Encapsulated contrast microbubble radial oscillation associated with postexcitation pressure peaks

This work combines modeling and experiment to assess encapsulated microbubble oscillations associated with broadband pressure peaks detected after microbubble excitation (postexcitation signals). Data were acquired from albumin-shelled and phospholipid-shelled microbubbles using a passive cavitation...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of the Acoustical Society of America Vol. 127; no. 2; pp. 1156 - 1164
Main Authors: Santin, M. D., King, D. A., Foiret, J., Haak, A., O'Brien, W. D., Bridal, S. L.
Format: Journal Article
Language:English
Published: Melville, NY Acoustical Society of America 01-02-2010
American Institute of Physics
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This work combines modeling and experiment to assess encapsulated microbubble oscillations associated with broadband pressure peaks detected after microbubble excitation (postexcitation signals). Data were acquired from albumin-shelled and phospholipid-shelled microbubbles using a passive cavitation detector consisting of a confocally aligned 2.8-MHz transmitter and 13-MHz receiver. Microbubbles in weak solutions were insonified with a 5-cycle pulse at a peak rarefactional pressure of 2.0 ± 0.2   MPa . For each microbubble type, at least 100 received signals were identified as individual-microbubble responses. The average broadband noise from signals with postexcitation response was 4.2-7.2 dB higher than from signals without postexcitation. Pressure-time responses for each microbubble type were simulated using the model by Marmottant [ J. Acoust. Soc. Am. 118 , 3499-3505 ( 2005 )] , with insonification conditions matching the experiment. Increased broadband noise predicted for microbubbles with postexcitation response was consistent with that observed experimentally (4.0-8.9 dB). The model predicted that postexcitation signals occur only when the radial oscillation exceeds both the shell break-up threshold and twice the initial radius (free bubble inertial cavitation threshold).
AbstractList This work combines modeling and experiment to assess encapsulated microbubble oscillations associated with broadband pressure peaks detected after microbubble excitation (postexcitation signals). Data were acquired from albumin-shelled and phospholipid-shelled microbubbles using a passive cavitation detector consisting of a confocally aligned 2.8-MHz transmitter and 13-MHz receiver. Microbubbles in weak solutions were insonified with a 5-cycle pulse at a peak rarefactional pressure of 2.0±0.2 MPa. For each microbubble type, at least 100 received signals were identified as individual-microbubble responses. The average broadband noise from signals with postexcitation response was 4.2–7.2 dB higher than from signals without postexcitation. Pressure-time responses for each microbubble type were simulated using the model by Marmottant et al. [J. Acoust. Soc. Am. 118, 3499–3505 (2005)] , with insonification conditions matching the experiment. Increased broadband noise predicted for microbubbles with postexcitation response was consistent with that observed experimentally (4.0–8.9 dB). The model predicted that postexcitation signals occur only when the radial oscillation exceeds both the shell break-up threshold and twice the initial radius (free bubble inertial cavitation threshold).
This work combines modeling and experiment to assess encapsulated microbubble oscillations associated with broadband pressure peaks detected after microbubble excitation (postexcitation signals). Data were acquired from albumin-shelled and phospholipid-shelled microbubbles using a passive cavitation detector consisting of a confocally aligned 2.8-MHz transmitter and 13-MHz receiver. Microbubbles in weak solutions were insonified with a 5-cycle pulse at a peak rarefactional pressure of 2.0 ± 0.2   MPa . For each microbubble type, at least 100 received signals were identified as individual-microbubble responses. The average broadband noise from signals with postexcitation response was 4.2-7.2 dB higher than from signals without postexcitation. Pressure-time responses for each microbubble type were simulated using the model by Marmottant [ J. Acoust. Soc. Am. 118 , 3499-3505 ( 2005 )] , with insonification conditions matching the experiment. Increased broadband noise predicted for microbubbles with postexcitation response was consistent with that observed experimentally (4.0-8.9 dB). The model predicted that postexcitation signals occur only when the radial oscillation exceeds both the shell break-up threshold and twice the initial radius (free bubble inertial cavitation threshold).
