Development of a convolutional neural network to detect abdominal aortic aneurysms

We sought to train a foundational convolutional neural network (CNN) for screening computed tomography (CT) angiography (CTA) scans for the presence of infrarenal abdominal aortic aneurysms (AAAs) for future predictive modeling and other artificial intelligence applications. From January 2015 to Jan...

Full description

Saved in:
Bibliographic Details
Published in:Journal of vascular surgery cases and innovative techniques Vol. 8; no. 2; pp. 305 - 311
Main Authors: Camara, Justin R., Tomihama, Roger T., Pop, Andrew, Shedd, Matthew P., Dobrowski, Brandon S., Knox, Cole J., Abou-Zamzam, Ahmed M., Kiang, Sharon C.
Format: Journal Article
Language:English
Published: United States Elsevier Inc 01-06-2022
Elsevier
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We sought to train a foundational convolutional neural network (CNN) for screening computed tomography (CT) angiography (CTA) scans for the presence of infrarenal abdominal aortic aneurysms (AAAs) for future predictive modeling and other artificial intelligence applications. From January 2015 to January 2020, a HIPAA (Health Insurance and Accountability Act)-compliant, institutional review board–approved, retrospective clinical study analyzed contrast-enhanced abdominopelvic CTA scans from 200 patients with infrarenal AAAs and 200 propensity-matched control patients with non–aneurysmal infrarenal abdominal aortas. A CNN was trained to binary classification on the input. For model improvement and testing, transfer learning using the ImageNet database was applied to the VGG-16 base model. The image dataset was randomized to sets of 60%, 10%, and 30% for model training, validation, and testing, respectively. A stochastic gradient descent was used for optimization. The models were assessed by testing validation accuracy and the area under the receiver operating characteristic curve. Preliminary data demonstrated a nonrandom pattern of accuracy and detectability. Iterations (≤10) of the model characteristics generated a final custom CNN model reporting an accuracy of 99.1% and area under the receiver operating characteristic curve of 0.99. Misjudgments were analyzed through review of the heat maps generated via gradient weighted class activation mapping overlaid on the original CT images. The greatest misjudgments were seen in small aneurysms (<3.3 cm) with mural thrombus. Preliminary data from a CNN model have shown that the model can accurately screen and identify CTA findings of infrarenal AAAs. This model serves as a proof-of-concept to proceed with potential future directions to include expansion to predictive modeling and other artificial intelligence-based applications.
AbstractList We sought to train a foundational convolutional neural network (CNN) for screening computed tomography (CT) angiography (CTA) scans for the presence of infrarenal abdominal aortic aneurysms (AAAs) for future predictive modeling and other artificial intelligence applications. From January 2015 to January 2020, a HIPAA (Health Insurance and Accountability Act)-compliant, institutional review board–approved, retrospective clinical study analyzed contrast-enhanced abdominopelvic CTA scans from 200 patients with infrarenal AAAs and 200 propensity-matched control patients with non–aneurysmal infrarenal abdominal aortas. A CNN was trained to binary classification on the input. For model improvement and testing, transfer learning using the ImageNet database was applied to the VGG-16 base model. The image dataset was randomized to sets of 60%, 10%, and 30% for model training, validation, and testing, respectively. A stochastic gradient descent was used for optimization. The models were assessed by testing validation accuracy and the area under the receiver operating characteristic curve. Preliminary data demonstrated a nonrandom pattern of accuracy and detectability. Iterations (≤10) of the model characteristics generated a final custom CNN model reporting an accuracy of 99.1% and area under the receiver operating characteristic curve of 0.99. Misjudgments were analyzed through review of the heat maps generated via gradient weighted class activation mapping overlaid on the original CT images. The greatest misjudgments were seen in small aneurysms (<3.3 cm) with mural thrombus. Preliminary data from a CNN model have shown that the model can accurately screen and identify CTA findings of infrarenal AAAs. This model serves as a proof-of-concept to proceed with potential future directions to include expansion to predictive modeling and other artificial intelligence-based applications.
Objective: We sought to train a foundational convolutional neural network (CNN) for screening computed tomography (CT) angiography (CTA) scans for the presence of infrarenal abdominal aortic aneurysms (AAAs) for future predictive modeling and other artificial intelligence applications. Methods: From January 2015 to January 2020, a HIPAA (Health Insurance and Accountability Act)-compliant, institutional review board–approved, retrospective clinical study analyzed contrast-enhanced abdominopelvic CTA scans from 200 patients with infrarenal AAAs and 200 propensity-matched control patients with non–aneurysmal infrarenal abdominal aortas. A CNN was trained to binary classification on the input. For model improvement and testing, transfer learning using the ImageNet database was applied to the VGG-16 base model. The image dataset was randomized to sets of 60%, 10%, and 30% for model training, validation, and testing, respectively. A stochastic gradient descent was used for optimization. The models were assessed by testing validation accuracy and the area under the receiver operating characteristic curve. Results: Preliminary data demonstrated a nonrandom pattern of accuracy and detectability. Iterations (≤10) of the model characteristics generated a final custom CNN model reporting an accuracy of 99.1% and area under the receiver operating characteristic curve of 0.99. Misjudgments were analyzed through review of the heat maps generated via gradient weighted class activation mapping overlaid on the original CT images. The greatest misjudgments were seen in small aneurysms (<3.3 cm) with mural thrombus. Conclusions: Preliminary data from a CNN model have shown that the model can accurately screen and identify CTA findings of infrarenal AAAs. This model serves as a proof-of-concept to proceed with potential future directions to include expansion to predictive modeling and other artificial intelligence-based applications.
