOc8iZblZhzxiqKEf4PlHFGKkEW9PFf6E2YRp-NLBQThCJKMnW6o_JlYxxNJ4fR9mqcJUZySV4uycsl-cw-2itOTW_aW_J31Bk43wHfrDPzv5Xk5fWbd3vJYrdhYzLfbzfU-FkyTnklP77ayLcfyJqKlxv5hP4CLdDNEw |
CitedBy_id | crossref_primary_10_2174_1389201020666191113144636 crossref_primary_10_1016_j_colsurfb_2019_03_064 crossref_primary_10_2174_1389201020666191111151642 crossref_primary_10_1021_acssuschemeng_9b04980 crossref_primary_10_1007_s00449_017_1826_7 crossref_primary_10_3389_fbioe_2023_1108820 crossref_primary_10_1002_btpr_2610 crossref_primary_10_1002_pat_4791 crossref_primary_10_1016_j_biortech_2018_12_006 crossref_primary_10_1007_s10924_021_02364_3 crossref_primary_10_1002_jccs_201900272 crossref_primary_10_1002_pat_4446 crossref_primary_10_1016_j_apcata_2018_08_003 crossref_primary_10_1016_j_biochi_2018_11_019 crossref_primary_10_1002_pat_4299 crossref_primary_10_1108_PRT_06_2022_0076 crossref_primary_10_1016_j_mcat_2019_110484 crossref_primary_10_1016_j_cjche_2020_12_011 |
Cites_doi | 10.1016/j.jmmm.2014.11.048 10.1016/j.procbio.2009.10.013 10.1016/S0141-0229(02)00170-9 10.1002/ceat.201100297 10.1016/j.jbiotec.2004.09.015 10.1007/978-1-60761-895-9_9 10.1016/j.biortech.2010.09.076 10.1016/j.micromeso.2014.01.017 10.1016/j.enzmictec.2007.01.018 10.4028/www.scientific.net/MSF.214.155 10.1016/j.eurpolymj.2004.12.020 10.1042/BA20040061 10.1007/s00253-003-1274-y 10.1007/s00449-006-0067-y 10.1002/app.36690 10.1016/j.molcatb.2012.11.014 10.1007/978-1-59745-053-9_15 10.1002/bit.260330508 10.1016/j.molcatb.2014.04.013 10.1021/ie0614071 10.1021/ie202745c 10.1016/j.procbio.2012.07.010 10.1016/j.reactfunctpolym.2008.11.001 10.1016/j.bej.2006.05.009 10.1021/bp0400083 10.1021/bm800609g 10.1016/j.procbio.2009.04.015 10.1016/S0021-9258(19)52451-6 10.1016/j.jcis.2007.08.062 10.1002/adsc.200505042 |
ContentType | Journal Article |
Copyright | 2015 American Institute of Chemical Engineers 2015 American Institute of Chemical Engineers. 2016 American Institute of Chemical Engineers |
Copyright_xml | – notice: 2015 American Institute of Chemical Engineers – notice: 2015 American Institute of Chemical Engineers. – notice: 2016 American Institute of Chemical Engineers |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7QO 7T7 7U7 8FD C1K FR3 M7N P64 7X8 |
DOI | 10.1002/btpr.2181 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Toxicology Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Biotechnology Research Abstracts Technology Research Database Toxicology Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management MEDLINE - Academic |
DatabaseTitleList | MEDLINE Biotechnology Research Abstracts Engineering Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1520-6033 |
EndPage | 53 |
ExternalDocumentID | 3958619831 10_1002_btpr_2181 26439442 BTPR2181 ark_67375_WNG_QV2C39KG_D |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Ministry of Education, Science and Technological Development of Serbia |
GroupedDBID | --- -~X .DC 05W 0R~ 1L6 1OB 1OC 1WB 23N 31~ 33P 3SF 3WU 4.4 52U 52V 53G 55A 5GY 5VS 66C 6J9 8-1 A00 A8Z AABXI AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABEFU ABHMW ABJNI ABQWH ABTAH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOF ACIWK ACJ ACMXC ACPOU ACPRK ACS ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADMGS ADOZA ADXAS ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFRAH AFZJQ AGXLV AHBTC AIACR AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZFZN AZVAB BAANH BDRZF BFHJK BHBCM BLYAC BMXJE BNHUX BOGZA BRXPI BSCLL C45 CS3 DCZOG DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EDH EJD EMOBN ESTFP F5P FEDTE FUBAC G-S GODZA HF~ HGLYW HHY HVGLF HZ~ I-F IHE ITG ITH IX1 JG~ KBYEO LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI ML0 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM MY~ NDZJH NNB O9- OIG OVD P2P P2W P4E PALCI QRW RIWAO RJQFR ROL RWI SAMSI SUPJJ SV3 TAE TEORI TN5 TUS W99 WBKPD WIH WIJ WIK WOHZO WSB WXSBR WYJ XV2 Y6R ZCA ZY4 ZZTAW ~02 ~KM ~S- CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7QL 7QO 7T7 7U7 8FD C1K FR3 M7N P64 7X8 |
ID | FETCH-LOGICAL-c4611-45f3ed96243979bef7613362c87cd943705fdb7a30f98afa9510a64b1915f0f33 |
IEDL.DBID | 33P |
ISSN | 8756-7938 |
