Phylogeography and Ecological Niche Modeling of the Alashan Pit Viper ( Gloydius cognatus ; Reptilia, Viperidae) in Northwest China and Adjacent Areas

The joint impacts of historical geological events and Quaternary climatic oscillations in Northwest China on species evolution have been examined extensively in plant under a phylogeographic perspective. However, animal phylogeographic analyses in this region are still limited. The Alashan pit viper...

Full description

Saved in:
Bibliographic Details
Published in:Animals (Basel) Vol. 13; no. 23; p. 3726
Main Authors: Xu, Rui, Dujsebayeva, Tatjana N, Chen, Dali, Mijidsuren, Byambasuren, Xu, Feng, Guo, Xianguang
Format: Journal Article
Language:English
Published: Switzerland MDPI AG 01-12-2023
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The joint impacts of historical geological events and Quaternary climatic oscillations in Northwest China on species evolution have been examined extensively in plant under a phylogeographic perspective. However, animal phylogeographic analyses in this region are still limited. The Alashan pit viper, , occurs primarily in arid Northwest China and adjacent areas. Based on variation at two mtDNA genes ( and ) in 27 individuals representing 24 populations, the spatial genetic structure and demographic history of were examined across its geographic range. Phylogenetic analyses revealed two well-supported allopatric clades (each with two distinct subclades/lineages), distributed across the southern (Qaidam Basin, Lanzhou Basin, and Zoige Basin [S1]; Loess Plateau [S2]) and northern (Ily Basin [N1]; Junggar Basin and Mongolian Plateau [N2]) regions. AMOVA analysis demonstrated that over 76% of the observed genetic variation was related to these lineage splits, indicating substantial genetic differentiation among the four lineages. A strong pattern of isolation-by-distance across the sampling populations suggested that geographic distance principally shaped the genetic structure. The four lineages diverged by 0.9-2.2% for the concatenated data, which were estimated to have coalesced ~1.17 million years ago (Mya), suggesting that the expansions of the Badain Jaran, Tengger, and Mu Us deserts during the Xixiabangma glaciation likely interrupted gene flow and triggered the observed divergence in the southern and northern regions. Subsequently, the early Pleistocene integration of the Yellow River and associated deserts expansion promoted the differentiation of S1 and S2 lineages (~0.9 Mya). Both mitochondrial evidence and ecological niche modeling (ENM) reject the signature of demographic and range contractions during the LGM for . . In addition, ENM predicts that the suitable habitat of will contract in the future. As such, the conservation and management of ESUs should be a priority. Our findings provide the first insights on the lineage diversification and population dynamics of the Alashan pit viper in relation to geological history and Pleistocene climatic oscillations in arid Northwest China.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2076-2615
2076-2615
DOI:10.3390/ani13233726