ObjectiveWe sought to train a foundational convolutional neural network (CNN) for screening computed tomography (CT) angiography (CTA) scans for the presence of infrarenal abdominal aortic aneurysms (AAAs) for future predictive modeling and other artificial intelligence applications. MethodsFrom January 2015 to January 2020, a HIPAA (Health Insurance and Accountability Act)-compliant, institutional review board-approved, retrospective clinical study analyzed contrast-enhanced abdominopelvic CTA scans from 200 patients with infrarenal AAAs and 200 propensity-matched control patients with non-aneurysmal infrarenal abdominal aortas. A CNN was trained to binary classification on the input. For model improvement and testing, transfer learning using the ImageNet database was applied to the VGG-16 base model. The image dataset was randomized to sets of 60%, 10%, and 30% for model training, validation, and testing, respectively. A stochastic gradient descent was used for optimization. The models were assessed by testing validation accuracy and the area under the receiver operating characteristic curve. ResultsPreliminary data demonstrated a nonrandom pattern of accuracy and detectability. Iterations (≤10) of the model characteristics generated a final custom CNN model reporting an accuracy of 99.1% and area under the receiver operating characteristic curve of 0.99. Misjudgments were analyzed through review of the heat maps generated via gradient weighted class activation mapping overlaid on the original CT images. The greatest misjudgments were seen in small aneurysms (<3.3 cm) with mural thrombus. ConclusionsPreliminary data from a CNN model have shown that the model can accurately screen and identify CTA findings of infrarenal AAAs. This model serves as a proof-of-concept to proceed with potential future directions to include expansion to predictive modeling and other artificial intelligence-based applications.
Author Pop, Andrew
Kiang, Sharon C.
Shedd, Matthew P.
Camara, Justin R.
Tomihama, Roger T.
Dobrowski, Brandon S.
Abou-Zamzam, Ahmed M.
Knox, Cole J.
Author_xml – sequence: 1
  givenname: Justin R.
  surname: Camara
  fullname: Camara, Justin R.
  organization: Section of Vascular and Interventional Radiology, Department of Radiology, Linda University School of Medicine, Loma Linda, CA
– sequence: 2
  givenname: Roger T.
  surname: Tomihama
  fullname: Tomihama, Roger T.
  organization: Section of Vascular and Interventional Radiology, Department of Radiology, Linda University School of Medicine, Loma Linda, CA
– sequence: 3
  givenname: Andrew
  surname: Pop
  fullname: Pop, Andrew
  organization: Section of Vascular and Interventional Radiology, Department of Radiology, Linda University School of Medicine, Loma Linda, CA
– sequence: 4
  givenname: Matthew P.
  surname: Shedd
  fullname: Shedd, Matthew P.
  organization: Section of Vascular and Interventional Radiology, Department of Radiology, Linda University School of Medicine, Loma Linda, CA
– sequence: 5
  givenname: Brandon S.
  surname: Dobrowski
  fullname: Dobrowski, Brandon S.
  organization: Section of Vascular and Interventional Radiology, Department of Radiology, Linda University School of Medicine, Loma Linda, CA
– sequence: 6
  givenname: Cole J.
  surname: Knox
  fullname: Knox, Cole J.
  organization: Section of Vascular and Interventional Radiology, Department of Radiology, Linda University School of Medicine, Loma Linda, CA
– sequence: 7
  givenname: Ahmed M.
  surname: Abou-Zamzam
  fullname: Abou-Zamzam, Ahmed M.
  organization: Division of Vascular Surgery, Department of Surgery, Linda University School of Medicine, Loma Linda, CA
– sequence: 8
  givenname: Sharon C.
  orcidid: 0000-0002-4435-8544
  surname: Kiang
  fullname: Kiang, Sharon C.
  email: skiang@llu.edu
  organization: Division of Vascular Surgery, Department of Surgery, Linda University School of Medicine, Loma Linda, CA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35692515$$D View this record in MEDLINE/PubMed
BookMark eNp9UU1v1TAQtFARLaX_AKEcubzgz9i-IKFCS6VKSAjOluNsikMSP2wnqP8ep6-U9sJprfXszO7MS3Q0hxkQek1wTTBp3g31sCbnc00xpTXmNcbsGTqhvFE7TpU8evQ-RmcpDRhjojkTmL1Ax0w0mgoiTtDXj7DCGPYTzLkKfWUrF-Y1jEv2YbZjNcMS70r-HeLPKoeqgwwuV7btwuQ3iA0xe1fZDXqbpvQKPe_tmODsvp6i7xefvp1_3l1_ubw6_3C9c1zovGOcYJDMYSWslkxqcL0guNXOWsahkdKpvu3Z1lQWO3BYA-kc7XWjcGPZKbo68HbBDmYf_WTjrQnWm7tGiDfGbpuNYDpMe0W5oK1redNK1bZCSt5I0VHdSVK43h-49ks7QeeKG-XsJ6RPf2b_w9yE1WgiFeO8ELy9J4jh1wIpm8knB-NYbAlLMrRoadVgpgqUH6AuhpQi9A8yBJstXTOYQ7pmS9dgbkq6ZezN4xUfhv5m-e8GKKavHqIpHDA76HwsiRVX_P8V_gB527tV
CitedBy_id crossref_primary_10_1053_j_semvascsurg_2023_05_003
crossref_primary_10_1053_j_semvascsurg_2023_05_001
crossref_primary_10_1016_j_jvs_2024_06_001
crossref_primary_10_1016_j_jvssci_2024_100197
crossref_primary_10_3390_jimaging9120272
crossref_primary_10_1016_j_jvscit_2022_101088
crossref_primary_10_3390_diagnostics13172760
crossref_primary_10_1053_j_semvascsurg_2023_07_003
crossref_primary_10_1016_j_jvssci_2022_11_004
crossref_primary_10_4018_IJDCF_315614
crossref_primary_10_37126_aige_v5_i1_89138
crossref_primary_10_1016_j_jvsvi_2023_100016
crossref_primary_10_1007_s10278_023_00866_1
Cites_doi 10.1016/j.ejvs.2018.09.020
10.1016/j.jvs.2019.12.026
10.1016/j.media.2004.01.001
10.2214/AJR.18.20331
10.1053/ejvs.1999.0974
10.1016/j.jvs.2017.10.044
10.1056/NEJMra1814259
10.1038/s41598-017-04699-1
10.1016/j.jvs.2015.02.038
10.1161/01.ATV.0000245819.32762.cb
10.1007/s11548-020-02260-6
10.1016/S1470-2045(19)30149-4
10.1259/dmfr.20180051
10.1016/j.neunet.2018.07.011
10.7717/peerj.7702
10.1080/24699322.2019.1649071
10.1118/1.2193247
10.1007/s13239-019-00421-6
10.1038/s41598-019-50251-8
10.1016/j.jvs.2009.07.002
10.1038/nrcardio.2010.180
10.1016/j.jacc.2018.12.054
10.1007/s11604-018-0726-3
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID 6I.