IngestDate | Fri Aug 16 10:48:13 EDT 2024 Fri Aug 16 08:11:13 EDT 2024 Mon Nov 25 07:11:39 EST 2024 Thu Nov 21 20:45:40 EST 2024 Sat Sep 28 07:57:01 EDT 2024 Sat Aug 24 00:56:47 EDT 2024 Wed Oct 30 09:57:23 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Eupergit C penicillin G acylase suspension copolymerization immobilization chemical amination poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) |
Language | English |
License | 2015 American Institute of Chemical Engineers. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4611-45f3ed96243979bef7613362c87cd943705fdb7a30f98afa9510a64b1915f0f33 |
Notes | ark:/67375/WNG-QV2C39KG-D Ministry of Education, Science and Technological Development of Serbia istex:729D2516F3B91E8F575F977F66B6A1C621B12A40 ArticleID:BTPR2181 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 26439442 |
PQID | 1766923032 |
PQPubID | 2034897 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1776653101 proquest_miscellaneous_1767625921 proquest_journals_1766923032 crossref_primary_10_1002_btpr_2181 pubmed_primary_26439442 wiley_primary_10_1002_btpr_2181_BTPR2181 istex_primary_ark_67375_WNG_QV2C39KG_D |
PublicationCentury | 2000 |
PublicationDate | 2016-01 January/February 2016 2016 Jan-Feb 2016-01-00 20160101 |
PublicationDateYYYYMMDD | 2016-01-01 |
PublicationDate_xml | – month: 01 year: 2016 text: 2016-01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Hoboken |
PublicationTitle | Biotechnology progress |
PublicationTitleAlternate | Biotechnol Progress |
PublicationYear | 2016 |
Publisher | Blackwell Publishing Ltd Wiley Subscription Services, Inc |
Publisher_xml | – name: Blackwell Publishing Ltd – name: Wiley Subscription Services, Inc |
References | Ferreira ALO, Giordano RLC, Giordano RC. Nonconventional reactor for enzymatic synthesis of semi-synthetic β-lactam antibiotics. Ind Eng Chem Res. 2007; 46:7695-7702. Adriano WS, Filho EH, Silva JA, Goncalves LR. Optimization of penicillin G acylase multipoint immobilization on to glutaraldehyde-chitosan beads. Biotechnol Appl Biochem. 2005; 41:201-207. Ahmad AL, Low EM, Shukor SRA. Immobilization of phenylalanine dehydrogenase onto Eupergit CM for the synthesis of (S)−2-amino-4-phenylbutyric acid. J Mol Catal B Enzym. 2013; 88:26-31. Zhao J, Wang Y, Luo G, Zhu S. Immobilization of penicillin G acylase on macro-mesoporous silica spheres. Bioresour Technol. 2011; 102:529-535. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem. 1951; 193:265-275. Grazu V, López-Gallego F, Guisán JM. Tailor-made design of penicillin G acylase surface enables its site-directed immobilization and stabilization onto commercial mono-functional epoxy supports. Process Biochem. 2012; 47:2538-2541. Miletić N, Rohandi R, Vuković Z, Nastasović A, Loos K. Surface modification of macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) resins for improved Candida antarctica lipase B immobilization. React Funct Polym. 2009; 69:68-75. Xue P, Su W, Gu Y, Liu H, Wang J. Hydrophilic porous magnetic poly(GMA-MBAA-NVP) composite microspheres containing oxirane groups: An efficient carrier for immobilizing penicillin G acylase. J Magn Magn Mater. 2015; 378:306-312. Fernandez-Lorente G, Godoy CA, Mendes AA, Lopez-Gallego F, Grazu V, de Las Rivas B, Palomo JM, Hermoso J, Fernandez-Lafuente R, Guisan JM. Solid-phase chemical amination of a lipase from Bacillus thermocatenulatus to improve its stabilization via covalent immobilization on highly activated glyoxyl-agarose. Biomacromolecules. 2008; 9:2553-2561. Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol. 2007; 40:1451-1463. Shi H, Wang Y, Luo G. Preparation and enzymatic activity of penicillin G acylase immobilized on core-shell porous glass beads. J Mol Catal B Enzym. 2014; 106:40-45. Zhou H, Yang L, Li W, Shou Q, Xu P, Li W, Wang F, Yu P, Liu H. Improving the stability of immobilized penicillin G acylase via the modification of supports with ionic liquids. Ind Eng Chem Res. 2012; 51:4582-4590. Nastasović AB, Onjia AE, Milonjić SK, Jovanović SM. Surface characterization of macroporous glycidyl methacrylate based copolymers by inverse gas chromatography. Eur Polym J. 2005; 41:1234-1242. Žuža MG, Obradović BM, Knežević-Jugović ZD. Hydrolysis of penicillin G by penicillin G acylase immobilized on chitosan microbeads in different reactor systems. Chem Eng Technol. 