This work combines modeling and experiment to assess encapsulated microbubble oscillations associated with broadband pressure peaks detected after microbubble excitation (postexcitation signals). Data were acquired from albumin-shelled and phospholipid-shelled microbubbles using a passive cavitation detector consisting of a confocally aligned 2.8-MHz transmitter and 13-MHz receiver. Microbubbles in weak solutions were insonified with a 5-cycle pulse at a peak rarefactional pressure of 2.0+/-0.2 MPa. For each microbubble type, at least 100 received signals were identified as individual-microbubble responses. The average broadband noise from signals with postexcitation response was 4.2-7.2 dB higher than from signals without postexcitation. Pressure-time responses for each microbubble type were simulated using the model by Marmottant et al. [J. Acoust. Soc. Am. 118, 3499-3505 (2005)], with insonification conditions matching the experiment. Increased broadband noise predicted for microbubbles with postexcitation response was consistent with that observed experimentally (4.0-8.9 dB). The model predicted that postexcitation signals occur only when the radial oscillation exceeds both the shell break-up threshold and twice the initial radius (free bubble inertial cavitation threshold).
This work combines modeling and experiment to assess encapsulated microbubble oscillations associated with broadband pressure peaks detected after microbubble excitation (postexcitation signals). Data were acquired from albumin-shelled and phospholipid-shelled microbubbles using a passive cavitation detector consisting of a confocally aligned 2.8-MHz transmitter and 13-MHz receiver. Microbubbles in weak solutions were insonified with a 5-cycle pulse at a peak rarefactional pressure of 2.0±0.2 MPa. For each microbubble type, at least 100 received signals were identified as individual-microbubble responses. The average broadband noise from signals with postexcitation response was 4.2–7.2 dB higher than from signals without postexcitation. Pressure-time responses for each microbubble type were simulated using the model by Marmottant et al. [J. Acoust. Soc. Am. 118, 3499–3505 (2005)], with insonification conditions matching the experiment. Increased broadband noise predicted for microbubbles with postexcitation response was consistent with that observed experimentally (4.0–8.9 dB). The model predicted that postexcitation signals occur only when the radial oscillation exceeds both the shell break-up threshold and twice the initial radius (free bubble inertial cavitation threshold).
Author King, D. A.
Foiret, J.
Haak, A.
Santin, M. D.
O'Brien, W. D.
Bridal, S. L.
Author_xml – sequence: 1
  givenname: M.
  surname: Santin
  middlename: D.
  fullname: Santin, M. D.
  organization: UPMC Univ Paris 06, UMR 7623, LIP, F-75005 Paris, France and CNRS, UMR 7623, Laboratoire d'Imagerie Paramétrique, F-75006 Paris, France
– sequence: 2
  givenname: D.
  surname: King
  middlename: A.
  fullname: King, D. A.
  organization: Department of Mechanical Science and Engineering, University of Illinois, 1206 W. Green St., Urbana, Illinois 61801
– sequence: 3
  givenname: J.
  surname: Foiret
  fullname: Foiret, J.
  organization: UPMC Univ Paris 06, UMR 7623, LIP, F-75005 Paris, France and CNRS, UMR 7623, Laboratoire d'Imagerie Paramétrique, F-75006 Paris, France
– sequence: 4
  givenname: A.
  surname: Haak
  fullname: Haak, A.
  organization: Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois, 405 North Mathews, Urbana, Illinois 61801
– sequence: 5
  givenname: W.
  surname: O'Brien
  middlename: D.
  fullname: O'Brien, W. D.
  organization: Bioacoustics Research Laboratory, Department of Electrical and Computer Engineering, University of Illinois, 405 North Mathews, Urbana, Illinois 61801
– sequence: 6
  givenname: S.
  surname: Bridal
  middlename: L.
  fullname: Bridal, S. L.