AAFTH
NPM
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.jvscit.2022.04.003
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList

PubMed
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2468-4287
EndPage 311
ExternalDocumentID oai_doaj_org_article_d02f82452bcb46b78bb5774675d29d71
10_1016_j_jvscit_2022_04_003
35692515
S2468428722000508
Genre Journal Article
GroupedDBID .1-
.FO
0R~
0SF
1P~
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
AEVXI
AEXQZ
AFRHN
AFTJW
AITUG
AJUYK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
M~E
NCXOZ
O9-
OK-
OK1
OW-
RIG
ROL
RPM
SSZ
Z5R
ADVLN
AFJKZ
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c459t-3410e73c085a97379ecf510b9caa34e677c8fbf3f5108a0cec09e1dc2f96806a3
IEDL.DBID RPM
ISSN 2468-4287
IngestDate Tue Oct 22 15:12:55 EDT 2024
Tue Sep 17 21:27:36 EDT 2024
Sat Oct 05 05:50:48 EDT 2024
Thu Sep 26 17:47:38 EDT 2024
Sat Sep 28 08:20:52 EDT 2024
Wed May 17 01:10:07 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Artificial intelligence
Convolutional neural network
Language English
License This is an open access article under the CC BY-NC-ND license.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-3410e73c085a97379ecf510b9caa34e677c8fbf3f5108a0cec09e1dc2f96806a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4435-8544
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9178344/
PMID 35692515
PQID 2675986038
PQPubID 23479
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_d02f82452bcb46b78bb5774675d29d71
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9178344
proquest_miscellaneous_2675986038
crossref_primary_10_1016_j_jvscit_2022_04_003
pubmed_primary_35692515
elsevier_sciencedirect_doi_10_1016_j_jvscit_2022_04_003
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of vascular surgery cases and innovative techniques
PublicationTitleAlternate J Vasc Surg Cases Innov Tech
PublicationYear 2022
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Ahuja (bib34) 2019; 7
Lee, Jung, Ryu, Shin, Choi (bib13) 2020; 9
Bohr, Memarzadeh (bib33) 2020
Joldes, Miller, Wittek, Forsythe, Newby, Doyle (bib31) 2017; 7
Yasaka, Akai, Kunimatsu, Kiryu, Abe (bib19) 2018; 36
Chaikof, Dalman, Eskandari, Jackson, Lee, Mansour (bib5) 2018; 67
Guan, Wang, Ping, Duagnshu, Jiajun, Yu (bib11) 2019; 10
Raffort, Adam, Carrier, Ballaith, Coscas, Jean-Baptiste (bib9) 2020; 72
Huang, Feng (bib18) 2019; 2019
Mohammadi, Mohammadi, Dehlaghi, Ahmadi (bib32) 2019; 10
Ngiam, Khor (bib8) 2019; 20
Zhuge, Rubin, Sun, Napel (bib30) 2006; 33
Buda, Maki, Mazurowski (bib22) 2018; 106
Selvaraju, Cogswell, Das, Vedantam, Parikh, Batra (bib23) 2017
Wanhainen, Verzini, Van Herzeele, Allaire, Brown, Cohnert (bib3) 2019; 57
Subasic, Loncaric, Sorantin (bib29) 2000; 77
de Bruijne, van Ginneken, Viergever, Niessen (bib28) 2004; 8
Rajkomar, Dean, Kohane (bib7) 2019; 380
Lareyre, Adam, Carrier, Dommerc, Mialhe, Raffort (bib6) 2019; 9
Philbrick, Yoshida, Inoue, Akkus, Kline, Weston (bib24) 2018; 211
Yoon, Kim, Kim (bib12) 2019; 26
Tuzoff, Tuzova, Bornstein, Krasnov, Kharchenko, Nikolenko (bib14) 2019; 48
Golledge, Muller, Daugherty, Norman (bib2) 2006; 26
Qu, Balki, Mendez, Valen, Levman, Tyrrell (bib21) 2020; 15
bib16
Verhagen, Guidelines Committee E (bib27) 2019; 57
Dey, Slomka, Leeson, Comaniciu, Shrestha, Senguopta (bib10) 2019; 73
Geng, Zhang, Tong, Xiao (bib15) 2019; 24
bib17
Nordon, Hinchliffe, Loftus, Thompson (bib1) 2011; 8
Chaikof, Brewster, Dalman, Makaroun, Illig, Sicard (bib4) 2009; 50
Turton, Scott, Delbridge, Snowden, Kester (bib25) 2000; 19
Nesterov (bib20) 1983; 269
Wise, Hocking, Brophy (bib26) 2015; 62
Lareyre (10.1016/j.jvscit.2022.04.003_bib6) 2019; 9
Selvaraju (10.1016/j.jvscit.2022.04.003_bib23) 2017
Huang (10.1016/j.jvscit.2022.04.003_bib18) 2019; 2019
Philbrick (10.1016/j.jvscit.2022.04.003_bib24) 2018; 211
de Bruijne (10.1016/j.jvscit.2022.04.003_bib28) 2004; 8
Bohr (10.1016/j.jvscit.2022.04.003_bib33) 2020
Wanhainen (10.1016/j.jvscit.2022.04.003_bib3) 2019; 57
Wise (10.1016/j.jvscit.2022.04.003_bib26) 2015; 62
Tuzoff (10.1016/j.jvscit.2022.04.003_bib14) 2019; 48
Rajkomar (10.1016/j.jvscit.2022.04.003_bib7) 2019; 380
Ngiam (10.1016/j.jvscit.2022.04.003_bib8) 2019; 20
Verhagen (10.1016/j.jvscit.2022.04.003_bib27) 2019; 57
Dey (10.1016/j.jvscit.2022.04.003_bib10) 2019; 73
Raffort (10.1016/j.jvscit.2022.04.003_bib9) 2020; 72
Yasaka (10.1016/j.jvscit.2022.04.003_bib19) 2018; 36
Geng (10.1016/j.jvscit.2022.04.003_bib15) 2019; 24
Mohammadi (10.1016/j.jvscit.2022.04.003_bib32) 2019; 10
Lee (10.1016/j.jvscit.2022.04.003_bib13) 2020; 9
Ahuja (10.1016/j.jvscit.2022.04.003_bib34) 2019; 7