2011; 34:1706-1714. Gomez de Segura A, Alcalde M, Yates M, Rojas-Cervantes ML, Lopez-Cortes N, Ballesteros A, Plou FJ. Immobilization of dextransucrase from Leuconostoc mesenteroides NRRL B-512F on Eupergit C supports. Biotechnol Prog. 2004; 20:1414-1420. Kallenberg AI, van Rantwijk F, Sheldon RA. Immobilization of penicillin G acylase: The key to optimum performance. Adv Synth Catal. 2005; 347:905-926. Jovanović S, Nastasović A, Jovanović NN, Novaković T, Vuković Z, Jeremić K. Synthesis, properties and applications of crosslinked macroporous copolymers based on methacrylates. Hem Ind. 2000; 54:471-479. German P, Slagmolen T, Crichton RR. Relation between stabilization and rigidification of the three-dimensional structure of an enzyme. Biotechnol Bioeng. 1989; 33:563-569. Kranz B, Burck J, Franzreb M, Koster R, Ulrich AS. Circular dichroism analysis of penicillin G acylase covalently immobilized on silica nanoparticles. J Colloid Interface Sci. 2007; 316:413-419. Mohy Eldin MS, El Enshasy HA, Hassan ME, Haroun B, Hassan EA. Covalent immobilization of penicillin G acylase onto amine-functionalized PVC membranes for 6-APA production from penicillin hydrolysis process. II. Enzyme immobilization and characterization. J Appl Polym Sci. 2012; 125:3820-3828. Yang L, Gao Z, Guo Y, Zhan W, Guo Y, Wang Y, Lu G. Paramagnetic epoxy-functionalized mesostructured cellular foams with an open pore system for immobilization of penicillin G acylase. Microporous Mesoporous Mater. 2014; 190:17-25. Jovanovic SM, Nastasovic A, Jovanovic NM, Jeremic K, Targeted porous structure of macroporous copolymers based on glycidyl methacrylate. Mater Sci Forum. 1996; 214:155-162. Grazu V, Lopez-Gallego F, Montes T, Abian O, González R, Hermoso JA, Garcia JL, Mateo C, Guisán JM. Promotion of multipoint covalent immobilization through different regions of genetically modified penicillin G acylase from E. coli. Process Biochem. 2010; 45:390-398. Wang L, Wang Z, Xu JH, Bao D, Qi H. An eco-friendly and sustainable process for enzymatic hydrolysis of penicillin G in cloud point system. Bioprocess Biosyst Eng. 2006; 29:157-162. Pedroche J, Yust MM, Giron-Call J, Vioque J, Alaiz M, Mateo C, Guisan JM, Millan F. Stabilization-immobilization of carboxypeptidase A to aldehyde agarose gels. A practical example in the hydrolysis of casein. Enzyme Microb Technol. 2002; 31:711-718. Elander RP. Industrial production of β-lactam antibiotics. Appl Microbiol Biotechnol. 2003; 61:385-392. Rodrigues RC, Godoy CA, Volpato G, Ayub MAZ, Fernandez-Lafuente R, Guisan JM. Immobilization-stabilization of the lipase from Thermomyces lanuginosus: Critical role of chemical amination. Process Biochem. 2009; 44:963-968. Montes T, Lopez-Gallego F, Fuentes M, Mateo C, Grazu V, Betancor L, Guisan JM, Fernandez-Lafuente R, Improved stabilization of chemically aminated enzymes via multipoint covalent attachment on glyoxyl supports. Immobiliz Enzymes Cells. 2006;22:163-173. Knežević Z, Milosavić N, Bezbradica D, Jakovljević Z, Prodanović R. Immobilization of lipase from Candida rugosa on Eupergit® C supports by covalent attachment. Biochem Eng J. 2006; 30:269-278. Lopez-Gallego F, Montes T, Fuentes M, Alonso N, Grazu V, Betancor L, Guisan JM, Fernandez-Lafuente R. Improved stabilization of chemically aminated enzymes via multipoint covalent attachment on glyoxyl supports. J Biotechnol. 2005; 116:1-10. 2009; 44 2009; 69 2004; 20 2006; 30 2011; 679 2013; 88 2002; 31 2005; 116 2014; 190 2008; 9 2005; 41 2011; 34 2012; 125 2012; 51 2010; 45 2011; 102 2014; 106 2007; 316 1989; 33 2006; ;22 2015; 378 2000; 54 2005; 347 1951; 193 2006; 29 2007; 40 2012; 47 1996; 214 2003; 61 2007; 46 Zhao (10.1002/btpr.2181-BIB0006|btpr2181-cit-0006) 2011; 102 Zhou (10.1002/btpr.2181-BIB0007|btpr2181-cit-0007) 2012; 51 Kranz (10.1002/btpr.2181-BIB0026|btpr2181-cit-0026) 2007; 316 Gomez de Segura (10.1002/btpr.2181-BIB0023|btpr2181-cit-0023) 2004; 20 Yang (10.1002/btpr.2181-BIB0011|btpr2181-cit-0011) 2014; 190 Grazu (10.1002/btpr.2181-BIB0029|btpr2181-cit-0029) 2010; 45 Montes (10.1002/btpr.2181-BIB0028|btpr2181-cit-0028) 2006; ;22 Rodrigues (10.1002/btpr.2181-BIB0016|btpr2181-cit-0016) 2009; 44 Mateo (10.1002/btpr.2181-BIB0013|btpr2181-cit-0013) 2007; 40 Miletić (10.1002/btpr.2181-BIB0015|btpr2181-cit-0015) 2009; 69 Jovanovic (10.1002/btpr.2181-BIB0022|btpr2181-cit-0022) 1996; 214 Lopez-Gallego (10.1002/btpr.2181-BIB0014|btpr2181-cit-0014) 2005; 116 Ahmad (10.1002/btpr.2181-BIB0012|btpr2181-cit-0012) 2013; 88 Xue (10.1002/btpr.2181-BIB0024|btpr2181-cit-0024) 