An approach for the improved immobilization of penicillin G acylase onto macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) as a potential industrial biocatalyst

The use of penicillin G acylase (PGA) covalently linked to insoluble carrier is expected to produce major advances in pharmaceutical processing industry and the enzyme stability enhancement is still a significant challenge. The objective of this study was to improve catalytic performance of the cova...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology progress Vol. 32; no. 1; pp. 43 - 53
Main Authors: Knezevic-Jugovic, Zorica D, uza, Milena G, Jakovetic, Sonja M, Stefanovic, Andrea B, Dzunuzovic, Enis S, Jeremic, Katarina B, Jovanovic, Slobodan M
Format: Journal Article
Language:English
Published: United States Blackwell Publishing Ltd 01-01-2016
Wiley Subscription Services, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The use of penicillin G acylase (PGA) covalently linked to insoluble carrier is expected to produce major advances in pharmaceutical processing industry and the enzyme stability enhancement is still a significant challenge. The objective of this study was to improve catalytic performance of the covalently immobilized PGA on a potential industrial carrier, macroporous poly(glycidyl methacrylate‐co‐ethylene glycol dimethacrylate) [poly(GMA‐co‐EGDMA)], by optimizing the copolymerization process and the enzyme attachment procedure. This synthetic copolymer could be a very promising alternative for the development of low‐cost, easy‐to‐prepare, and stable biocatalyst compared to expensive commercially available epoxy carriers such as Eupergit or Sepabeads. The PGA immobilized on poly(GMA‐co‐EGDMA) in the shape of microbeads obtained by suspension copolymerization appeared to have higher activity yield compared to copolymerization in a cast. Optimal conditions for the immobilization of PGA on poly(GMA‐co‐EGDMA) microbeads were 1 mg/mL of PGA in 0.75 mol/L phosphate buffer pH 6.0 at 25°C for 24 h, leading to the active biocatalyst with the specific activity of 252.7 U/g dry beads. Chemical amination of the immobilized PGA could contribute to the enhanced stability of the biocatalyst by inducing secondary interactions between the enzyme and the carrier, ensuring multipoint attachment. The best balance between the activity yield (51.5%), enzyme loading (25.6 mg/g), and stability (stabilization factor 22.2) was achieved for the partially modified PGA. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:43–53, 2016
AbstractList The use of penicillin G acylase (PGA) covalently linked to insoluble carrier is expected to produce major advances in pharmaceutical processing industry and the enzyme stability enhancement is still a significant challenge. The objective of this study was to improve catalytic performance of the covalently immobilized PGA on a potential industrial carrier, macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) [poly(GMA-co-EGDMA)], by optimizing the copolymerization process and the enzyme attachment procedure. This synthetic copolymer could be a very promising alternative for the development of low-cost, easy-to-prepare, and stable biocatalyst compared to expensive commercially available epoxy carriers such as Eupergit or Sepabeads. The PGA immobilized on poly(GMA-co-EGDMA) in the shape of microbeads obtained by suspension copolymerization appeared to have higher activity yield compared to copolymerization in a cast. Optimal conditions for the immobilization of PGA on poly(GMA-co-EGDMA) microbeads were 1 mg/mL of PGA in 0.75 mol/L phosphate buffer pH 6.0 at 25°C for 24 h, leading to the active biocatalyst with the specific activity of 252.7 U/g dry beads. Chemical amination of the immobilized PGA could contribute to the enhanced stability of the biocatalyst by inducing secondary interactions between the enzyme and the carrier, ensuring multipoint attachment. The best balance between the activity yield (51.5%), enzyme loading (25.6 mg/g), and stability (stabilization factor 22.2) was achieved for the partially modified PGA.
The use of penicillin G acylase (PGA) covalently linked to insoluble carrier is expected to produce major advances in pharmaceutical processing industry and the enzyme stability enhancement is still a significant challenge. The objective of this study was to improve catalytic performance of the covalently immobilized PGA on a potential industrial carrier, macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) [poly(GMA-co-EGDMA)], by optimizing the copolymerization process and the enzyme attachment procedure. This synthetic copolymer could be a very promising alternative for the development of low-cost, easy-to-prepare, and stable biocatalyst compared to expensive commercially available epoxy carriers such as Eupergit or Sepabeads. The PGA immobilized on poly(GMA-co-EGDMA) in the shape of microbeads obtained by suspension copolymerization appeared to have higher activity yield compared to copolymerization in a cast. Optimal conditions for the immobilization of PGA on poly(GMA-co-EGDMA) microbeads were 1 mg/mL of PGA in 0.75 mol/L phosphate buffer pH 6.0 at 25°C for 24 h, leading to the active biocatalyst with the specific activity of 252.7 U/g dry beads. Chemical amination of the immobilized PGA could contribute to the enhanced stability of the biocatalyst by inducing secondary interactions between the enzyme and the carrier, ensuring multipoint attachment. The best balance between the activity yield (51.5%), enzyme loading (25.6 mg/g), and stability (stabilization factor 22.2) was achieved for the partially modified PGA. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:43-53, 2016
The use of penicillin G acylase (PGA) covalently linked to insoluble carrier is expected to produce major advances in pharmaceutical processing industry and the enzyme stability enhancement is still a significant challenge. The objective of this study was to improve catalytic performance of the covalently immobilized PGA on a potential industrial carrier, macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) [poly(GMA-co-EGDMA)], by optimizing the copolymerization process and the enzyme attachment procedure. This synthetic copolymer could be a very promising alternative for the development of low-cost, easy-to-prepare, and stable biocatalyst compared to expensive commercially available epoxy carriers such as Eupergit or Sepabeads. The PGA immobilized on poly(GMA-co-EGDMA) in the shape of microbeads obtained by suspension copolymerization appeared to have higher activity yield compared to copolymerization in a cast. Optimal conditions for the immobilization of PGA on poly(GMA-co-EGDMA) microbeads were 1 mg/mL of PGA in 0.75 mol/L phosphate buffer pH 6.0 at 25 degree C for 24 h, leading to the active biocatalyst with the specific activity of 252.7 U/g dry beads. Chemical amination of the immobilized PGA could contribute to the enhanced stability of the biocatalyst by inducing secondary interactions between the enzyme and the carrier, ensuring multipoint attachment. The best balance between the activity yield (51.5%), enzyme loading (25.6 mg/g), and stability (stabilization factor 22.2) was achieved for the partially modified PGA. copyright 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:43-53, 2016
The use of penicillin G acylase (PGA) covalently linked to insoluble carrier is expected to produce major advances in pharmaceutical processing industry and the enzyme stability enhancement is still a significant challenge. The objective of this study was to improve catalytic performance of the covalently immobilized PGA on a potential industrial carrier, macroporous poly(glycidyl methacrylate‐co‐ethylene glycol dimethacrylate) [poly(GMA‐co‐EGDMA)], by optimizing the copolymerization process and the enzyme attachment procedure. This synthetic copolymer could be a very promising alternative for the development of low‐cost, easy‐to‐prepare, and stable biocatalyst compared to expensive commercially available epoxy carriers such as Eupergit or Sepabeads. The PGA immobilized on poly(GMA‐co‐EGDMA) in the shape of microbeads obtained by suspension copolymerization appeared to have higher activity yield compared to copolymerization in a cast. Optimal conditions for the immobilization of PGA on poly(GMA‐co‐EGDMA) microbeads were 1 mg/mL of PGA in 0.75 mol/L phosphate buffer pH 6.0 at 25°C for 24 h, leading to the active biocatalyst with the specific activity of 252.7 U/g dry beads. Chemical amination of the immobilized PGA could contribute to the enhanced stability of the biocatalyst by inducing secondary interactions between the enzyme and the carrier, ensuring multipoint attachment. The best balance between the activity yield (51.5%), enzyme loading (25.6 mg/g), and stability (stabilization factor 22.2) was achieved for the partially modified PGA. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 32:43–53, 2016
Author Žuža, Milena G.