Turton (10.1016/j.jvscit.2022.04.003_bib25) 2000; 19
Subasic (10.1016/j.jvscit.2022.04.003_bib29) 2000; 77
Golledge (10.1016/j.jvscit.2022.04.003_bib2) 2006; 26
Guan (10.1016/j.jvscit.2022.04.003_bib11) 2019; 10
Zhuge (10.1016/j.jvscit.2022.04.003_bib30) 2006; 33
Chaikof (10.1016/j.jvscit.2022.04.003_bib4) 2009; 50
Nesterov (10.1016/j.jvscit.2022.04.003_bib20) 1983; 269
Buda (10.1016/j.jvscit.2022.04.003_bib22) 2018; 106
Qu (10.1016/j.jvscit.2022.04.003_bib21) 2020; 15
Nordon (10.1016/j.jvscit.2022.04.003_bib1) 2011; 8
Yoon (10.1016/j.jvscit.2022.04.003_bib12) 2019; 26
Joldes (10.1016/j.jvscit.2022.04.003_bib31) 2017; 7
Chaikof (10.1016/j.jvscit.2022.04.003_bib5) 2018; 67
References_xml – start-page: 618
  year: 2017
  end-page: 626
  ident: bib23
  article-title: Grad-CAM: visual explanations from deep networks via gradient-based localization
  publication-title: Proc IEEE Int Conf Comput Vis
  contributor:
    fullname: Batra
– volume: 72
  start-page: 321
  year: 2020
  end-page: 333.e1
  ident: bib9
  article-title: Artificial intelligence in abdominal aortic aneurysm
  publication-title: J Vasc Surg
  contributor:
    fullname: Jean-Baptiste
– volume: 15
  start-page: 2041
  year: 2020
  end-page: 2048
  ident: bib21
  article-title: Assessing and mitigating the effects of class imbalance in machine learning with application to X-ray imaging
  publication-title: Int J Comput Assist Radiol Surg
  contributor:
    fullname: Tyrrell
– volume: 57
  start-page: 8
  year: 2019
  end-page: 93
  ident: bib3
  article-title: Editor’s choice – European Society for Vascular Surgery (ESVS) 2019 clinical practice guidelines on the management of abdominal aorto-iliac artery aneurysms
  publication-title: Eur J Vasc Endovasc Surg
  contributor:
    fullname: Cohnert
– volume: 26
  start-page: 2605
  year: 2006
  end-page: 2613
  ident: bib2
  article-title: Abdominal aortic aneurysm: pathogenesis and implications for management
  publication-title: Arterioscler Thromb Vasc Biol
  contributor:
    fullname: Norman
– volume: 380
  start-page: 1347
  year: 2019
  end-page: 1358
  ident: bib7
  article-title: Machine learning in medicine
  publication-title: N Engl J Med
  contributor:
    fullname: Kohane
– volume: 36
  start-page: 257
  year: 2018
  end-page: 272
  ident: bib19
  article-title: Deep learning with convolutional neural network in radiology
  publication-title: Jpn J Radiol
  contributor:
    fullname: Abe
– volume: 211
  start-page: 1184
  year: 2018
  end-page: 1193
  ident: bib24
  article-title: What does deep learning see? Insights from a classifier trained to predict contrast enhancement phase from CT images
  publication-title: AJR Am J Roentgenol
  contributor:
    fullname: Weston
– volume: 19
  start-page: 184
  year: 2000
  end-page: 189
  ident: bib25
  article-title: Ruptured abdominal aortic aneurysm: a novel method of outcome prediction using neural network technology
  publication-title: Eur J Vasc Endovasc Surg
  contributor:
    fullname: Kester
– volume: 24
  start-page: 27
  year: 2019
  end-page: 33
  ident: bib15
  article-title: Lung segmentation method with dilated convolution based on VGG-16 network
  publication-title: Comput Assist Surg (Abingdon)
  contributor:
    fullname: Xiao
– ident: bib17
  article-title: imgaug. imgaug 0.4.0 documentation
– volume: 8
  start-page: 92
  year: 2011
  end-page: 102
  ident: bib1
  article-title: Pathophysiology and epidemiology of abdominal aortic aneurysms
  publication-title: Nat Rev Cardiol
  contributor:
    fullname: Thompson
– ident: bib16
  article-title: ImageNet
– volume: 77
  start-page: 1195
  year: 2000
  end-page: 1200
  ident: bib29
  article-title: 3-D image analysis of abdominal aortic aneurysm
  publication-title: Stud Health Technol Inform
  contributor:
    fullname: Sorantin
– volume: 106
  start-page: 249
  year: 2018
  end-page: 259
  ident: bib22
  article-title: A systematic study of the class imbalance problem in convolutional neural networks
  publication-title: Neural Netw
  contributor:
    fullname: Mazurowski
– volume: 26
  start-page: 1310
  year: 2019
  ident: bib12
  article-title: Lesion-based convolutional neural network improves endoscopic detection and depth prediction of early gastric cancer
  publication-title: J Clin Med Res
  contributor:
    fullname: Kim
– volume: 269
  start-page: 543
  year: 1983
  end-page: 547
  ident: bib20
  article-title: A method for unconstrained convex minimization problem with the rate of convergence o(1/k/ˆ2)
  publication-title: Doklady AN USSR
  contributor:
    fullname: Nesterov