2015; 378 Lowry (10.1002/btpr.2181-BIB0020|btpr2181-cit-0020) 1951; 193 Elander (10.1002/btpr.2181-BIB0001|btpr2181-cit-0001) 2003; 61 Knežević-Jugović (10.1002/btpr.2181-BIB0019|btpr2181-cit-0019) 2011; 679 Shi (10.1002/btpr.2181-BIB0025|btpr2181-cit-0025) 2014; 106 Ferreira (10.1002/btpr.2181-BIB0004|btpr2181-cit-0004) 2007; 46 Wang (10.1002/btpr.2181-BIB0002|btpr2181-cit-0002) 2006; 29 Adriano (10.1002/btpr.2181-BIB0008|btpr2181-cit-0008) 2005; 41 German (10.1002/btpr.2181-BIB0030|btpr2181-cit-0030) 1989; 33 Grazu (10.1002/btpr.2181-BIB0009|btpr2181-cit-0009) 2012; 47 Pedroche (10.1002/btpr.2181-BIB0031|btpr2181-cit-0031) 2002; 31 Knežević (10.1002/btpr.2181-BIB0010|btpr2181-cit-0010) 2006; 30 Nastasović (10.1002/btpr.2181-BIB0017|btpr2181-cit-0017) 2005; 41 Žuža (10.1002/btpr.2181-BIB0021|btpr2181-cit-0021) 2011; 34 Mohy Eldin (10.1002/btpr.2181-BIB0005|btpr2181-cit-0005) 2012; 125 Kallenberg (10.1002/btpr.2181-BIB0003|btpr2181-cit-0003) 2005; 347 Jovanović (10.1002/btpr.2181-BIB0018|btpr2181-cit-0018) 2000; 54 Fernandez-Lorente (10.1002/btpr.2181-BIB0027|btpr2181-cit-0027) 2008; 9 |
References_xml | – volume: 125 start-page: 3820 year: 2012 end-page: 3828 article-title: Covalent immobilization of penicillin G acylase onto amine‐functionalized PVC membranes for 6‐APA production from penicillin hydrolysis process. II. Enzyme immobilization and characterization publication-title: J Appl Polym Sci. – volume: 61 start-page: 385 year: 2003 end-page: 392 article-title: Industrial production of β‐lactam antibiotics publication-title: Appl Microbiol Biotechnol. – volume: 51 start-page: 4582 year: 2012 end-page: 4590 article-title: Improving the stability of immobilized penicillin G acylase via the modification of supports with ionic liquids publication-title: Ind Eng Chem Res. – volume: 30 start-page: 269 year: 2006 end-page: 278 article-title: Immobilization of lipase from on Eupergit C supports by covalent attachment publication-title: Biochem Eng J. – volume: 316 start-page: 413 year: 2007 end-page: 419 article-title: Circular dichroism analysis of penicillin G acylase covalently immobilized on silica nanoparticles publication-title: J Colloid Interface Sci. – volume: 46 start-page: 7695 year: 2007 end-page: 7702 article-title: Nonconventional reactor for enzymatic synthesis of semi‐synthetic ‐lactam antibiotics publication-title: Ind Eng Chem Res. – volume: 34 start-page: 1706 year: 2011 end-page: 1714 article-title: Hydrolysis of penicillin G by penicillin G acylase immobilized on chitosan microbeads in different reactor systems publication-title: Chem Eng Technol. – volume: 31 start-page: 711 year: 2002 end-page: 718 article-title: Stabilization‐immobilization of carboxypeptidase A to aldehyde agarose gels. A practical example in the hydrolysis of casein publication-title: Enzyme Microb Technol. – volume: 190 start-page: 17 year: 2014 end-page: 25 article-title: Paramagnetic epoxy‐functionalized mesostructured cellular foams with an open pore system for immobilization of penicillin G acylase publication-title: Microporous Mesoporous Mater. – volume: 44 start-page: 963 year: 2009 end-page: 968 article-title: Immobilization–stabilization of the lipase from : Critical role of chemical amination publication-title: Process Biochem. – volume: 33 start-page: 563 year: 1989 end-page: 569 article-title: Relation between stabilization and rigidification of the three‐dimensional structure of an enzyme publication-title: Biotechnol Bioeng. – volume: 9 start-page: 2553 year: 2008 end-page: 2561 article-title: Solid‐phase chemical amination of a lipase from to improve its stabilization via covalent immobilization on highly activated glyoxyl‐agarose publication-title: Biomacromolecules. – volume: 45 start-page: 390 year: 2010 end-page: 398 article-title: Promotion of multipoint covalent immobilization through different regions of genetically modified penicillin G acylase from publication-title: Process Biochem. – volume: 69 start-page: 68 year: 2009 end-page: 75 article-title: Surface modification of macroporous poly(glycidyl methacrylate‐co‐ethylene glycol dimethacrylate) resins for improved lipase B immobilization publication-title: React Funct Polym. – volume: 116 start-page: 1 year: 2005 end-page: 10 article-title: Improved stabilization of chemically aminated