Džunuzović, Enis S.
Stefanović, Andrea B.
Jakovetić, Sonja M.
Jovanović, Slobodan M.
Knežević-Jugović, Zorica D.
Jeremić, Katarina B.
Author_xml – sequence: 1
  givenname: Zorica
  surname: Knezevic-Jugovic
  middlename: D
  fullname: Knezevic-Jugovic, Zorica D
– sequence: 2
  givenname: Milena
  surname: uza
  middlename: G
  fullname: uza, Milena G
– sequence: 3
  givenname: Sonja
  surname: Jakovetic
  middlename: M
  fullname: Jakovetic, Sonja M
– sequence: 4
  givenname: Andrea
  surname: Stefanovic
  middlename: B
  fullname: Stefanovic, Andrea B
– sequence: 5
  givenname: Enis
  surname: Dzunuzovic
  middlename: S
  fullname: Dzunuzovic, Enis S
– sequence: 6
  givenname: Katarina
  surname: Jeremic
  middlename: B
  fullname: Jeremic, Katarina B
– sequence: 7
  givenname: Slobodan
  surname: Jovanovic
  middlename: M
  fullname: Jovanovic, Slobodan M
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26439442$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1u1DAUhS1URKeFBS-ALLFpF2n9k9jxsh1gQFT8qcDSchyHcXHsEDtAeDIeD0czVAgJidW91_7ukc49R-DAB28AeIjRGUaInDdpGM8IrvEdsMIVQQVDlB6AVc0rVnBB60NwFOMNQqhGjNwDh4SVVJQlWYGfFx6qYRiD0lvYhRGmrYG2zw9fTZubPjTW2R8q2eBh6OBgvNXWOevhBio9OxUNDD4F2Cs9hiGMYYpwCG4--eRmbdvZwd6kbf7MbDKFDkUeZ2e8gQsRHGztn8QpVBGqLJGMT1Y5aH07xTQubWODVkm5Oab74G6nXDQP9vUYvH_29Hr9vLh6vXmxvrgqdMkwLsqqo6YVjGTDXDSm4wxTyoiuuW5FSTmqurbhiqJO1KpTosJIsbLBAlcd6ig9Bic73XySL5OJSfY2auOc8iZblZhzxiqKEf4PlHFGKkEW9PFf6E2YRp-NLBQThCJKMnW6o_JlYxxNJ4fR9mqcJUZySV4uycsl-cw-2itOTW_aW_J31Bk43wHfrDPzv5Xk5fWbd3vJYrdhYzLfbzfU-FkyTnklP77ayLcfyJqKlxv5hP4CLdDNEw
CitedBy_id crossref_primary_10_2174_1389201020666191113144636
crossref_primary_10_1016_j_colsurfb_2019_03_064
crossref_primary_10_2174_1389201020666191111151642
crossref_primary_10_1021_acssuschemeng_9b04980
crossref_primary_10_1007_s00449_017_1826_7
crossref_primary_10_3389_fbioe_2023_1108820
crossref_primary_10_1002_btpr_2610
crossref_primary_10_1002_pat_4791
crossref_primary_10_1016_j_biortech_2018_12_006
crossref_primary_10_1007_s10924_021_02364_3
crossref_primary_10_1002_jccs_201900272
crossref_primary_10_1002_pat_4446
crossref_primary_10_1016_j_apcata_2018_08_003
crossref_primary_10_1016_j_biochi_2018_11_019
crossref_primary_10_1002_pat_4299
crossref_primary_10_1108_PRT_06_2022_0076
crossref_primary_10_1016_j_mcat_2019_110484
crossref_primary_10_1016_j_cjche_2020_12_011
Cites_doi 10.1016/j.jmmm.2014.11.048
10.1016/j.procbio.2009.10.013
10.1016/S0141-0229(02)00170-9
10.1002/ceat.201100297
10.1016/j.jbiotec.2004.09.015
10.1007/978-1-60761-895-9_9
10.1016/j.biortech.2010.09.076
10.1016/j.micromeso.2014.01.017
10.1016/j.enzmictec.2007.01.018
10.4028/www.scientific.net/MSF.214.155
10.1016/j.eurpolymj.2004.12.020
10.1042/BA20040061
10.1007/s00253-003-1274-y
10.1007/s00449-006-0067-y
10.1002/app.36690
10.1016/j.molcatb.2012.11.014
10.1007/978-1-59745-053-9_15
10.1002/bit.260330508
10.1016/j.molcatb.2014.04.013
10.1021/ie0614071
10.1021/ie202745c
10.1016/j.procbio.2012.07.010
10.1016/j.reactfunctpolym.2008.11.001
10.1016/j.bej.2006.05.009
10.1021/bp0400083
10.1021/bm800609g
10.1016/j.procbio.2009.04.015
10.1016/S0021-9258(19)52451-6
10.1016/j.jcis.2007.08.062
10.1002/adsc.200505042
ContentType Journal Article
Copyright 2015 American Institute of Chemical Engineers
2015 American Institute of Chemical Engineers.
2016 American Institute of Chemical Engineers
Copyright_xml – notice: 2015 American Institute of Chemical Engineers
– notice: 2015 American Institute of Chemical Engineers.