– volume: 50
  start-page: S2
  year: 2009
  end-page: S49
  ident: bib4
  article-title: The care of patients with an abdominal aortic aneurysm: the Society for Vascular Surgery practice guidelines
  publication-title: J Vasc Surg
  contributor:
    fullname: Sicard
– volume: 48
  start-page: 20180051
  year: 2019
  ident: bib14
  article-title: Tooth detection and numbering in panoramic radiographs using convolutional neural networks
  publication-title: Dentomaxillofac Radiol
  contributor:
    fullname: Nikolenko
– volume: 7
  start-page: 4641
  year: 2017
  ident: bib31
  article-title: BioPARR: a software system for estimating the rupture potential index for abdominal aortic aneurysms
  publication-title: Sci Rep
  contributor:
    fullname: Doyle
– volume: 9
  start-page: 392
  year: 2020
  ident: bib13
  article-title: Evaluation of transfer learning with deep convolutional neural networks for screening osteoporosis in dental panoramic radiographs
  publication-title: J Clin Med Res
  contributor:
    fullname: Choi
– volume: 8
  start-page: 127
  year: 2004
  end-page: 138
  ident: bib28
  article-title: Interactive segmentation of abdominal aortic aneurysms in CTA images
  publication-title: Med Image Anal
  contributor:
    fullname: Niessen
– volume: 57
  start-page: 8
  year: 2019
  end-page: 93
  ident: bib27
  article-title: Editor’s choice – European Society for Vascular Surgery (ESVS) 2019 clinical practice guidelines on the management of abdominal aorto-iliac artery aneurysms
  publication-title: Eur J Vasc Endovasc Surg
  contributor:
    fullname: Guidelines Committee E
– volume: 9
  start-page: 13750
  year: 2019
  ident: bib6
  article-title: A fully automated pipeline for mining abdominal aortic aneurysm using image segmentation
  publication-title: Sci Rep
  contributor:
    fullname: Raffort
– volume: 73
  start-page: 1317
  year: 2019
  end-page: 1335
  ident: bib10
  article-title: Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review
  publication-title: J Am Coll Cardiol
  contributor:
    fullname: Senguopta
– start-page: 25
  year: 2020
  end-page: 60
  ident: bib33
  article-title: The rise of artificial intelligence in healthcare applications
  publication-title: Artificial intelligence in healthcare
  contributor:
    fullname: Memarzadeh
– volume: 7
  start-page: e7702
  year: 2019
  ident: bib34
  article-title: The impact of artificial intelligence in medicine on the future role of the physician
  publication-title: PeerJ
  contributor:
    fullname: Ahuja
– volume: 2019
  start-page: 857
  year: 2019
  end-page: 863
  ident: bib18
  article-title: Understanding deep convolutional networks for biomedical imaging: a practical tutorial
  publication-title: Conf Proc IEEE Eng Med Biol Soc
  contributor:
    fullname: Feng
– volume: 33
  start-page: 1440
  year: 2006
  end-page: 1453
  ident: bib30
  article-title: An abdominal aortic aneurysm segmentation method: level set with region and statistical information
  publication-title: Med Phys
  contributor:
    fullname: Napel
– volume: 10
  start-page: 4876
  year: 2019
  end-page: 4882
  ident: bib11
  article-title: Deep convolutional neural network VGG-16 model for differential diagnosing of papillary thyroid carcinomas in cytological images: a pilot study
  publication-title: J Cancer
  contributor:
    fullname: Yu
– volume: 10
  start-page: 490
  year: 2019
  end-page: 499
  ident: bib32
  article-title: Automatic segmentation, detection, and diagnosis of abdominal aortic aneurysm (AAA) using convolutional neural networks and Hough circles algorithm
  publication-title: Cardiovasc Eng Technol
  contributor:
    fullname: Ahmadi
– volume: 67
  start-page: 2
  year: 2018
  end-page: 77.e2
  ident: bib5
  article-title: The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm
  publication-title: J Vasc Surg
  contributor:
    fullname: Mansour
– volume: 20
  start-page: e262
  year: 2019
  end-page: e273
  ident: bib8
  article-title: Big data and machine learning algorithms for health-care delivery
  publication-title: Lancet Oncol
  contributor:
    fullname: Khor
– volume: 62
  start-page: 8
  year: 2015
  end-page: 15
  ident: bib26
  article-title: Prediction of in-hospital mortality after ruptured abdominal aortic aneurysm repair using an artificial neural network
  publication-title: J Vasc Surg
  contributor:
    fullname: Brophy
– volume: 57
  start-page: 8
  year: 2019
  ident: 10.1016/j.jvscit.2022.04.003_bib27
  article-title: Editor’s choice – European Society for Vascular Surgery (ESVS) 2019 clinical practice guidelines on the management of abdominal aorto-iliac artery aneurysms