  organization: UPMC Univ Paris 06, UMR 7623, LIP, F-75005 Paris, France and CNRS, UMR 7623, Laboratoire d'Imagerie Paramétrique, F-75006 Paris, France
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22420962$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/20136236$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtv1TAQhS3Uit4WFvwBlA1CLNL6nWSDhKoWkCqxKWtr4kyoITcOnoTHv68vN30tWFmj-XxmzpxjdjDGERl7JfipEFKciVMlq0oK-4xthJG8rI3UB2zDORelbqw9YsdE33NpatU8Z0eSC2WlshvWXoweJloGmLErfBznBDQX2-BTbJe2HbBI0AUYikg-DBkLcSyAKPrw78vvMN8UU6QZ__gw79tTQqIlYTEh_KAX7LCHgfDl-p6wr5cX1-efyqsvHz-ff7gqvTbNXDaaN10PbVVL23hbGTSibmotrVJWg6lyjVUvQHNQFlSnRS8Nt71RLbca1Ql7v9edlnaLncedl8FNKWwh_XURgnvaGcON-xZ_Obk7l5ZZ4O0qkOLPBWl220Aes-kR40KuUkpzoW2VyXd7Ml-JKGF_P0Vwt4vECbdGktnXj9e6J-8yyMCbFQDyMPQJRh_ogZNa8sbKB390d-j_T32cqltTVbf7tqyr
CODEN JASMAN
CitedBy_id crossref_primary_10_1121_1_3523339
crossref_primary_10_1121_1_3626124
crossref_primary_10_1016_j_physleta_2020_126446
crossref_primary_10_1088_0031_9155_58_1_127
crossref_primary_10_1109_TUFFC_2014_3023
crossref_primary_10_1109_TUFFC_2021_3074025
crossref_primary_10_1121_10_0002490
crossref_primary_10_1088_0031_9155_58_18_6541
crossref_primary_10_1121_1_3373405
crossref_primary_10_3390_molecules181013078
crossref_primary_10_1007_s11071_015_1914_7
crossref_primary_10_1134_S1063771019020040
Cites_doi 10.1016/j.ultrasmedbio.2006.07.015
10.1109/58.883539
10.1109/TUFFC.2007.272
10.1121/1.388622
10.1088/0031-9155/51/4/003
10.1016/j.ultrasmedbio.2007.04.018
10.1016/j.ultrasmedbio.2006.07.008
10.1121/1.2109427
10.1121/1.398328
10.1080/02656730701194131
10.1016/S0301-5629(03)01051-2
10.1016/S0894-7317(99)70096-9
10.1121/1.2346132
10.1097/00004424-200011000-00003
10.1109/58.741536
10.1016/j.ultrasmedbio.2007.03.009
10.1016/j.jconrel.2006.12.015
10.1016/j.ultrasmedbio.2006.06.020
10.1109/TUFFC.2006.1588398
10.1016/j.ultrasmedbio.2003.12.002
10.1121/1.380799
10.1097/01.rli.0000199292.88189.0f
10.1109/TUFFC.2006.1610573
10.1109/58.896136
10.1016/j.ultrasmedbio.2007.05.011
ContentType Journal Article
Copyright 2010 Acoustical Society of America
2015 INIST-CNRS
Copyright © 2010 Acoustical Society of America 2010 Acoustical Society of America
Copyright_xml – notice: 2010 Acoustical Society of America
– notice: 2015 INIST-CNRS
– notice: Copyright © 2010 Acoustical Society of America 2010 Acoustical Society of America
DBID IQODW
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1121/1.3277216
DatabaseName Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList

MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1520-8524
EndPage 1164
ExternalDocumentID 10_1121_1_3277216
20136236
22420962
jasa
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: UNSPECIFIED
  grantid: R37EB02641
– fundername: UNSPECIFIED
– fundername: UNSPECIFIED
  grantid: ANR-05-BLAN-0236
– fundername: NIBIB NIH HHS
  grantid: R37EB02641
– fundername: NIBIB NIH HHS
  grantid: R37 EB002641
GroupedDBID ---
--Z
-~X
.DC
.GJ
123
186
29L
3O-
4.4
41~
5-Q
53G
5RE
5VS
6TJ
85S
AAAAW
AAEUA
AAPUP
AAYIH
ABDNZ
ABEFF
ABEFU
ABJNI
ABNAN
ABPPZ
ABTAH
ABZEH
ACBNA
ACBRY
ACCUC
ACGFO
ACGFS
ACNCT
ACXMS
ACYGS
ADCTM
AEGXH
AENEX
AETEA
AFFNX
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AGVCI
AHPGS
AHSDT
AI.
