Assessment of a noninvasive optical photoplethysmography imaging device with dynamic tissue phantom models

Noncontact photoplethysmography (PPG) has been studied as a method to provide low-cost, noninvasive, two-dimensional blood oxygenation measurements and medical imaging for a variety of near-surface pathologies. To evaluate this technology in a laboratory setting, dynamic tissue phantoms were develop...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedical optics Vol. 22; no. 9; p. 096003
Main Authors: Nwafor, C. Ikenna, Plant, Kevin D, King, Darlene R, McCall, Brian P, Squiers, John J, Fan, Wensheng, DiMaio, J. Michael, Thatcher, Jeffrey E
Format: Journal Article
Language:English
Published: United States Society of Photo-Optical Instrumentation Engineers 01-09-2017
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Noncontact photoplethysmography (PPG) has been studied as a method to provide low-cost, noninvasive, two-dimensional blood oxygenation measurements and medical imaging for a variety of near-surface pathologies. To evaluate this technology in a laboratory setting, dynamic tissue phantoms were developed with tunable parameters that mimic physiologic properties of the skin, including blood vessel volume change, pulse wave frequency, and tissue scattering and absorption. Tissue phantoms were generated using an elastic tubing to represent a blood vessel where the luminal volume could be modulated with a pulsatile fluid flow. The blood was mimicked with a scattering and absorbing motility standard, and the tissue with a gelatin-lipid emulsion hydrogel. A noncontact PPG imaging system was then evaluated using the phantoms. Noncontact PPG imaging accurately identified pulse frequency, and PPG signals from these phantoms suggest that the phantoms can be used to evaluate noncontact PPG imaging systems. Such information may be valuable to the development of future PPG imaging systems.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1083-3668
1560-2281
DOI:10.1117/1.JBO.22.9.096003