enzymes via multipoint covalent attachment on glyoxyl supports publication-title: J Biotechnol. – volume: 378 start-page: 306 year: 2015 end-page: 312 article-title: Hydrophilic porous magnetic poly(GMA‐MBAA‐NVP) composite microspheres containing oxirane groups: An efficient carrier for immobilizing penicillin G acylase publication-title: J Magn Magn Mater. – volume: 54 start-page: 471 year: 2000 end-page: 479 article-title: Synthesis, properties and applications of crosslinked macroporous copolymers based on methacrylates publication-title: Hem Ind. – volume: 20 start-page: 1414 year: 2004 end-page: 1420 article-title: Immobilization of dextransucrase from NRRL B‐512F on Eupergit C supports publication-title: Biotechnol Prog. – volume: 29 start-page: 157 year: 2006 end-page: 162 article-title: An eco‐friendly and sustainable process for enzymatic hydrolysis of penicillin G in cloud point system publication-title: Bioprocess Biosyst Eng. – volume: 679 start-page: 99 year: 2011 end-page: 111 – volume: 106 start-page: 40 year: 2014 end-page: 45 article-title: Preparation and enzymatic activity of penicillin G acylase immobilized on core–shell porous glass beads publication-title: J Mol Catal B Enzym. – volume: 88 start-page: 26 year: 2013 end-page: 31 article-title: Immobilization of phenylalanine dehydrogenase onto Eupergit CM for the synthesis of (S)−2‐amino‐4‐phenylbutyric acid publication-title: J Mol Catal B Enzym. – volume: 41 start-page: 201 year: 2005 end-page: 207 article-title: Optimization of penicillin G acylase multipoint immobilization on to glutaraldehyde‐chitosan beads publication-title: Biotechnol Appl Biochem. – volume: 102 start-page: 529 year: 2011 end-page: 535 article-title: Immobilization of penicillin G acylase on macro‐mesoporous silica spheres publication-title: Bioresour Technol. – volume: 40 start-page: 1451 year: 2007 end-page: 1463 article-title: Improvement of enzyme activity, stability and selectivity via immobilization techniques publication-title: Enzyme Microb Technol. – volume: 214 start-page: 155 year: 1996 end-page: 162 article-title: Targeted porous structure of macroporous copolymers based on glycidyl methacrylate publication-title: Mater Sci Forum. – volume: ;22 start-page: 163 year: 2006 end-page: 173 article-title: Improved stabilization of chemically aminated enzymes via multipoint covalent attachment on glyoxyl supports publication-title: Immobiliz Enzymes Cells. – volume: 41 start-page: 1234 year: 2005 end-page: 1242 article-title: Surface characterization of macroporous glycidyl methacrylate based copolymers by inverse gas chromatography publication-title: Eur Polym J. – volume: 347 start-page: 905 year: 2005 end-page: 926 article-title: Immobilization of penicillin G acylase: The key to optimum performance publication-title: Adv Synth Catal. – volume: 193 start-page: 265 year: 1951 end-page: 275 article-title: Protein measurement with the folin phenol reagent publication-title: J Biol Chem. – volume: 47 start-page: 2538 year: 2012 end-page: 2541 article-title: Tailor‐made design of penicillin G acylase surface enables its site‐directed immobilization and stabilization onto commercial mono‐functional epoxy supports publication-title: Process Biochem. – volume: 378 start-page: 306 year: 2015 ident: 10.1002/btpr.2181-BIB0024|btpr2181-cit-0024 article-title: Hydrophilic porous magnetic poly(GMA-MBAA-NVP) composite microspheres containing oxirane groups: An efficient carrier for immobilizing penicillin G acylase publication-title: J Magn Magn Mater. doi: 10.1016/j.jmmm.2014.11.048 contributor: fullname: Xue – volume: 45 start-page: 390 year: 2010 ident: 10.1002/btpr.2181-BIB0029|btpr2181-cit-0029 article-title: Promotion of multipoint covalent immobilization through different regions of genetically modified penicillin G acylase from E. coli publication-title: Process Biochem. doi: 10.1016/j.procbio.2009.10.013 contributor: fullname: Grazu – volume: 31 start-page: 711 year: 2002 ident: 10.1002/btpr.2181-BIB0031|btpr2181-cit-0031 article-title: Stabilization-immobilization of carboxypeptidase A to aldehyde agarose gels. A practical example in the hydrolysis of casein publication-title: Enzyme Microb Technol. doi: 10.1016/S0141-0229(02)00170-9 contributor: fullname: Pedroche – volume: 34 start-page: 1706 year: 2011 ident: 