– notice: 2016 American Institute of Chemical Engineers
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7QO
7T7
7U7
8FD
C1K
FR3
M7N
P64
7X8
DOI 10.1002/btpr.2181
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Toxicology Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Biotechnology Research Abstracts
Technology Research Database
Toxicology Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
MEDLINE - Academic
DatabaseTitleList MEDLINE
Biotechnology Research Abstracts
Engineering Research Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1520-6033
EndPage 53
ExternalDocumentID 3958619831
10_1002_btpr_2181
26439442
BTPR2181
ark_67375_WNG_QV2C39KG_D
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Education, Science and Technological Development of Serbia
GroupedDBID ---
-~X
.DC
05W
0R~
1L6
1OB
1OC
1WB
23N
31~
33P
3SF
3WU
4.4
52U
52V
53G
55A
5GY
5VS
66C
6J9
8-1
A00
A8Z
AABXI
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABEFU
ABHMW
ABJNI
ABQWH
ABTAH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOF
ACIWK
ACJ
ACMXC
ACPOU
ACPRK
ACS
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADMGS
ADOZA
ADXAS
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AGXLV
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZFZN
AZVAB
BAANH
BDRZF
BFHJK
BHBCM
BLYAC
BMXJE
BNHUX
BOGZA
BRXPI
BSCLL
C45
CS3
DCZOG
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EDH
EJD
EMOBN
ESTFP
F5P
FEDTE
FUBAC
G-S
GODZA
HF~
HGLYW
HHY
HVGLF
HZ~
I-F
IHE
ITG
ITH
IX1
JG~
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
ML0
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
NDZJH
NNB
O9-
OIG
OVD
P2P
P2W
P4E
PALCI
QRW
RIWAO
RJQFR
ROL
RWI
SAMSI
SUPJJ
SV3
TAE
TEORI
TN5
TUS
W99
WBKPD
WIH
WIJ
WIK
WOHZO
WSB
WXSBR
WYJ
XV2
Y6R
ZCA
ZY4
ZZTAW
~02
~KM
~S-
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7QL
7QO
7T7
7U7
8FD
C1K
FR3
M7N
P64
7X8
ID FETCH-LOGICAL-c4611-45f3ed96243979bef7613362c87cd943705fdb7a30f98afa9510a64b1915f0f33
IEDL.DBID 33P
ISSN 8756-7938
IngestDate Fri Aug 16 10:48:13 EDT 2024
Fri Aug 16 08:11:13 EDT 2024
Mon Nov 25 07:11:39 EST 2024
Thu Nov 21 20:45:40 EST 2024
Sat Sep 28 07:57:01 EDT 2024
Sat Aug 24 00:56:47 EDT 2024
Wed Oct 30 09:57:23 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Eupergit C
penicillin G acylase
suspension copolymerization
immobilization
chemical amination
poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)
Language English
License 2015 American Institute of Chemical Engineers.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4611-45f3ed96243979bef7613362c87cd943705fdb7a30f98afa9510a64b1915f0f33
Notes ark:/67375/WNG-QV2C39KG-D
Ministry of Education, Science and Technological Development of Serbia
istex:729D2516F3B91E8F575F977F66B6A1C621B12A40
ArticleID:BTPR2181
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 26439442
PQID 1766923032
PQPubID 2034897
PageCount 11
ParticipantIDs proquest_miscellaneous_1776653101
proquest_miscellaneous_1767625921
proquest_journals_1766923032
crossref_primary_10_1002_btpr_2181
pubmed_primary_26439442
wiley_primary_10_1002_btpr_2181_BTPR2181
istex_primary_ark_67375_WNG_QV2C39KG_D
PublicationCentury 2000
PublicationDate 2016-01
January/February 2016
2016 Jan-Feb
2016-01-00
20160101
PublicationDateYYYYMMDD 2016-01-01
PublicationDate_xml – month: 01
  year: 2016
  text: 2016-01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Hoboken
PublicationTitle Biotechnology progress
PublicationTitleAlternate Biotechnol Progress
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Ferreira ALO, Giordano RLC, Giordano RC. Nonconventional reactor for enzymatic synthesis of semi-synthetic β-lactam antibiotics. Ind Eng Chem Res. 2007; 46:7695-7702.
Adriano WS, Filho EH, Silva JA, Goncalves LR. Optimization of penicillin G acylase multipoint immobilization on to glutaraldehyde-chitosan beads. Biotechnol Appl Biochem. 2005; 41:201-207.
Ahmad AL, Low EM, Shukor SRA. Immobilization of phenylalanine dehydrogenase onto Eupergit CM for the synthesis of (S)−2-amino-4-phenylbutyric acid. J Mol Catal B Enzym. 2013; 88:26-31.
Zhao J, Wang Y, Luo G, Zhu S. Immobilization of penicillin G acylase on macro-mesoporous silica spheres. Bioresour Technol. 2011; 102:529-535.
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. J Biol Chem. 1951; 193:265-275.
Grazu V, López-Gallego F, Guisán JM. Tailor-made design of penicillin G acylase surface enables its site-directed immobilization and stabilization onto commercial mono-functional epoxy supports. Process Biochem. 2012; 47:2538-2541.
Miletić N, Rohandi R, Vuković Z, Nastasović A, Loos K. Surface modification of macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) resins for improved Candida antarctica lipase B immobilization. React Funct Polym. 2009; 69:68-75.
Xue P, Su W, Gu Y, Liu H, Wang J. Hydrophilic porous magnetic poly(GMA-MBAA-NVP) composite microspheres containing oxirane groups: An efficient carrier for immobilizing penicillin G acylase. J Magn Magn Mater. 2015; 378:306-312.
Fernandez-Lorente G, Godoy CA, Mendes AA, Lopez-Gallego F, Grazu V, de Las Rivas B, Palomo JM, Hermoso J, Fernandez-Lafuente R, Guisan JM. Solid-phase chemical amination of a lipase from Bacillus thermocatenulatus to improve its stabilization via covalent immobilization on highly activated glyoxyl-agarose. Biomacromolecules. 2008; 9:2553-2561.
Mateo C, Palomo JM, Fernandez-Lorente G, Guisan JM, Fernandez-Lafuente R. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol. 2007; 40:1451-1463.
Shi H, Wang Y, Luo G. Preparation and enzymatic activity of penicillin G acylase immobilized on core-shell porous glass beads. J Mol Catal B Enzym. 2014; 106:40-45.
Zhou H, Yang L, Li W, Shou Q, Xu P, Li W, Wang F, Yu P, Liu H. Improving the stability of immobilized penicillin G acylase via the modification of supports with ionic liquids. Ind Eng Chem Res. 2012; 51:4582-4590.
Nastasović AB, Onjia AE, Milonjić SK, Jovanović SM. Surface characterization of macroporous glycidyl methacrylate based copolymers by inverse gas chromatography. Eur Polym J. 2005; 41:1234-1242.
Žuža MG, Obradović BM, Knežević-Jugović ZD. Hydrolysis of penicillin G by penicillin G acylase immobilized on chitosan microbeads in different reactor systems. Chem Eng Technol. 2011; 34:1706-1714.