  publication-title: Eur J Vasc Endovasc Surg
  doi: 10.1016/j.ejvs.2018.09.020
  contributor:
    fullname: Verhagen
– volume: 72
  start-page: 321
  year: 2020
  ident: 10.1016/j.jvscit.2022.04.003_bib9
  article-title: Artificial intelligence in abdominal aortic aneurysm
  publication-title: J Vasc Surg
  doi: 10.1016/j.jvs.2019.12.026
  contributor:
    fullname: Raffort
– volume: 8
  start-page: 127
  year: 2004
  ident: 10.1016/j.jvscit.2022.04.003_bib28
  article-title: Interactive segmentation of abdominal aortic aneurysms in CTA images
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2004.01.001
  contributor:
    fullname: de Bruijne
– volume: 211
  start-page: 1184
  year: 2018
  ident: 10.1016/j.jvscit.2022.04.003_bib24
  article-title: What does deep learning see? Insights from a classifier trained to predict contrast enhancement phase from CT images
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.18.20331
  contributor:
    fullname: Philbrick
– volume: 19
  start-page: 184
  year: 2000
  ident: 10.1016/j.jvscit.2022.04.003_bib25
  article-title: Ruptured abdominal aortic aneurysm: a novel method of outcome prediction using neural network technology
  publication-title: Eur J Vasc Endovasc Surg
  doi: 10.1053/ejvs.1999.0974
  contributor:
    fullname: Turton
– volume: 2019
  start-page: 857
  year: 2019
  ident: 10.1016/j.jvscit.2022.04.003_bib18
  article-title: Understanding deep convolutional networks for biomedical imaging: a practical tutorial
  publication-title: Conf Proc IEEE Eng Med Biol Soc
  contributor:
    fullname: Huang
– volume: 67
  start-page: 2
  year: 2018
  ident: 10.1016/j.jvscit.2022.04.003_bib5
  article-title: The Society for Vascular Surgery practice guidelines on the care of patients with an abdominal aortic aneurysm
  publication-title: J Vasc Surg
  doi: 10.1016/j.jvs.2017.10.044
  contributor:
    fullname: Chaikof
– volume: 380
  start-page: 1347
  year: 2019
  ident: 10.1016/j.jvscit.2022.04.003_bib7
  article-title: Machine learning in medicine
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1814259
  contributor:
    fullname: Rajkomar
– volume: 269
  start-page: 543
  year: 1983
  ident: 10.1016/j.jvscit.2022.04.003_bib20
  article-title: A method for unconstrained convex minimization problem with the rate of convergence o(1/k/ˆ2)
  publication-title: Doklady AN USSR
  contributor:
    fullname: Nesterov
– volume: 7
  start-page: 4641
  year: 2017
  ident: 10.1016/j.jvscit.2022.04.003_bib31
  article-title: BioPARR: a software system for estimating the rupture potential index for abdominal aortic aneurysms
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-04699-1
  contributor:
    fullname: Joldes
– start-page: 25
  year: 2020
  ident: 10.1016/j.jvscit.2022.04.003_bib33
  article-title: The rise of artificial intelligence in healthcare applications
  contributor:
    fullname: Bohr
– volume: 9
  start-page: 392
  year: 2020
  ident: 10.1016/j.jvscit.2022.04.003_bib13
  article-title: Evaluation of transfer learning with deep convolutional neural networks for screening osteoporosis in dental panoramic radiographs
  publication-title: J Clin Med Res
  contributor:
    fullname: Lee
– volume: 62
  start-page: 8
  year: 2015
  ident: 10.1016/j.jvscit.2022.04.003_bib26
  article-title: Prediction of in-hospital mortality after ruptured abdominal aortic aneurysm repair using an artificial neural network
  publication-title: J Vasc Surg
  doi: 10.1016/j.jvs.2015.02.038
  contributor:
    fullname: Wise
– volume: 26
  start-page: 2605
  year: 2006
  ident: 10.1016/j.jvscit.2022.04.003_bib2
  article-title: Abdominal aortic aneurysm: pathogenesis and implications for management
  publication-title: Arterioscler Thromb Vasc Biol
  doi: 10.1161/01.ATV.0000245819.32762.cb
  contributor:
    fullname: Golledge
– volume: 15
  start-page: 2041
  year: 2020
  ident: 10.1016/j.jvscit.2022.04.003_bib21
  article-title: Assessing and mitigating the effects of class imbalance in machine learning with application to X-ray imaging
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-020-02260-6
  contributor:
    fullname: Qu
– volume: 20
  start-page: e262
  year: 2019
  ident: 10.1016/j.jvscit.2022.04.003_bib8
  article-title: Big data and machine learning algorithms for health-care delivery
  publication-title: Lancet Oncol
  doi: 10.1016/S1470-2045(19)30149-4
  contributor:
    fullname: Ngiam
– volume: 77
  start-page: 1195
  year: 2000
  ident: 10.1016/j.jvscit.2022.04.003_bib29