10.1002/btpr.2181-BIB0021|btpr2181-cit-0021 article-title: Hydrolysis of penicillin G by penicillin G acylase immobilized on chitosan microbeads in different reactor systems publication-title: Chem Eng Technol. doi: 10.1002/ceat.201100297 contributor: fullname: Žuža – volume: 116 start-page: 1 year: 2005 ident: 10.1002/btpr.2181-BIB0014|btpr2181-cit-0014 article-title: Improved stabilization of chemically aminated enzymes via multipoint covalent attachment on glyoxyl supports publication-title: J Biotechnol. doi: 10.1016/j.jbiotec.2004.09.015 contributor: fullname: Lopez-Gallego – volume: 679 start-page: 99 volume-title: Enzyme Stabilization and Immobilization year: 2011 ident: 10.1002/btpr.2181-BIB0019|btpr2181-cit-0019 doi: 10.1007/978-1-60761-895-9_9 contributor: fullname: Knežević-Jugović – volume: 102 start-page: 529 year: 2011 ident: 10.1002/btpr.2181-BIB0006|btpr2181-cit-0006 article-title: Immobilization of penicillin G acylase on macro-mesoporous silica spheres publication-title: Bioresour Technol. doi: 10.1016/j.biortech.2010.09.076 contributor: fullname: Zhao – volume: 190 start-page: 17 year: 2014 ident: 10.1002/btpr.2181-BIB0011|btpr2181-cit-0011 article-title: Paramagnetic epoxy-functionalized mesostructured cellular foams with an open pore system for immobilization of penicillin G acylase publication-title: Microporous Mesoporous Mater. doi: 10.1016/j.micromeso.2014.01.017 contributor: fullname: Yang – volume: 40 start-page: 1451 year: 2007 ident: 10.1002/btpr.2181-BIB0013|btpr2181-cit-0013 article-title: Improvement of enzyme activity, stability and selectivity via immobilization techniques publication-title: Enzyme Microb Technol. doi: 10.1016/j.enzmictec.2007.01.018 contributor: fullname: Mateo – volume: 214 start-page: 155 year: 1996 ident: 10.1002/btpr.2181-BIB0022|btpr2181-cit-0022 article-title: Targeted porous structure of macroporous copolymers based on glycidyl methacrylate publication-title: Mater Sci Forum. doi: 10.4028/www.scientific.net/MSF.214.155 contributor: fullname: Jovanovic – volume: 41 start-page: 1234 year: 2005 ident: 10.1002/btpr.2181-BIB0017|btpr2181-cit-0017 article-title: Surface characterization of macroporous glycidyl methacrylate based copolymers by inverse gas chromatography publication-title: Eur Polym J. doi: 10.1016/j.eurpolymj.2004.12.020 contributor: fullname: Nastasović – volume: 41 start-page: 201 year: 2005 ident: 10.1002/btpr.2181-BIB0008|btpr2181-cit-0008 article-title: Optimization of penicillin G acylase multipoint immobilization on to glutaraldehyde-chitosan beads publication-title: Biotechnol Appl Biochem. doi: 10.1042/BA20040061 contributor: fullname: Adriano – volume: 61 start-page: 385 year: 2003 ident: 10.1002/btpr.2181-BIB0001|btpr2181-cit-0001 article-title: Industrial production of β-lactam antibiotics publication-title: Appl Microbiol Biotechnol. doi: 10.1007/s00253-003-1274-y contributor: fullname: Elander – volume: 29 start-page: 157 year: 2006 ident: 10.1002/btpr.2181-BIB0002|btpr2181-cit-0002 article-title: An eco-friendly and sustainable process for enzymatic hydrolysis of penicillin G in cloud point system publication-title: Bioprocess Biosyst Eng. doi: 10.1007/s00449-006-0067-y contributor: fullname: Wang – volume: 125 start-page: 3820 year: 2012 ident: 10.1002/btpr.2181-BIB0005|btpr2181-cit-0005 article-title: Covalent immobilization of penicillin G acylase onto amine-functionalized PVC membranes for 6-APA production from penicillin hydrolysis process. II. Enzyme immobilization and characterization publication-title: J Appl Polym Sci. doi: 10.1002/app.36690 contributor: fullname: Mohy Eldin – volume: 88 start-page: 26 year: 2013 ident: 10.1002/btpr.2181-BIB0012|btpr2181-cit-0012 article-title: Immobilization of phenylalanine dehydrogenase onto Eupergit CM for the synthesis of (S)−2-amino-4-phenylbutyric acid publication-title: J Mol Catal B Enzym. doi: 10.1016/j.molcatb.2012.11.014 contributor: fullname: Ahmad – volume: ;22 start-page: 163 year: 2006 ident: 10.1002/btpr.2181-BIB0028|btpr2181-cit-0028 article-title: Improved stabilization of chemically aminated enzymes via multipoint covalent attachment on glyoxyl supports publication-title: Immobiliz Enzymes Cells. doi: 10.1007/978-1-59745-053-9_15 contributor: fullname: Montes – volume: 54 start-page: 471 year: 2000 ident: 10.1002/btpr.2181-BIB0018|btpr2181-cit-0018 