Gomez de Segura A, Alcalde M, Yates M, Rojas-Cervantes ML, Lopez-Cortes N, Ballesteros A, Plou FJ. Immobilization of dextransucrase from Leuconostoc mesenteroides NRRL B-512F on Eupergit C supports. Biotechnol Prog. 2004; 20:1414-1420.
Kallenberg AI, van Rantwijk F, Sheldon RA. Immobilization of penicillin G acylase: The key to optimum performance. Adv Synth Catal. 2005; 347:905-926.
Jovanović S, Nastasović A, Jovanović NN, Novaković T, Vuković Z, Jeremić K. Synthesis, properties and applications of crosslinked macroporous copolymers based on methacrylates. Hem Ind. 2000; 54:471-479.
German P, Slagmolen T, Crichton RR. Relation between stabilization and rigidification of the three-dimensional structure of an enzyme. Biotechnol Bioeng. 1989; 33:563-569.
Kranz B, Burck J, Franzreb M, Koster R, Ulrich AS. Circular dichroism analysis of penicillin G acylase covalently immobilized on silica nanoparticles. J Colloid Interface Sci. 2007; 316:413-419.
Mohy Eldin MS, El Enshasy HA, Hassan ME, Haroun B, Hassan EA. Covalent immobilization of penicillin G acylase onto amine-functionalized PVC membranes for 6-APA production from penicillin hydrolysis process. II. Enzyme immobilization and characterization. J Appl Polym Sci. 2012; 125:3820-3828.
Yang L, Gao Z, Guo Y, Zhan W, Guo Y, Wang Y, Lu G. Paramagnetic epoxy-functionalized mesostructured cellular foams with an open pore system for immobilization of penicillin G acylase. Microporous Mesoporous Mater. 2014; 190:17-25.
Jovanovic SM, Nastasovic A, Jovanovic NM, Jeremic K, Targeted porous structure of macroporous copolymers based on glycidyl methacrylate. Mater Sci Forum. 1996; 214:155-162.
Grazu V, Lopez-Gallego F, Montes T, Abian O, González R, Hermoso JA, Garcia JL, Mateo C, Guisán JM. Promotion of multipoint covalent immobilization through different regions of genetically modified penicillin G acylase from E. coli. Process Biochem. 2010; 45:390-398.
Wang L, Wang Z, Xu JH, Bao D, Qi H. An eco-friendly and sustainable process for enzymatic hydrolysis of penicillin G in cloud point system. Bioprocess Biosyst Eng. 2006; 29:157-162.
Pedroche J, Yust MM, Giron-Call J, Vioque J, Alaiz M, Mateo C, Guisan JM, Millan F. Stabilization-immobilization of carboxypeptidase A to aldehyde agarose gels. A practical example in the hydrolysis of casein. Enzyme Microb Technol. 2002; 31:711-718.
Elander RP. Industrial production of β-lactam antibiotics. Appl Microbiol Biotechnol. 2003; 61:385-392.
Rodrigues RC, Godoy CA, Volpato G, Ayub MAZ, Fernandez-Lafuente R, Guisan JM. Immobilization-stabilization of the lipase from Thermomyces lanuginosus: Critical role of chemical amination. Process Biochem. 2009; 44:963-968.
Montes T, Lopez-Gallego F, Fuentes M, Mateo C, Grazu V, Betancor L, Guisan JM, Fernandez-Lafuente R, Improved stabilization of chemically aminated enzymes via multipoint covalent attachment on glyoxyl supports. Immobiliz Enzymes Cells. 2006;22:163-173.
Knežević Z, Milosavić N, Bezbradica D, Jakovljević Z, Prodanović R. Immobilization of lipase from Candida rugosa on Eupergit® C supports by covalent attachment. Biochem Eng J. 2006; 30:269-278.
Lopez-Gallego F, Montes T, Fuentes M, Alonso N, Grazu V, Betancor L, Guisan JM, Fernandez-Lafuente R. Improved stabilization of chemically aminated enzymes via multipoint covalent attachment on glyoxyl supports. J Biotechnol. 2005; 116:1-10.
2009; 44
2009; 69
2004; 20
2006; 30
2011; 679
2013; 88
2002; 31
2005; 116
2014; 190
2008; 9
2005; 41
2011; 34
2012; 125
2012; 51
2010; 45
2011; 102
2014; 106
2007; 316
1989; 33
2006; ;22
2015; 378
2000; 54
2005; 347
1951; 193
2006; 29
2007; 40
2012; 47
1996; 214
2003; 61
2007; 46
Zhao (10.1002/btpr.2181-BIB0006|btpr2181-cit-0006) 2011; 102
Zhou (10.1002/btpr.2181-BIB0007|btpr2181-cit-0007) 2012; 51
Kranz (10.1002/btpr.2181-BIB0026|btpr2181-cit-0026) 2007; 316
Gomez de Segura (10.1002/btpr.2181-BIB0023|btpr2181-cit-0023) 2004; 20
Yang (10.1002/btpr.2181-BIB0011|btpr2181-cit-0011) 2014; 190
Grazu (10.1002/btpr.2181-BIB0029|btpr2181-cit-0029) 2010; 45
Montes (10.1002/btpr.2181-BIB0028|btpr2181-cit-0028) 2006; ;22
Rodrigues (10.1002/btpr.2181-BIB0016|btpr2181-cit-0016) 2009; 44
Mateo (10.1002/btpr.2181-BIB0013|btpr2181-cit-0013) 2007; 40
Miletić (10.1002/btpr.2181-BIB0015|btpr2181-cit-0015) 2009; 69
Jovanovic (10.1002/btpr.2181-BIB0022|btpr2181-cit-0022) 1996; 214
Lopez-Gallego (10.1002/btpr.2181-BIB0014|btpr2181-cit-0014) 2005; 116
Ahmad (10.1002/btpr.2181-BIB0012|btpr2181-cit-0012) 2013; 88
Xue (10.1002/btpr.2181-BIB0024|btpr2181-cit-0024) 2015; 378
Lowry (10.1002/btpr.2181-BIB0020|btpr2181-cit-0020) 1951; 193
Elander (10.1002/btpr.2181-BIB0001|btpr2181-cit-0001) 2003; 61
Knežević-Jugović (10.1002/btpr.2181-BIB0019|btpr2181-cit-0019) 2011; 679
Shi (10.1002/btpr.2181-BIB0025|btpr2181-cit-0025) 2014; 106
Ferreira (10.1002/btpr.2181-BIB0004|btpr2181-cit-0004) 2007; 46
Wang (10.1002/btpr.2181-BIB0002|btpr2181-cit-0002) 2006; 29
Adriano (10.1002/btpr.2181-BIB0008|btpr2181-cit-0008) 2005; 41
German (10.1002/btpr.2181-BIB0030|btpr2181-cit-0030) 1989; 33
Grazu (10.1002/btpr.2181-BIB0009|btpr2181-cit-0009) 2012; 47
Pedroche (10.1002/btpr.2181-BIB0031|btpr2181-cit-0031) 2002; 31
Knežević (10.1002/btpr.2181-BIB0010|btpr2181-cit-0010) 2006; 30
Nastasović (10.1002/btpr.2181-BIB0017|btpr2181-cit-0017) 2005; 41
Žuža (10.1002/btpr.2181-BIB0021|btpr2181-cit-0021) 2011; 34
Mohy Eldin (10.1002/btpr.2181-BIB0005|btpr2181-cit-0005) 2012; 125
Kallenberg (10.1002/btpr.2181-BIB0003|btpr2181-cit-0003) 2005; 347
Jovanović (10.1002/btpr.2181-BIB0018|btpr2181-cit-0018) 2000; 54
Fernandez-Lorente (10.1002/btpr.2181-BIB0027|btpr2181-cit-0027) 2008; 9
References_xml – volume: 125
  start-page: 3820
  year: 2012
  end-page: 3828
  article-title: Covalent immobilization of penicillin G acylase onto amine‐functionalized PVC membranes for 6‐APA production from penicillin hydrolysis process. II. Enzyme immobilization and characterization
  publication-title: J Appl Polym Sci.