AIAGR
AIDUJ
AIZTS
ALMA_UNASSIGNED_HOLDINGS
AQWKA
BAUXJ
CS3
D0L
DU5
EBS
EJD
ESX
F5P
G8K
H~9
M71
M73
MVM
NEJ
NHB
OHT
OK1
P2P
RAZ
RIP
RNS
ROL
RQS
S10
SC5
SJN
TN5
TWZ
UCJ
UHB
UPT
UQL
VH1
VOH
VQA
WH7
XFK
XJT
XOL
XSW
YQT
ZCG
ZXP
ZY4
~02
~G0
ABPTK
AGIHO
IQODW
UG7
AEILP
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c459t-9409dfab78269c675e518984263364a57e51e7f1a40a36a3d41f2506f53b064e3
ISSN 0001-4966
IngestDate Tue Sep 17 21:11:30 EDT 2024
Sat Oct 26 00:01:03 EDT 2024
Thu Nov 21 21:10:47 EST 2024
Sat Sep 28 08:01:24 EDT 2024
Sun Oct 22 16:08:01 EDT 2023
Fri Jun 21 00:19:12 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Radial vibration
Bubble
Contrast media
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c459t-9409dfab78269c675e518984263364a57e51e7f1a40a36a3d41f2506f53b064e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://europepmc.org/articles/pmc2852442?pdf=render
PMID 20136236
PQID 733401467
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2852442
proquest_miscellaneous_733401467
crossref_primary_10_1121_1_3277216
pubmed_primary_20136236
pascalfrancis_primary_22420962
scitation_primary_10_1121_1_3277216Encapsulated_contras
PublicationCentury 2000
PublicationDate 2010-02-01
PublicationDateYYYYMMDD 2010-02-01
PublicationDate_xml – month: 02
  year: 2010
  text: 2010-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Melville, NY
PublicationPlace_xml – name: Melville, NY
– name: United States
PublicationTitle The Journal of the Acoustical Society of America
PublicationTitleAlternate J Acoust Soc Am
PublicationYear 2010
Publisher Acoustical Society of America
American Institute of Physics
Publisher_xml – name: Acoustical Society of America
– name: American Institute of Physics
References Chatterjee, D.; Sarkar, K. 2003; 29
Morgan, K.; Allen, J.; Dayton, P.; Chomas, J.; Klibanov, A.; Ferrara, K. 2000; 47
Tu, J.; Hwang, J.; Matula, T.; Brayman, A.; Crum, L. 2006; 32
Zheng, H.; Barker, A.; Shandas, R. 2006; 53
Rota, C.; Raeman, C.; Child, S.; Dalecki, D. 2006; 120
Bouakaz, A.; de Jong, N. 2007; 33
Chomas, J.; Dayton, P.; Morgan, K.; Allen, J.; Ferrara, K. 2001; 48
Coussios, C.; Farny, C.; Ter Haar, G.; Roy, R. 2007; 23
Ammi, A.; Cleveland, R.; Mamou, J.; Wang, G.; Bridal, S.; O'Brien, W. 2006; 53
McDannold, N.; Vykhodtseva, N.; Hynynen, K. 2006; 51
Flynn, H. 1975; 58
Marmottant, P.; Van der Meer, S.; Emmer, M.; Versluis, M.; de Jong, N.; Hilgenfeldt, S.; Lohse, D. 2005; 118
Takeuchi, H.; Ogunyankin, K.; Pandian, N.; McCreery, T.; Sweitzer, R.; Caldwell, V.; Unger, E.; Avelar, E.; Sheahan, M.; Connolly, R. 1999; 12
Church, C. 1989; 86
Dayton, P.; Morgan, K.; Klibanov, A.; Brandenburger, G.; Ferrara, K. 1999; 46
Goertz, D.; de Jong, N.; Van der Steen, A. 2007; 33
Miller, A.; Nanda, N. 2004; 30
Kimmel, E.; Krasovitski, B.; Hoogi, A.; Razansky, D.; Adam, D. 2007; 33
Flynn, H.; Church, C. 1988; 84
Biagi, E.; Breschi, L.; Vannacci, E.; Masotti, L. 2007; 54
Klibanov, A. 2006; 41
Kheirolomoom, A.; Dayton, P.; Lum, A.; Little, E.; Paoli, E.; Zheng, H.; Ferrara, K. 2007; 118
Sassaroli, E.; Hynynen, K. 2007; 33
Gorce, J.; Arditi, M.; Schneider, M. 2000; 35
Lai, C.; Wu, C.; Chen, C.; Li, P. 2006; 32
17045881 - Ultrasound Med Biol. 2006 Oct;32(10):1601-9
17521801 - Ultrasound Med Biol. 2007 Sep;33(9):1376-88
17590501 - Ultrasound Med Biol. 2007 Oct;33(10):1651-60
17169705 - Ultrasound Med Biol. 2006 Dec;32(12):1931-41
16555773 - IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Mar;53(3):639-44
11367791 - IEEE Trans Ultrason Ferroelectr Freq Control. 2001 Jan;48(1):232-48
17139752 - J Acoust Soc Am. 2006 Nov;120(5 Pt 1):2958-64