article-title: Synthesis, properties and applications of crosslinked macroporous copolymers based on methacrylates publication-title: Hem Ind. contributor: fullname: Jovanović – volume: 33 start-page: 563 year: 1989 ident: 10.1002/btpr.2181-BIB0030|btpr2181-cit-0030 article-title: Relation between stabilization and rigidification of the three-dimensional structure of an enzyme publication-title: Biotechnol Bioeng. doi: 10.1002/bit.260330508 contributor: fullname: German – volume: 106 start-page: 40 year: 2014 ident: 10.1002/btpr.2181-BIB0025|btpr2181-cit-0025 article-title: Preparation and enzymatic activity of penicillin G acylase immobilized on core-shell porous glass beads publication-title: J Mol Catal B Enzym. doi: 10.1016/j.molcatb.2014.04.013 contributor: fullname: Shi – volume: 46 start-page: 7695 year: 2007 ident: 10.1002/btpr.2181-BIB0004|btpr2181-cit-0004 article-title: Nonconventional reactor for enzymatic synthesis of semi-synthetic β-lactam antibiotics publication-title: Ind Eng Chem Res. doi: 10.1021/ie0614071 contributor: fullname: Ferreira – volume: 51 start-page: 4582 year: 2012 ident: 10.1002/btpr.2181-BIB0007|btpr2181-cit-0007 article-title: Improving the stability of immobilized penicillin G acylase via the modification of supports with ionic liquids publication-title: Ind Eng Chem Res. doi: 10.1021/ie202745c contributor: fullname: Zhou – volume: 47 start-page: 2538 year: 2012 ident: 10.1002/btpr.2181-BIB0009|btpr2181-cit-0009 article-title: Tailor-made design of penicillin G acylase surface enables its site-directed immobilization and stabilization onto commercial mono-functional epoxy supports publication-title: Process Biochem. doi: 10.1016/j.procbio.2012.07.010 contributor: fullname: Grazu – volume: 69 start-page: 68 year: 2009 ident: 10.1002/btpr.2181-BIB0015|btpr2181-cit-0015 article-title: Surface modification of macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) resins for improved Candida antarctica lipase B immobilization publication-title: React Funct Polym. doi: 10.1016/j.reactfunctpolym.2008.11.001 contributor: fullname: Miletić – volume: 30 start-page: 269 year: 2006 ident: 10.1002/btpr.2181-BIB0010|btpr2181-cit-0010 article-title: Immobilization of lipase from Candida rugosa on Eupergit® C supports by covalent attachment publication-title: Biochem Eng J. doi: 10.1016/j.bej.2006.05.009 contributor: fullname: Knežević – volume: 20 start-page: 1414 year: 2004 ident: 10.1002/btpr.2181-BIB0023|btpr2181-cit-0023 article-title: Immobilization of dextransucrase from Leuconostoc mesenteroides NRRL B-512F on Eupergit C supports publication-title: Biotechnol Prog. doi: 10.1021/bp0400083 contributor: fullname: Gomez de Segura – volume: 9 start-page: 2553 year: 2008 ident: 10.1002/btpr.2181-BIB0027|btpr2181-cit-0027 article-title: Solid-phase chemical amination of a lipase from Bacillus thermocatenulatus to improve its stabilization via covalent immobilization on highly activated glyoxyl-agarose publication-title: Biomacromolecules. doi: 10.1021/bm800609g contributor: fullname: Fernandez-Lorente – volume: 44 start-page: 963 year: 2009 ident: 10.1002/btpr.2181-BIB0016|btpr2181-cit-0016 article-title: Immobilization-stabilization of the lipase from Thermomyces lanuginosus: Critical role of chemical amination publication-title: Process Biochem. doi: 10.1016/j.procbio.2009.04.015 contributor: fullname: Rodrigues – volume: 193 start-page: 265 year: 1951 ident: 10.1002/btpr.2181-BIB0020|btpr2181-cit-0020 article-title: Protein measurement with the folin phenol reagent publication-title: J Biol Chem. doi: 10.1016/S0021-9258(19)52451-6 contributor: fullname: Lowry – volume: 316 start-page: 413 year: 2007 ident: 10.1002/btpr.2181-BIB0026|btpr2181-cit-0026 article-title: Circular dichroism analysis of penicillin G acylase covalently immobilized on silica nanoparticles publication-title: J Colloid Interface Sci. doi: 10.1016/j.jcis.2007.08.062 contributor: fullname: Kranz – volume: 347 start-page: 905 year: 2005 ident: 10.1002/btpr.2181-BIB0003|btpr2181-cit-0003 article-title: Immobilization of penicillin G acylase: The key to optimum performance publication-title: Adv Synth Catal. doi: 10.1002/adsc.200505042 contributor: fullname: Kallenberg |
SSID | ssj0008062 |
Score | 2.285709 |