– volume: 61
  start-page: 385
  year: 2003
  end-page: 392
  article-title: Industrial production of β‐lactam antibiotics
  publication-title: Appl Microbiol Biotechnol.
– volume: 51
  start-page: 4582
  year: 2012
  end-page: 4590
  article-title: Improving the stability of immobilized penicillin G acylase via the modification of supports with ionic liquids
  publication-title: Ind Eng Chem Res.
– volume: 30
  start-page: 269
  year: 2006
  end-page: 278
  article-title: Immobilization of lipase from on Eupergit C supports by covalent attachment
  publication-title: Biochem Eng J.
– volume: 316
  start-page: 413
  year: 2007
  end-page: 419
  article-title: Circular dichroism analysis of penicillin G acylase covalently immobilized on silica nanoparticles
  publication-title: J Colloid Interface Sci.
– volume: 46
  start-page: 7695
  year: 2007
  end-page: 7702
  article-title: Nonconventional reactor for enzymatic synthesis of semi‐synthetic ‐lactam antibiotics
  publication-title: Ind Eng Chem Res.
– volume: 34
  start-page: 1706
  year: 2011
  end-page: 1714
  article-title: Hydrolysis of penicillin G by penicillin G acylase immobilized on chitosan microbeads in different reactor systems
  publication-title: Chem Eng Technol.
– volume: 31
  start-page: 711
  year: 2002
  end-page: 718
  article-title: Stabilization‐immobilization of carboxypeptidase A to aldehyde agarose gels. A practical example in the hydrolysis of casein
  publication-title: Enzyme Microb Technol.
– volume: 190
  start-page: 17
  year: 2014
  end-page: 25
  article-title: Paramagnetic epoxy‐functionalized mesostructured cellular foams with an open pore system for immobilization of penicillin G acylase
  publication-title: Microporous Mesoporous Mater.
– volume: 44
  start-page: 963
  year: 2009
  end-page: 968
  article-title: Immobilization–stabilization of the lipase from : Critical role of chemical amination
  publication-title: Process Biochem.
– volume: 33
  start-page: 563
  year: 1989
  end-page: 569
  article-title: Relation between stabilization and rigidification of the three‐dimensional structure of an enzyme
  publication-title: Biotechnol Bioeng.
– volume: 9
  start-page: 2553
  year: 2008
  end-page: 2561
  article-title: Solid‐phase chemical amination of a lipase from to improve its stabilization via covalent immobilization on highly activated glyoxyl‐agarose
  publication-title: Biomacromolecules.
– volume: 45
  start-page: 390
  year: 2010
  end-page: 398
  article-title: Promotion of multipoint covalent immobilization through different regions of genetically modified penicillin G acylase from
  publication-title: Process Biochem.
– volume: 69
  start-page: 68
  year: 2009
  end-page: 75
  article-title: Surface modification of macroporous poly(glycidyl methacrylate‐co‐ethylene glycol dimethacrylate) resins for improved lipase B immobilization
  publication-title: React Funct Polym.
– volume: 116
  start-page: 1
  year: 2005
  end-page: 10
  article-title: Improved stabilization of chemically aminated enzymes via multipoint covalent attachment on glyoxyl supports
  publication-title: J Biotechnol.
– volume: 378
  start-page: 306
  year: 2015
  end-page: 312
  article-title: Hydrophilic porous magnetic poly(GMA‐MBAA‐NVP) composite microspheres containing oxirane groups: An efficient carrier for immobilizing penicillin G acylase
  publication-title: J Magn Magn Mater.
– volume: 54
  start-page: 471
  year: 2000
  end-page: 479
  article-title: Synthesis, properties and applications of crosslinked macroporous copolymers based on methacrylates
  publication-title: Hem Ind.
– volume: 20
  start-page: 1414
  year: 2004
  end-page: 1420
  article-title: Immobilization of dextransucrase from NRRL B‐512F on Eupergit C supports
  publication-title: Biotechnol Prog.
– volume: 29
  start-page: 157
  year: 2006
  end-page: 162
  article-title: An eco‐friendly and sustainable process for enzymatic hydrolysis of penicillin G in cloud point system
  publication-title: Bioprocess Biosyst Eng.
– volume: 679
  start-page: 99
  year: 2011
  end-page: 111
– volume: 106
  start-page: 40
  year: 2014
  end-page: 45
  article-title: Preparation and enzymatic activity of penicillin G acylase immobilized on core–shell porous glass beads
  publication-title: J Mol Catal B Enzym.
– volume: 88
  start-page: 26
  year: 2013
  end-page: 31
  article-title: Immobilization of phenylalanine dehydrogenase onto Eupergit CM for the synthesis of (S)−2‐amino‐4‐phenylbutyric acid
  publication-title: J Mol Catal B Enzym.
– volume: 41
  start-page: 201
  year: 2005
  end-page: 207
  article-title: Optimization of penicillin G acylase multipoint immobilization on to glutaraldehyde‐chitosan beads
  publication-title: Biotechnol Appl Biochem.
– volume: 102
  start-page: 529
  year: 2011
  end-page: 535
  article-title: Immobilization of penicillin G acylase on macro‐mesoporous silica spheres
  publication-title: Bioresour Technol.
– volume: 40
  start-page: 1451
  year: 2007
  end-page: 1463
  article-title: Improvement of enzyme activity, stability and selectivity via immobilization techniques
  publication-title: Enzyme Microb Technol.