2754108 - J Acoust Soc Am. 1989 Jul;86(1):215-27
16471439 - IEEE Trans Ultrason Ferroelectr Freq Control. 2006 Jan;53(1):126-36
16467579 - Phys Med Biol. 2006 Feb 21;51(4):793-807
10588775 - J Am Soc Echocardiogr. 1999 Dec;12(12):1015-21
17300849 - J Control Release. 2007 Apr 23;118(3):275-84
18238417 - IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46(1):220-32
17223253 - Ultrasound Med Biol. 2007 Feb;33(2):187-96
17578336 - Int J Hyperthermia. 2007 Mar;23(2):105-20
18238696 - IEEE Trans Ultrason Ferroelectr Freq Control. 2000;47(6):1494-509
15121243 - Ultrasound Med Biol. 2004 Apr;30(4):425-34
16481920 - Invest Radiol. 2006 Mar;41(3):354-62
17375818 - IEEE Trans Ultrason Ferroelectr Freq Control. 2007 Mar;54(3):480-97
17720301 - Ultrasound Med Biol. 2007 Nov;33(11):1767-76
11110302 - Invest Radiol. 2000 Nov;35(11):661-71
14698342 - Ultrasound Med Biol. 2003 Dec;29(12):1749-57
3209777 - J Acoust Soc Am. 1988 Nov;84(5):1863-76
(2023080104145230700_c2) 1999; 12
(2023080104145230700_c11) 2006; 32
(2023080104145230700_c9) 2006; 120
(2023080104145230700_c5) 2006; 51
(2023080104145230700_c16) 2006; 53
(2023080104145230700_c12) 2007; 54
(2023080104145230700_c3) 2006; 41
(2023080104145230700_c13) 1989; 86
(2023080104145230700_c23) 2000; 35
(2023080104145230700_c24) 2003; 29
(2023080104145230700_c14) 2001; 48
(2023080104145230700_c22) 2007; 33
(2023080104145230700_c27) 2007; 33
(2023080104145230700_c8) 1975; 58
(2023080104145230700_c19) 2004; 30
(2023080104145230700_c26) 1988; 84
(2023080104145230700_c18) 2005; 118
(2023080104145230700_c4) 2007; 118
(2023080104145230700_c6) 2006; 32
(2023080104145230700_c21) 1999; 46
(2023080104145230700_c1) 2007; 33
(2023080104145230700_c15) 2000
(2023080104145230700_c7) 2007; 23
(2023080104145230700_c17) 2000; 47
(2023080104145230700_c25) 2006; 53
(2023080104145230700_c20) 1994
(2023080104145230700_c10) 2007; 33
References_xml – volume: 32
  start-page: 1601-1609
  year: 2006
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2006.07.015
  contributor:
    fullname: Tu, J.; Hwang, J.; Matula, T.; Brayman, A.; Crum, L.
– volume: 47
  start-page: 1494-1509
  year: 2000
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/58.883539
  contributor:
    fullname: Morgan, K.; Allen, J.; Dayton, P.; Chomas, J.; Klibanov, A.; Ferrara, K.
– volume: 54
  start-page: 480-497
  year: 2007
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2007.272
  contributor:
    fullname: Biagi, E.; Breschi, L.; Vannacci, E.; Masotti, L.
– volume: 84
  start-page: 985-998
  year: 1988
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.388622
  contributor:
    fullname: Flynn, H.; Church, C.
– volume: 51
  start-page: 793-807
  year: 2006
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/51/4/003
  contributor:
    fullname: McDannold, N.; Vykhodtseva, N.; Hynynen, K.
– volume: 33
  start-page: 1651-1660
  year: 2007
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2007.04.018
  contributor:
    fullname: Sassaroli, E.; Hynynen, K.
– volume: 33
  start-page: 187-196
  year: 2007
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2006.07.008
  contributor:
    fullname: Bouakaz, A.; de Jong, N.
– volume: 118
  start-page: 3499-3505
  year: 2005
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2109427
  contributor:
    fullname: Marmottant, P.; Van der Meer, S.; Emmer, M.; Versluis, M.; de Jong, N.; Hilgenfeldt, S.; Lohse, D.
– volume: 86
  start-page: 215-227
  year: 1989
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.398328
  contributor:
    fullname: Church, C.