Snippet | The use of penicillin G acylase (PGA) covalently linked to insoluble carrier is expected to produce major advances in pharmaceutical processing industry and... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 43 |
SubjectTerms | Amination chemical amination Drug Industry Enzyme Stability Enzymes Enzymes, Immobilized - chemistry Ethylene Glycols Eupergit C Hydrogen-Ion Concentration immobilization Methacrylates - chemistry Microspheres Penicillin Amidase - chemistry penicillin G acylase poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) Polymers - chemistry suspension copolymerization |
Title | An approach for the improved immobilization of penicillin G acylase onto macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) as a potential industrial biocatalyst |
URI | https://api.istex.fr/ark:/67375/WNG-QV2C39KG-D/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbtpr.2181 https://www.ncbi.nlm.nih.gov/pubmed/26439442 https://www.proquest.com/docview/1766923032 https://search.proquest.com/docview/1767625921 https://search.proquest.com/docview/1776653101 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtRAEG1BuMCBfZkQUIEQCgcnHu9WTiHLREKKAoTl1uoVWZnYo7FHwjc-IR-Ur-FLUtUem0QChMTFstzltau6XpW7XzH2Krd5HghtPZmY2IuMEl6WxdqzaWxTJYOxkJRwO_iYHn7NdveIJmerXwvT8UMMCTeyDDdek4ELWW_-Ig2VzWy-QQ4Kx1-MEtzyjfBoGIUz3xUTRTieeKiDWc8q5Aebw5lXfNEN-qzffwc0r-JW53j27_zXI99lt5d4E7Y7BbnHrpnyPrt1iYXwATvfLqGnFgfEsICYEAqXbDAad04rmkDbLdeEysLMlIWiNE0JExCqRfxtgGgQ4FRQQbBqXi1qmFXTdv3btFWFbqdAhaqxEWUb8_PHmapwg4da9HkGSKqagi4uS70BUYPAyzQ0nwlfoRiKjIAsKpd2auvmIfu0v3e8c-Atizp4KkrGGK_GNjQ6TwJCQrk0NkVAgV5UZanSeRSmfmy1TEXo2zwTVhACFEkkMa6MrW_D8BFbKavSPGGAoirWPp5nMEwVUWbCRIjIj8ZK6URmI_ay714-67g7eMfSHHDqCk5dMWKvXccPEmJ-QpPd0ph_OZzw95-DnTB_N-G7I7bWawZf2nnNiV4TIbIfBiP2YmhGC6XfLqI0-L1JJqUoMxj_TQYvhMOhjzKPO60bHihI3OplvMO6U64_vwt_e3z0gXZW_130KbuJGHCZVVpjK818YZ6x67VePHcGdQFqOSo9 |
link.rule.ids | 315,782,786,1408,27933,27934,46064,46488 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtRAEG2R5AAc2JeBAAVCKBxMPN7alriELDMoYRRgWG6tdi_IYmKPxh4J3_gEPoiv4UuosscmkQAhcbEs-9lju6u6Xtd0v2LscWKTxJPaOmlkQicwSjpxHGrH8tBylXpDmVLCbfyWTz7Ge_skk_O8WwvT6kP0CTfyjKa_JgenhPT2L9XQtJovnlGEWmMbQYSGSAs4_OO-H47dppwoEvLIQSuMO10h19vuLz0TjTbow375HdU8y1yb0HNw-f8e-gq7tKKcsNPayFV2zuTX2MVTQoTX2fedHDp1cUAaC0gLIWvyDUbjzklBc2jbFZtQWJibPFOUqclhBFLVSMENkBICnEiqCVYsimUJ82JWb32a1SrT9QyoVjWeRGxlfnz9pgrc4KEaw54BQhUz0Nlp1FOQJUi8TUVTmvAVsr7OCKRZ0WSe6rK6wd4d7E93x86qroOjgmiIQ9bQ-kYnkUdkKEmN5cgpMJCqmCudBD53Q6tTLn3XJrG0kkigjIIUh5ahda3v32TreZGb2wwQqkLt4nUGR6oyiI0fSRm4wVApHaXxgD3q2lfMW_kO0Qo1e4KaQlBTDNiTpuV7hFx8pvluPBQfJiPx-r236yeHI7E3YJudaYiVq5eCFDaRJbu-N2AP-9PopPTPi8wNfm_CcBpoesO_YfBG2CO6iLnVml3_QF7ULGDGX9hqrOvP7yJeTI_f0M6df4c-YOfH01dH4ujl5PAuu4CUcJVk2mTr1WJp7rG1Ui_vN971EwrXLmU |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEF3RVkLwwP0SKDAghMqDqeP1VTyVpklRURSgXN5W670gi9SOYkfCb3wCH8TX8CXM2LFpJUBIvFiWfezY3pmds5PdM4w9TmySeFJbJw1N4PhGSSeOA-3YKLCRSr2hTCnhdvg2mn6MRwckk_O8WwvT6kP0CTfyjKa_JgdfaLv7SzQ0rRbLZxSgNtiWjzSchPM5n_XdcOw21USRj4cOGmHcyQq53m5_6ZlgtEXf9cvvmOZZ4tpEnvHl_3rmK-zSmnDCXmshV9k5k19jF0_JEF5n3_dy6LTFAUksICmErMk2GI07JwXNoG3Xa0JhYWHyTFGeJocJSFUjATdAOghwIqkiWLEsViUsinm982leq0zXc6BK1XgSsZX58fWbKnCDh2oMegYIVcxBZ6dRT0GWIPE2FU1owlfI-iojkGZFk3eqy-oGezc-ON4_dNZVHRzlh0McsAaWG52EHlGhJDU2QkaBYVTFkdKJzyM3sDqNJHdtEksriQLK0E9xYBlY13J-k23mRW5uM0CoCrSL1xkcp0o_NjyU0nf9oVI6TOMBe9Q1r1i04h2ilWn2BDWFoKYYsCdNw_cIufxMs92iQHyYTsTr994-T44mYjRg251liLWjl4L0NZEju9wbsIf9aXRR-t9F5ga_N2EiGmZ6w79h8EbYH7qIudVaXf9AXtgsX8Zf2GmM68_vIl4cz97Qzp1_hz5g52ejsXj1cnp0l11APrjOMG2zzWq5MvfYRqlX9xvf-glOSy0L |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+approach+for+the+improved+immobilization+of+penicillin+G+acylase+onto+macroporous+poly%28glycidyl+methacrylate%E2%80%90co%E2%80%90ethylene+glycol+dimethacrylate%29+as+a+potential+industrial+biocatalyst&rft.jtitle=Biotechnology+progress&rft.au=Kne%C5%BEevi%C4%87%E2%80%90Jugovi%C4%87%2C+Zorica+D.&rft.au=%C5%BDu%C5%BEa%2C+Milena+G.&rft.au=Jakoveti%C4%87%2C+Sonja+M.&rft.au=Stefanovi%C4%87%2C+Andrea+B.&rft.date=2016-01-01&rft.issn=8756-7938&rft.eissn=1520-6033&rft.volume=32&rft.issue=1&rft.spage=43&rft.epage=53&rft_id=info:doi/10.1002%2Fbtpr.2181&rft.externalDBID=10.1002%252Fbtpr.2181&rft.externalDocID=BTPR2181 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-7938&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-7938&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-7938&client=summon |