– volume: 214
  start-page: 155
  year: 1996
  end-page: 162
  article-title: Targeted porous structure of macroporous copolymers based on glycidyl methacrylate
  publication-title: Mater Sci Forum.
– volume: ;22
  start-page: 163
  year: 2006
  end-page: 173
  article-title: Improved stabilization of chemically aminated enzymes via multipoint covalent attachment on glyoxyl supports
  publication-title: Immobiliz Enzymes Cells.
– volume: 41
  start-page: 1234
  year: 2005
  end-page: 1242
  article-title: Surface characterization of macroporous glycidyl methacrylate based copolymers by inverse gas chromatography
  publication-title: Eur Polym J.
– volume: 347
  start-page: 905
  year: 2005
  end-page: 926
  article-title: Immobilization of penicillin G acylase: The key to optimum performance
  publication-title: Adv Synth Catal.
– volume: 193
  start-page: 265
  year: 1951
  end-page: 275
  article-title: Protein measurement with the folin phenol reagent
  publication-title: J Biol Chem.
– volume: 47
  start-page: 2538
  year: 2012
  end-page: 2541
  article-title: Tailor‐made design of penicillin G acylase surface enables its site‐directed immobilization and stabilization onto commercial mono‐functional epoxy supports
  publication-title: Process Biochem.
– volume: 378
  start-page: 306
  year: 2015
  ident: 10.1002/btpr.2181-BIB0024|btpr2181-cit-0024
  article-title: Hydrophilic porous magnetic poly(GMA-MBAA-NVP) composite microspheres containing oxirane groups: An efficient carrier for immobilizing penicillin G acylase
  publication-title: J Magn Magn Mater.
  doi: 10.1016/j.jmmm.2014.11.048
  contributor:
    fullname: Xue
– volume: 45
  start-page: 390
  year: 2010
  ident: 10.1002/btpr.2181-BIB0029|btpr2181-cit-0029
  article-title: Promotion of multipoint covalent immobilization through different regions of genetically modified penicillin G acylase from E. coli
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2009.10.013
  contributor:
    fullname: Grazu
– volume: 31
  start-page: 711
  year: 2002
  ident: 10.1002/btpr.2181-BIB0031|btpr2181-cit-0031
  article-title: Stabilization-immobilization of carboxypeptidase A to aldehyde agarose gels. A practical example in the hydrolysis of casein
  publication-title: Enzyme Microb Technol.
  doi: 10.1016/S0141-0229(02)00170-9
  contributor:
    fullname: Pedroche
– volume: 34
  start-page: 1706
  year: 2011
  ident: 10.1002/btpr.2181-BIB0021|btpr2181-cit-0021
  article-title: Hydrolysis of penicillin G by penicillin G acylase immobilized on chitosan microbeads in different reactor systems
  publication-title: Chem Eng Technol.
  doi: 10.1002/ceat.201100297
  contributor:
    fullname: Žuža
– volume: 116
  start-page: 1
  year: 2005
  ident: 10.1002/btpr.2181-BIB0014|btpr2181-cit-0014
  article-title: Improved stabilization of chemically aminated enzymes via multipoint covalent attachment on glyoxyl supports
  publication-title: J Biotechnol.
  doi: 10.1016/j.jbiotec.2004.09.015
  contributor:
    fullname: Lopez-Gallego
– volume: 679
  start-page: 99
  volume-title: Enzyme Stabilization and Immobilization
  year: 2011
  ident: 10.1002/btpr.2181-BIB0019|btpr2181-cit-0019
  doi: 10.1007/978-1-60761-895-9_9
  contributor:
    fullname: Knežević-Jugović
– volume: 102
  start-page: 529
  year: 2011
  ident: 10.1002/btpr.2181-BIB0006|btpr2181-cit-0006
  article-title: Immobilization of penicillin G acylase on macro-mesoporous silica spheres
  publication-title: Bioresour Technol.
  doi: 10.1016/j.biortech.2010.09.076
  contributor:
    fullname: Zhao
– volume: 190
  start-page: 17
  year: 2014
  ident: 10.1002/btpr.2181-BIB0011|btpr2181-cit-0011
  article-title: Paramagnetic epoxy-functionalized mesostructured cellular foams with an open pore system for immobilization of penicillin G acylase
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2014.01.017
  contributor:
    fullname: Yang
– volume: 40
  start-page: 1451
  year: 2007
  ident: 10.1002/btpr.2181-BIB0013|btpr2181-cit-0013
  article-title: Improvement of enzyme activity, stability and selectivity via immobilization techniques
  publication-title: Enzyme Microb Technol.
  doi: 10.1016/j.enzmictec.2007.01.018
  contributor:
    fullname: Mateo
– volume: 214
  start-page: 155
  year: 1996
  ident: 10.1002/btpr.2181-BIB0022|btpr2181-cit-0022
  article-title: Targeted porous structure of macroporous copolymers based on glycidyl methacrylate
  publication-title: Mater Sci Forum.
  doi: 10.4028/www.scientific.net/MSF.214.155
  contributor:
    fullname: Jovanovic
– volume: 41
  start-page: 1234
  year: 2005
  ident: 10.1002/btpr.2181-BIB0017|btpr2181-cit-0017
  article-title: Surface characterization of macroporous glycidyl methacrylate based copolymers by inverse gas chromatography
  publication-title: Eur Polym J.
  doi: 10.1016/j.eurpolymj.2004.12.020
  contributor:
    fullname: Nastasović
– volume: 41
  start-page: 201
  year: 2005
  ident: 10.1002/btpr.2181-BIB0008|btpr2181-cit-0008
  article-title: Optimization of penicillin G acylase multipoint immobilization on to glutaraldehyde-chitosan beads
  publication-title: Biotechnol Appl Biochem.
  doi: 10.1042/BA20040061
  contributor:
    fullname: Adriano
– volume: 61
  start-page: 385
  year: 2003
  ident: 10.1002/btpr.2181-BIB0001|btpr2181-cit-0001
  article-title: Industrial production of β-lactam antibiotics
  publication-title: Appl Microbiol Biotechnol.
  doi: 10.1007/s00253-003-1274-y
  contributor:
    fullname: Elander
– volume: 29
  start-page: 157
  year: 2006
  ident: 10.1002/btpr.2181-BIB0002|btpr2181-cit-0002
  article-title: An eco-friendly and sustainable process for enzymatic hydrolysis of penicillin G in cloud point system
  publication-title: Bioprocess Biosyst Eng.
  doi: 10.1007/s00449-006-0067-y
  contributor:
    fullname: Wang
– volume: 125
  start-page: 3820
  year: 2012
  ident: 10.1002/btpr.2181-BIB0005|btpr2181-cit-0005
  article-title: Covalent immobilization of penicillin G acylase onto amine-functionalized PVC membranes for 6-APA production from penicillin hydrolysis process. II. Enzyme immobilization and characterization
  publication-title: J Appl Polym Sci.