– volume: 23
  start-page: 105-120
  year: 2007
  publication-title: Int. J. Hyperthermia
  doi: 10.1080/02656730701194131
  contributor:
    fullname: Coussios, C.; Farny, C.; Ter Haar, G.; Roy, R.
– volume: 29
  start-page: 1749-1757
  year: 2003
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/S0301-5629(03)01051-2
  contributor:
    fullname: Chatterjee, D.; Sarkar, K.
– volume: 12
  start-page: 1015-1021
  year: 1999
  publication-title: J. Am. Soc. Echocardiogr.
  doi: 10.1016/S0894-7317(99)70096-9
  contributor:
    fullname: Takeuchi, H.; Ogunyankin, K.; Pandian, N.; McCreery, T.; Sweitzer, R.; Caldwell, V.; Unger, E.; Avelar, E.; Sheahan, M.; Connolly, R.
– volume: 120
  start-page: 2958-2964
  year: 2006
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2346132
  contributor:
    fullname: Rota, C.; Raeman, C.; Child, S.; Dalecki, D.
– volume: 35
  start-page: 661-671
  year: 2000
  publication-title: Invest. Radiol.
  doi: 10.1097/00004424-200011000-00003
  contributor:
    fullname: Gorce, J.; Arditi, M.; Schneider, M.
– volume: 46
  start-page: 220-232
  year: 1999
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/58.741536
  contributor:
    fullname: Dayton, P.; Morgan, K.; Klibanov, A.; Brandenburger, G.; Ferrara, K.
– volume: 33
  start-page: 1376-1388
  year: 2007
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2007.03.009
  contributor:
    fullname: Goertz, D.; de Jong, N.; Van der Steen, A.
– volume: 118
  start-page: 275-284
  year: 2007
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2006.12.015
  contributor:
    fullname: Kheirolomoom, A.; Dayton, P.; Lum, A.; Little, E.; Paoli, E.; Zheng, H.; Ferrara, K.
– volume: 32
  start-page: 1931-1941
  year: 2006
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2006.06.020
  contributor:
    fullname: Lai, C.; Wu, C.; Chen, C.; Li, P.
– volume: 53
  start-page: 126-136
  year: 2006
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2006.1588398
  contributor:
    fullname: Ammi, A.; Cleveland, R.; Mamou, J.; Wang, G.; Bridal, S.; O'Brien, W.
– volume: 30
  start-page: 425-434
  year: 2004
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2003.12.002
  contributor:
    fullname: Miller, A.; Nanda, N.
– volume: 58
  start-page: 1160-1170
  year: 1975
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.380799
  contributor:
    fullname: Flynn, H.
– volume: 41
  start-page: 354-362
  year: 2006
  publication-title: Invest. Radiol.
  doi: 10.1097/01.rli.0000199292.88189.0f
  contributor:
    fullname: Klibanov, A.
– volume: 53
  start-page: 639-644
  year: 2006
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2006.1610573
  contributor:
    fullname: Zheng, H.; Barker, A.; Shandas, R.
– volume: 48
  start-page: 232-248
  year: 2001
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/58.896136
  contributor:
    fullname: Chomas, J.; Dayton, P.; Morgan, K.; Allen, J.; Ferrara, K.
– volume: 33
  start-page: 1767-1776
  year: 2007
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2007.05.011
  contributor:
    fullname: Kimmel, E.; Krasovitski, B.; Hoogi, A.; Razansky, D.; Adam, D.
– volume: 33
  start-page: 1767
  year: 2007
  ident: 2023080104145230700_c22
  article-title: Subharmonic response of encapsulated microbubbles: Conditions for existence and amplification
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2007.05.011
– volume: 32
  start-page: 1601
  year: 2006
  ident: 2023080104145230700_c11
  article-title: Intravascular inertial cavitation activity detection and quantification in vivo with Optison
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2006.07.015
– volume: 48
  start-page: 232
  year: 2001
  ident: 2023080104145230700_c14
  article-title: Mechanisms of contrast agent destruction
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/58.896136
– volume: 53
  start-page: 639
  year: 2006
  ident: 2023080104145230700_c25
  article-title: Predicting backscatter characteristics from micron- and submicron-scale ultrasound contrast agents using a size-integration technique
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2006.1610573
– volume: 35
  start-page: 661
  year: 2000
  ident: 2023080104145230700_c23
  article-title: Influence of bubble size distribution on the echogenicity of ultrasound contrast agents: A study of Sonovue
  publication-title: Invest. Radiol.
