Dysregulation of PAD4-mediated citrullination of nuclear GSK3β activates TGF-β signaling and induces epithelial-to-mesenchymal transition in breast cancer cells
Peptidylarginine deiminase 4 (PAD4) is a Ca ²⁺-dependent enzyme that converts arginine and methylarginine residues to citrulline, with histone proteins being among its best-described substrates to date. However, the biological function of this posttranslational modification, either in histones or in...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS Vol. 110; no. 29; pp. 11851 - 11856 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
National Academy of Sciences
16-07-2013
National Acad Sciences |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Peptidylarginine deiminase 4 (PAD4) is a Ca ²⁺-dependent enzyme that converts arginine and methylarginine residues to citrulline, with histone proteins being among its best-described substrates to date. However, the biological function of this posttranslational modification, either in histones or in nonhistone proteins, is poorly understood. Here, we show that PAD4 recognizes, binds, and citrullinates glycogen synthase kinase-3β (GSK3β), both in vitro and in vivo. Among other functions, GSK3β is a key regulator of transcription factors involved in tumor progression, and its dysregulation has been associated with progression of human cancers. We demonstrate that silencing of PAD4 in breast cancer cells leads to a striking reduction of nuclear GSK3β protein levels, increased TGF-β signaling, induction of epithelial-to-mesenchymal transition, and production of more invasive tumors in xenograft assays. Moreover, in breast cancer patients, reduction of PAD4 and nuclear GSK3β is associated with increased tumor invasiveness. We propose that PAD4-mediated citrullination of GSK3β is a unique posttranslational modification that regulates its nuclear localization and thereby plays a critical role in maintaining an epithelial phenotype. We demonstrate a dynamic and previously unappreciated interplay between histone-modifying enzymes, citrullination of nonhistone proteins, and epithelial-to-mesenchymal transition. |
---|---|
Bibliography: | http://dx.doi.org/10.1073/pnas.1308362110 Contributed by C. David Allis, May 28, 2013 (sent for review January 29, 2013) Author contributions: S.C.S., C.T.V., A.M.C.B., S.A.C., and C.D.A. designed research; S.C.S., C.T.V., V.D.F., A.P., B.D.C., J.J.W., S.M., B.M.Z., X.Z., and B.A.G. performed research; S.C.S. and V.D.F. contributed new reagents/analytic tools; S.C.S., C.T.V., V.D.F., A.P., B.D.C., J.J.W., S.M., B.M.Z., B.A.G., J.S.C., A.M.C.B., S.A.C., and C.D.A. analyzed data; and S.C.S., C.T.V., A.M.C.B., S.A.C., and C.D.A. wrote the paper. 1S.C.S. and C.T.V. contributed equally to this work. |
ISSN: | 0027-8424 1091-6490 1091-6490 |
DOI: | 10.1073/pnas.1308362110 |