  article-title: 3-D image analysis of abdominal aortic aneurysm
  publication-title: Stud Health Technol Inform
  contributor:
    fullname: Subasic
– volume: 48
  start-page: 20180051
  year: 2019
  ident: 10.1016/j.jvscit.2022.04.003_bib14
  article-title: Tooth detection and numbering in panoramic radiographs using convolutional neural networks
  publication-title: Dentomaxillofac Radiol
  doi: 10.1259/dmfr.20180051
  contributor:
    fullname: Tuzoff
– volume: 106
  start-page: 249
  year: 2018
  ident: 10.1016/j.jvscit.2022.04.003_bib22
  article-title: A systematic study of the class imbalance problem in convolutional neural networks
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2018.07.011
  contributor:
    fullname: Buda
– volume: 7
  start-page: e7702
  year: 2019
  ident: 10.1016/j.jvscit.2022.04.003_bib34
  article-title: The impact of artificial intelligence in medicine on the future role of the physician
  publication-title: PeerJ
  doi: 10.7717/peerj.7702
  contributor:
    fullname: Ahuja
– volume: 24
  start-page: 27
  year: 2019
  ident: 10.1016/j.jvscit.2022.04.003_bib15
  article-title: Lung segmentation method with dilated convolution based on VGG-16 network
  publication-title: Comput Assist Surg (Abingdon)
  doi: 10.1080/24699322.2019.1649071
  contributor:
    fullname: Geng
– start-page: 618
  year: 2017
  ident: 10.1016/j.jvscit.2022.04.003_bib23
  article-title: Grad-CAM: visual explanations from deep networks via gradient-based localization
  publication-title: Proc IEEE Int Conf Comput Vis
  contributor:
    fullname: Selvaraju
– volume: 33
  start-page: 1440
  year: 2006
  ident: 10.1016/j.jvscit.2022.04.003_bib30
  article-title: An abdominal aortic aneurysm segmentation method: level set with region and statistical information
  publication-title: Med Phys
  doi: 10.1118/1.2193247
  contributor:
    fullname: Zhuge
– volume: 10
  start-page: 490
  year: 2019
  ident: 10.1016/j.jvscit.2022.04.003_bib32
  article-title: Automatic segmentation, detection, and diagnosis of abdominal aortic aneurysm (AAA) using convolutional neural networks and Hough circles algorithm
  publication-title: Cardiovasc Eng Technol
  doi: 10.1007/s13239-019-00421-6
  contributor:
    fullname: Mohammadi
– volume: 9
  start-page: 13750
  year: 2019
  ident: 10.1016/j.jvscit.2022.04.003_bib6
  article-title: A fully automated pipeline for mining abdominal aortic aneurysm using image segmentation
  publication-title: Sci Rep
  doi: 10.1038/s41598-019-50251-8
  contributor:
    fullname: Lareyre
– volume: 57
  start-page: 8
  year: 2019
  ident: 10.1016/j.jvscit.2022.04.003_bib3
  article-title: Editor’s choice – European Society for Vascular Surgery (ESVS) 2019 clinical practice guidelines on the management of abdominal aorto-iliac artery aneurysms
  publication-title: Eur J Vasc Endovasc Surg
  doi: 10.1016/j.ejvs.2018.09.020
  contributor:
    fullname: Wanhainen
– volume: 26
  start-page: 1310
  year: 2019
  ident: 10.1016/j.jvscit.2022.04.003_bib12
  article-title: Lesion-based convolutional neural network improves endoscopic detection and depth prediction of early gastric cancer
  publication-title: J Clin Med Res
  contributor:
    fullname: Yoon
– volume: 50
  start-page: S2
  year: 2009
  ident: 10.1016/j.jvscit.2022.04.003_bib4
  article-title: The care of patients with an abdominal aortic aneurysm: the Society for Vascular Surgery practice guidelines
  publication-title: J Vasc Surg
  doi: 10.1016/j.jvs.2009.07.002
  contributor:
    fullname: Chaikof
– volume: 10
  start-page: 4876
  year: 2019
  ident: 10.1016/j.jvscit.2022.04.003_bib11
  article-title: Deep convolutional neural network VGG-16 model for differential diagnosing of papillary thyroid carcinomas in cytological images: a pilot study
  publication-title: J Cancer
  contributor:
    fullname: Guan
– volume: 8
  start-page: 92
  year: 2011
  ident: 10.1016/j.jvscit.2022.04.003_bib1
  article-title: Pathophysiology and epidemiology of abdominal aortic aneurysms
  publication-title: Nat Rev Cardiol
  doi: 10.1038/nrcardio.2010.180
  contributor:
    fullname: Nordon
– volume: 73
  start-page: 1317
  year: 2019
  ident: 10.1016/j.jvscit.2022.04.003_bib10
  article-title: Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2018.12.054
  contributor:
    fullname: Dey
– volume: 36
  start-page: 257
  year: 2018
  ident: 10.1016/j.jvscit.2022.04.003_bib19
  article-title: Deep learning with convolutional neural network in radiology
  publication-title: Jpn J Radiol
  doi: 10.1007/s11604-018-0726-3
  contributor:
    fullname: Yasaka
SSID ssj0001943503
Score 2.2969613