  doi: 10.1097/00004424-200011000-00003
– volume: 54
  start-page: 480
  year: 2007
  ident: 2023080104145230700_c12
  article-title: Stable and transient subharmonic emissions from isolated contrast agent microbubbles
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2007.272
– volume: 118
  start-page: 275
  year: 2007
  ident: 2023080104145230700_c4
  article-title: Acoustically-active microbubbles conjugated to liposomes: Characterization of a proposed drug delivery vehicle
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2006.12.015
– volume: 120
  start-page: 2958
  year: 2006
  ident: 2023080104145230700_c9
  article-title: Detection of acoustic cavitation in the heart with microbubble contrast agents in vivo: A mechanism for ultrasound-induced arrhythmias
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2346132
– volume: 23
  start-page: 105
  year: 2007
  ident: 2023080104145230700_c7
  article-title: Role of acoustic cavitation in the delivery and monitoring of cancer treatment by high-intensity focused ultrasound (HIFU)
  publication-title: Int. J. Hyperthermia
  doi: 10.1080/02656730701194131
– volume: 84
  start-page: 985
  year: 1988
  ident: 2023080104145230700_c26
  article-title: Transient pulsations of small gas bubbles in water
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.388622
– volume: 47
  start-page: 1494
  year: 2000
  ident: 2023080104145230700_c17
  article-title: Experimental and theoretical evaluation of microbubble behaviour: Effect of transmitted phase and bubble size
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/58.883539
– volume: 86
  start-page: 215
  year: 1989
  ident: 2023080104145230700_c13
  article-title: A theoretical-study of cavitation generated by an extracorporeal shock-wave lithotripter
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.398328
– volume: 33
  start-page: 1651
  year: 2007
  ident: 2023080104145230700_c10
  article-title: Cavitation threshold of microbubbles in gel tubes by focused ultrasound
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2007.04.018
– volume: 51
  start-page: 793
  year: 2006
  ident: 2023080104145230700_c5
  article-title: Targeted disruption of the blood-brain barrier with focused ultrasound: Association with cavitation activity
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/51/4/003
– volume: 29
  start-page: 1749
  year: 2003
  ident: 2023080104145230700_c24
  article-title: A Newtonian rheological model for the interface of microbubble contrast agents
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/S0301-5629(03)01051-2
– start-page: 1935
  year: 2000
  ident: 2023080104145230700_c15
  article-title: Ultrasound contrast agent behaviour near the fragmentation threshold
– volume: 33
  start-page: 187
  year: 2007
  ident: 2023080104145230700_c1
  article-title: WFUMB safety symposium on echo-contrast agents: Nature and types of ultrasound contrast agents
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2006.07.008
– volume: 118
  start-page: 3499
  year: 2005
  ident: 2023080104145230700_c18
  article-title: A model for large amplitude of coated bubbles accounting for buckling and rupture
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2109427
– volume: 30
  start-page: 425
  year: 2004
  ident: 2023080104145230700_c19
  article-title: Contrast echocardiography: New agents
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2003.12.002
– volume: 53
  start-page: 126
  year: 2006
  ident: 2023080104145230700_c16
  article-title: Ultrasonic contrast agent shell rupture detected by inertial cavitation and rebound signals
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2006.1588398
– volume: 33
  start-page: 1376
  year: 2007
  ident: 2023080104145230700_c27
  article-title: Attenuation and size distribution measurements of Definity and manipulated Definity populations
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2007.03.009
– volume: 12
  start-page: 1015
  year: 1999
  ident: 2023080104145230700_c2
  article-title: Enhanced visualization of intravascular and left atrial appendage thrombus with the use of a thrombus-targeting ultrasonographic contrast agent (MRX-408A1): In vivo experimental echocardiographic studies
  publication-title: J. Am. Soc. Echocardiogr.