  doi: 10.1002/app.36690
  contributor:
    fullname: Mohy Eldin
– volume: 88
  start-page: 26
  year: 2013
  ident: 10.1002/btpr.2181-BIB0012|btpr2181-cit-0012
  article-title: Immobilization of phenylalanine dehydrogenase onto Eupergit CM for the synthesis of (S)−2-amino-4-phenylbutyric acid
  publication-title: J Mol Catal B Enzym.
  doi: 10.1016/j.molcatb.2012.11.014
  contributor:
    fullname: Ahmad
– volume: ;22
  start-page: 163
  year: 2006
  ident: 10.1002/btpr.2181-BIB0028|btpr2181-cit-0028
  article-title: Improved stabilization of chemically aminated enzymes via multipoint covalent attachment on glyoxyl supports
  publication-title: Immobiliz Enzymes Cells.
  doi: 10.1007/978-1-59745-053-9_15
  contributor:
    fullname: Montes
– volume: 54
  start-page: 471
  year: 2000
  ident: 10.1002/btpr.2181-BIB0018|btpr2181-cit-0018
  article-title: Synthesis, properties and applications of crosslinked macroporous copolymers based on methacrylates
  publication-title: Hem Ind.
  contributor:
    fullname: Jovanović
– volume: 33
  start-page: 563
  year: 1989
  ident: 10.1002/btpr.2181-BIB0030|btpr2181-cit-0030
  article-title: Relation between stabilization and rigidification of the three-dimensional structure of an enzyme
  publication-title: Biotechnol Bioeng.
  doi: 10.1002/bit.260330508
  contributor:
    fullname: German
– volume: 106
  start-page: 40
  year: 2014
  ident: 10.1002/btpr.2181-BIB0025|btpr2181-cit-0025
  article-title: Preparation and enzymatic activity of penicillin G acylase immobilized on core-shell porous glass beads
  publication-title: J Mol Catal B Enzym.
  doi: 10.1016/j.molcatb.2014.04.013
  contributor:
    fullname: Shi
– volume: 46
  start-page: 7695
  year: 2007
  ident: 10.1002/btpr.2181-BIB0004|btpr2181-cit-0004
  article-title: Nonconventional reactor for enzymatic synthesis of semi-synthetic β-lactam antibiotics
  publication-title: Ind Eng Chem Res.
  doi: 10.1021/ie0614071
  contributor:
    fullname: Ferreira
– volume: 51
  start-page: 4582
  year: 2012
  ident: 10.1002/btpr.2181-BIB0007|btpr2181-cit-0007
  article-title: Improving the stability of immobilized penicillin G acylase via the modification of supports with ionic liquids
  publication-title: Ind Eng Chem Res.
  doi: 10.1021/ie202745c
  contributor:
    fullname: Zhou
– volume: 47
  start-page: 2538
  year: 2012
  ident: 10.1002/btpr.2181-BIB0009|btpr2181-cit-0009
  article-title: Tailor-made design of penicillin G acylase surface enables its site-directed immobilization and stabilization onto commercial mono-functional epoxy supports
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2012.07.010
  contributor:
    fullname: Grazu
– volume: 69
  start-page: 68
  year: 2009
  ident: 10.1002/btpr.2181-BIB0015|btpr2181-cit-0015
  article-title: Surface modification of macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) resins for improved Candida antarctica lipase B immobilization
  publication-title: React Funct Polym.
  doi: 10.1016/j.reactfunctpolym.2008.11.001
  contributor:
    fullname: Miletić
– volume: 30
  start-page: 269
  year: 2006
  ident: 10.1002/btpr.2181-BIB0010|btpr2181-cit-0010
  article-title: Immobilization of lipase from Candida rugosa on Eupergit® C supports by covalent attachment
  publication-title: Biochem Eng J.
  doi: 10.1016/j.bej.2006.05.009
  contributor:
    fullname: Knežević
– volume: 20
  start-page: 1414
  year: 2004
  ident: 10.1002/btpr.2181-BIB0023|btpr2181-cit-0023
  article-title: Immobilization of dextransucrase from Leuconostoc mesenteroides NRRL B-512F on Eupergit C supports
  publication-title: Biotechnol Prog.
  doi: 10.1021/bp0400083
  contributor:
    fullname: Gomez de Segura
– volume: 9
  start-page: 2553
  year: 2008
  ident: 10.1002/btpr.2181-BIB0027|btpr2181-cit-0027
  article-title: Solid-phase chemical amination of a lipase from Bacillus thermocatenulatus to improve its stabilization via covalent immobilization on highly activated glyoxyl-agarose
  publication-title: Biomacromolecules.
  doi: 10.1021/bm800609g
  contributor:
    fullname: Fernandez-Lorente
– volume: 44
  start-page: 963
  year: 2009
  ident: 10.1002/btpr.2181-BIB0016|btpr2181-cit-0016
  article-title: Immobilization-stabilization of the lipase from Thermomyces lanuginosus: Critical role of chemical amination
  publication-title: Process Biochem.
  doi: 10.1016/j.procbio.2009.04.015
  contributor:
    fullname: Rodrigues
– volume: 193
  start-page: 265
  year: 1951
  ident: 10.1002/btpr.2181-BIB0020|btpr2181-cit-0020
  article-title: Protein measurement with the folin phenol reagent
  publication-title: J Biol Chem.
  doi: 10.1016/S0021-9258(19)52451-6
  contributor:
    fullname: Lowry
– volume: 316
  start-page: 413
  year: 2007
  ident: 10.1002/btpr.2181-BIB0026|btpr2181-cit-0026
  article-title: Circular dichroism analysis of penicillin G acylase covalently immobilized on silica nanoparticles
  publication-title: J Colloid Interface Sci.
  doi: 10.1016/j.jcis.2007.08.062
  contributor:
    fullname: Kranz
– volume: 347
  start-page: 905
  year: 2005
  ident: 10.1002/btpr.2181-BIB0003|btpr2181-cit-0003
  article-title: Immobilization of penicillin G acylase: The key to optimum performance
  publication-title: Adv Synth Catal.