Snippet We sought to train a foundational convolutional neural network (CNN) for screening computed tomography (CT) angiography (CTA) scans for the presence of...
ObjectiveWe sought to train a foundational convolutional neural network (CNN) for screening computed tomography (CT) angiography (CTA) scans for the presence...
Objective: We sought to train a foundational convolutional neural network (CNN) for screening computed tomography (CT) angiography (CTA) scans for the presence...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 305
SubjectTerms Artificial intelligence
Convolutional neural network
Innovative Techniques
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVKT71UVKV0oVRG4hrVG8d2fGyhVU8cgEq9Wf4Yi1Zig9hdpP57ZuxktQuHXjhFciwnMxNrZjLPbxj7oH2aq5zmjZERmi5I0djOdk1qVTY2ow_ylCjefjWf7_tP10STs2n1RZiwSg9cFXeRRJt7Kg-GGDodTB-CMtQjQ6XWJlMTH6G3kqnyd8ViGFDaIrd0tIjyguncXAF3Pf5GB0NQyrYtTKdTz6zRLxX6_h339G_4-TeKcsst3bxkh2M8yS-rHEdsDxbH7MsWFIgPmXtO4PLxI8PZRGJZLgUCzlcDT0DFBO5DGkqXL-4HWpF7mvq0_LF8xe5urr99vG3G5glN7JRdNeidBKABMKTy1khjIWbcf8FG72UH2pjY55AlDfZeRIjCwjzFNlvdC-3lCdtfDAs4ZVxAwKDQZJAydgnAxgygQSsqYSojZ6yZVOd-Vo4MN4HHHl1VtSNVO9ERF-mMXZF-N3OJ4boMoN3daHf3nN1nzEzWcWOwUIMAXOrhmce_n4zpcC9RgQSVOayXrsXVba-F7GfsdTXu5iWl0hZjQYXP3TH7jhS7dxYP3wtfN2bE1M3kzf8Q-y07IFEqWO2M7a9-reEde7FM6_OyA_4Ao2UK0Q
  priority: 102
  providerName: Directory of Open Access Journals
Title Development of a convolutional neural network to detect abdominal aortic aneurysms
URI https://dx.doi.org/10.1016/j.jvscit.2022.04.003
https://www.ncbi.nlm.nih.gov/pubmed/35692515
https://search.proquest.com/docview/2675986038
https://pubmed.ncbi.nlm.nih.gov/PMC9178344
https://doaj.org/article/d02f82452bcb46b78bb5774675d29d71
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELW6PfWCQLSwlFauxDVdbxzb8ZGWVr20Qm2RuFn-hK3YpOruIvHvmXGSagMHJE6RHMd2ZsZ6Y_t5hpAP0oa5SGFeKO5jUTnOCl3pqgilSEonwCCLC8WrO3Xztf50gWFyxHAXJpP2vVucNj-Wp83ie-ZWPi79bOCJzT5fn8MSA9NDzCZkAr7h1hI9b6xo8AAYH67JZS7Xw0_AE2ROlmUObMowfQ4XUgO6ixEi5cD9I2D62_H8kz-5BUiXL8mL3pOkH7sRvyI7sXlNbrdIQLRN1FKklffmBbUxfGV-ZPI3Xbc0RDxGoNaFNuf3orbFFqnFqr9Wy9U--XJ5cX9-VfRpEwpfCb0uAJdYBNGDM2W14kpHn2DmOe2t5VWUSvk6ucSxsLbMR890nAdfJi1rJi0_ILtN28S3hLLowB1UKXLuqxCj9ilGGaXAw0uh-JQUg-jMYxcdwwy0sQfTSd2g1A2rMArplJyhfJ_rYmzrXNA-fTO9hk1gZarxQNh5V0mnaueEwqwoIpQ6qPmUqEE7pncTOviHphb_6P5kUKaBWYRHIyDMdrMyJbSua8l4PSVvOuU-D3KwE-h3pPbRX4zfgOHmSN29ob777y8PyR6Ov-OmvSe766dNPCKTVdgc592D42z7vwHWlQr_
link.rule.ids 230,315,729,782,786,866,887,2106,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZoOcCFh3gtTyNxTdcbx3Z8hNJqEW2FoEjcLD9hKzapuruV-u-ZcZJqAwekniLZjh17xppx5vM3hLyTNsxECrNCcR-LynFW6EpXRShFUjqBDbJ4UJx_Uyc_6o8HSJMjhrswGbTv3WKv-b3caxa_MrbyfOmnA05s-uV4H44YmB5iukNuw35lbOuQnn-taPABGB8uymU019klWBTETpZlpjZlmECHC6nBvouRTcrU_SPT9K_r-TeCcsskHd6_4WQekHu9D0rfd9UPya3YPCJft-BDtE3UUgSk94oJrZH4Mj8ybJyuWxoiBiCodaHNmcGobbFHarHp1Wq5eky-Hx6c7s-LPuFC4Suh1wVYNBZBaOCGWa240tEn2LNOe2t5FaVSvk4ucSysLfPRMx1nwZdJy5pJy5-Q3aZt4jNCWXTgSKoUOfdViFH7FKOMUmDYUyg-IcWw5Oa849UwA-DszHTSMigtwyrkL52QDyiX67bIip0L2oufpl9OE1iZagwlO-8q6VTtnFCYT0WEUgc1mxA1SNX0DkbnOEBXi_8M_3ZQAgP7D4MqsJjtZmVK6F3XkvF6Qp52SnH9kYN-wbgjdRnNYlwDWpI5vnuteH7jN9-QO_PT4yNz9Onk8wtyF-fSIdxekt31xSa-IjursHmdd84fUR0flg
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZokRAXCuK15WUkrul64ziOj32tioCq4iFxs_wsW7HJqrtbiX_fGSdZbeCABKdIjmPHnhnNOPPlG0LelcZPRPSTTHIXssJylqlCFZnPRZQqgg8yeFA8-yLPv1cnp0iTsyn1lUD7zs4O6p_zg3r2I2ErF3M37nFi44tPx3DEwPIQ44WP4x1yF2yW5VsH9fR5RUEcwHj_s1xCdF3dgFdB_GSeJ3pThkV0uCgV-Hgx8EuJvn_gnv4MP39HUW65penefyzoIXnQxaL0sO3yiNwJ9WPyeQtGRJtIDUVgeqeg0BsJMNMlwcfpqqE-YCKCGuubVCGMmgZHpAa7_lrOl0_It-np1-OzrCu8kLlCqFUGno0FEB6EY0ZJLlVwEWzXKmcML0IppauijRwbK8NccEyFiXd5VGXFSsOfkt26qcNzQlmwEFDKGDh3hQ9BuRhCGUqB6U8h-Yhk_bbrRcuvoXvg2ZVuJaZRYpoVyGM6Ikcom01fZMdODc31pe62VHuWxwpTytbZorSyslZIrKsifK68nIyI7CWru0CjDSBgqNlfpn_bK4IGO8TkCmxms17qHEZXVcl4NSLPWsXYvGSvYzDvQGUGqxjeAU1JXN-dZuz_85NvyL2Lk6n--P78wwtyH5fSAt1ekt3V9Tq8IjtLv36djOcWP9YiFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+convolutional+neural+network+to+detect+abdominal+aortic+aneurysms&rft.jtitle=Journal+of+vascular+surgery+cases+and+innovative+techniques&rft.au=Camara%2C+Justin+R.&rft.au=Tomihama%2C+Roger+T.&rft.au=Pop%2C+Andrew&rft.au=Shedd%2C+Matthew+P.&rft.date=2022-06-01&rft.pub=Elsevier+Inc&rft.issn=2468-4287&rft.eissn=2468-4287&rft.volume=8&rft.issue=2&rft.spage=305&rft.epage=311&rft_id=info:doi/10.1016%2Fj.jvscit.2022.04.003&rft.externalDocID=S2468428722000508
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2468-4287&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2468-4287&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2468-4287&client=summon