  doi: 10.1016/S0894-7317(99)70096-9
– volume: 32
  start-page: 1931
  year: 2006
  ident: 2023080104145230700_c6
  article-title: Quantitative relations of acoustic inertial cavitation with sonoporation and cell viability
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2006.06.020
– volume-title: The Acoustic Bubble
  year: 1994
  ident: 2023080104145230700_c20
– volume: 46
  start-page: 220
  year: 1999
  ident: 2023080104145230700_c21
  article-title: Optical and acoustical observations of the effects of ultrasound on contrast agents
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/58.741536
– volume: 58
  start-page: 1160
  year: 1975
  ident: 2023080104145230700_c8
  article-title: Cavitation dynamics. II. Free pulsations and models for cavitation bubbles
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.380799
– volume: 41
  start-page: 354
  year: 2006
  ident: 2023080104145230700_c3
  article-title: Microbubble contrast agents—Targeted ultrasound imaging and ultrasound-assisted drug-delivery applications
  publication-title: Invest. Radiol.
  doi: 10.1097/01.rli.0000199292.88189.0f
SSID ssj0005839
Score 2.0752618
Snippet This work combines modeling and experiment to assess encapsulated microbubble oscillations associated with broadband pressure peaks detected after microbubble...
SourceID pubmedcentral
proquest
crossref
pubmed
pascalfrancis
scitation
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1156
SubjectTerms Albumins
Algorithms
Bioacoustics
Biological and medical sciences
Cardiovascular system
Computer Simulation
Contrast Media
Fluorocarbons
Humans
Investigative techniques, diagnostic techniques (general aspects)
Medical sciences
Microbubbles
Models, Theoretical
Periodicity
Phospholipids
Pressure
Sulfur Hexafluoride
Time Factors
Ultrasonic investigative techniques
Ultrasonics
Title Encapsulated contrast microbubble radial oscillation associated with postexcitation pressure peaks
URI http://dx.doi.org/10.1121/1.3277216
https://www.ncbi.nlm.nih.gov/pubmed/20136236
https://search.proquest.com/docview/733401467
https://pubmed.ncbi.nlm.nih.gov/PMC2852442
Volume 127
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1da9swFBVpx9hgjH0v-yhi7C14q2TZsh_L6hBGlz00hb6Za1umo5kT6gT283evJX_RjW0PezGJ48jG5_j6SLr3iLH3qAhkHhrthQrAU1CEXiYL5QlzrMoyBhkZKhRenOvlZXSaqGQyaUur-n3_FWnch1hT5ew_oN01ijvwM2KOW0Qdt3-Fe1LlgD3fNZCUbBLRod7NvlPeXbbPqE7qBppiEXKxXNtMuBk4kNpc9C2VfvzInX_3rEmWpZmGrYHreqhn-8qydZttcJJvmhXCyGbEpYSS2rUzQ92ADlTOveBLn3Pcrq9y2g-wzjcYksfTVwuA634Q1g1Y0Fx7l_xhXJDFLmsU2NrpLgpbiwBHNzmIqahZw8H7WQhre3479kuK_eKDLzU5EvUvuHZSf_k1nV-cnaWr5HJ1wO5IDE0UGc8_L_ukINSLzn8Km_vYNTZSLQ-2UONNLO3KJ7_qmtzOsL1Xt5gN5MvqEXvoMOInljCP2cRUT9jdJv83r5-ybEgb3tKGD2jDLW34gDa8pw0n2vAxbXhLG97Q5hm7mCerTwvPLb_h5SqId16MXf-ihAw1ZBjn2LE0gYjiiBz-fXyyA43fjS4FqGPwQ_ALJUoU1GEZ-BkKXeM_Z4fVpjIvGUfRr4VBcYuRQZkIsgyyqAg0mUOSJp2yd-3tTbfWZSVteqdSpCJ1GEzZ0ejGd0eiCpXYE5dTxlskUgySNPMFlUHOp9r3Fbkk6Sl7YYHp_0ymhdLH1vUIsu4A8l8f_1J9u2p82CVxWOFpdQfu769-CGPqYHz15wt-ze73z9Abdri72Zu37KAu9kcNc38CkLO7Sg
link.rule.ids 230,315,782,786,887,27933,27934
linkProvider Multiple Vendors
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Encapsulated+contrast+microbubble+radial+oscillation+associated+with+postexcitation+pressure+peaks&rft.jtitle=The+Journal+of+the+Acoustical+Society+of+America&rft.au=Santin%2C+M+D&rft.au=King%2C+D+A&rft.au=Foiret%2C+J&rft.au=Haak%2C+A&rft.date=2010-02-01&rft.eissn=1520-8524&rft.volume=127&rft.issue=2&rft.spage=1156&rft.epage=1164&rft_id=info:doi/10.1121%2F1.3277216&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-4966&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-4966&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-4966&client=summon