  doi: 10.1002/adsc.200505042
  contributor:
    fullname: Kallenberg
SSID ssj0008062
Score 2.285709
Snippet The use of penicillin G acylase (PGA) covalently linked to insoluble carrier is expected to produce major advances in pharmaceutical processing industry and...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 43
SubjectTerms Amination
chemical amination
Drug Industry
Enzyme Stability
Enzymes
Enzymes, Immobilized - chemistry
Ethylene Glycols
Eupergit C
Hydrogen-Ion Concentration
immobilization
Methacrylates - chemistry
Microspheres
Penicillin Amidase - chemistry
penicillin G acylase
poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate)
Polymers - chemistry
suspension copolymerization
Title An approach for the improved immobilization of penicillin G acylase onto macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) as a potential industrial biocatalyst
URI https://api.istex.fr/ark:/67375/WNG-QV2C39KG-D/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbtpr.2181
https://www.ncbi.nlm.nih.gov/pubmed/26439442
https://www.proquest.com/docview/1766923032
https://search.proquest.com/docview/1767625921
https://search.proquest.com/docview/1776653101
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtRAEG1BuMCBfZkQUIEQCgcnHu9WTiHLREKKAoTl1uoVWZnYo7FHwjc-IR-Ur-FLUtUem0QChMTFstzltau6XpW7XzH2Krd5HghtPZmY2IuMEl6WxdqzaWxTJYOxkJRwO_iYHn7NdveIJmerXwvT8UMMCTeyDDdek4ELWW_-Ig2VzWy-QQ4Kx1-MEtzyjfBoGIUz3xUTRTieeKiDWc8q5Aebw5lXfNEN-qzffwc0r-JW53j27_zXI99lt5d4E7Y7BbnHrpnyPrt1iYXwATvfLqGnFgfEsICYEAqXbDAad04rmkDbLdeEysLMlIWiNE0JExCqRfxtgGgQ4FRQQbBqXi1qmFXTdv3btFWFbqdAhaqxEWUb8_PHmapwg4da9HkGSKqagi4uS70BUYPAyzQ0nwlfoRiKjIAsKpd2auvmIfu0v3e8c-Atizp4KkrGGK_GNjQ6TwJCQrk0NkVAgV5UZanSeRSmfmy1TEXo2zwTVhACFEkkMa6MrW_D8BFbKavSPGGAoirWPp5nMEwVUWbCRIjIj8ZK6URmI_ay714-67g7eMfSHHDqCk5dMWKvXccPEmJ-QpPd0ph_OZzw95-DnTB_N-G7I7bWawZf2nnNiV4TIbIfBiP2YmhGC6XfLqI0-L1JJqUoMxj_TQYvhMOhjzKPO60bHihI3OplvMO6U64_vwt_e3z0gXZW_130KbuJGHCZVVpjK818YZ6x67VePHcGdQFqOSo9
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbtRAEG2R5AAc2JeBAAVCKBxMPN7alriELDMoYRRgWG6tdi_IYmKPxh4J3_gEPoiv4UuosscmkQAhcbEs-9lju6u6Xtd0v2LscWKTxJPaOmlkQicwSjpxHGrH8tBylXpDmVLCbfyWTz7Ge_skk_O8WwvT6kP0CTfyjKa_JgenhPT2L9XQtJovnlGEWmMbQYSGSAs4_OO-H47dppwoEvLIQSuMO10h19vuLz0TjTbow375HdU8y1yb0HNw-f8e-gq7tKKcsNPayFV2zuTX2MVTQoTX2fedHDp1cUAaC0gLIWvyDUbjzklBc2jbFZtQWJibPFOUqclhBFLVSMENkBICnEiqCVYsimUJ82JWb32a1SrT9QyoVjWeRGxlfnz9pgrc4KEaw54BQhUz0Nlp1FOQJUi8TUVTmvAVsr7OCKRZ0WSe6rK6wd4d7E93x86qroOjgmiIQ9bQ-kYnkUdkKEmN5cgpMJCqmCudBD53Q6tTLn3XJrG0kkigjIIUh5ahda3v32TreZGb2wwQqkLt4nUGR6oyiI0fSRm4wVApHaXxgD3q2lfMW_kO0Qo1e4KaQlBTDNiTpuV7hFx8pvluPBQfJiPx-r236yeHI7E3YJudaYiVq5eCFDaRJbu-N2AP-9PopPTPi8wNfm_CcBpoesO_YfBG2CO6iLnVml3_QF7ULGDGX9hqrOvP7yJeTI_f0M6df4c-YOfH01dH4ujl5PAuu4CUcJVk2mTr1WJp7rG1Ui_vN971EwrXLmU
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtNAEF3RVkLwwP0SKDAghMqDqeP1VTyVpklRURSgXN5W670gi9SOYkfCb3wCH8TX8CXM2LFpJUBIvFiWfezY3pmds5PdM4w9TmySeFJbJw1N4PhGSSeOA-3YKLCRSr2hTCnhdvg2mn6MRwckk_O8WwvT6kP0CTfyjKa_JgdfaLv7SzQ0rRbLZxSgNtiWjzSchPM5n_XdcOw21USRj4cOGmHcyQq53m5_6ZlgtEXf9cvvmOZZ4tpEnvHl_3rmK-zSmnDCXmshV9k5k19jF0_JEF5n3_dy6LTFAUksICmErMk2GI07JwXNoG3Xa0JhYWHyTFGeJocJSFUjATdAOghwIqkiWLEsViUsinm982leq0zXc6BK1XgSsZX58fWbKnCDh2oMegYIVcxBZ6dRT0GWIPE2FU1owlfI-iojkGZFk3eqy-oGezc-ON4_dNZVHRzlh0McsAaWG52EHlGhJDU2QkaBYVTFkdKJzyM3sDqNJHdtEksriQLK0E9xYBlY13J-k23mRW5uM0CoCrSL1xkcp0o_NjyU0nf9oVI6TOMBe9Q1r1i04h2ilWn2BDWFoKYYsCdNw_cIufxMs92iQHyYTsTr994-T44mYjRg251liLWjl4L0NZEju9wbsIf9aXRR-t9F5ga_N2EiGmZ6w79h8EbYH7qIudVaXf9AXtgsX8Zf2GmM68_vIl4cz97Qzp1_hz5g52ejsXj1cnp0l11APrjOMG2zzWq5MvfYRqlX9xvf-glOSy0L
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+approach+for+the+improved+immobilization+of+penicillin+G+acylase+onto+macroporous+poly%28glycidyl+methacrylate%E2%80%90co%E2%80%90ethylene+glycol+dimethacrylate%29+as+a+potential+industrial+biocatalyst&rft.jtitle=Biotechnology+progress&rft.au=Kne%C5%BEevi%C4%87%E2%80%90Jugovi%C4%87%2C+Zorica+D.&rft.au=%C5%BDu%C5%BEa%2C+Milena+G.&rft.au=Jakoveti%C4%87%2C+Sonja+M.&rft.au=Stefanovi%C4%87%2C+Andrea+B.&rft.date=2016-01-01&rft.issn=8756-7938&rft.eissn=1520-6033&rft.volume=32&rft.issue=1&rft.spage=43&rft.epage=53&rft_id=info:doi/10.1002%2Fbtpr.2181&rft.externalDBID=10.1002%252Fbtpr.2181&rft.externalDocID=BTPR2181
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-7938&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-7938&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-7938&client=summon