Electrospun chitosan/hydroxyapatite nanofibers for bone tissue engineering

Chitosan (CS) nanofibers were prepared by an electrospinning technique and then treated with simulated body fluid (SBF) to encourage hydroxyapatite (HA) formation on their surface. The CS/HA nanofibers were subjected to scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS),...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science Vol. 48; no. 4; pp. 1640 - 1645
Main Authors: Van Hong Thien, Doan, Hsiao, Sheng Wen, Ho, Ming Hua, Li, Chung Hsing, Shih, Jia Lin
Format: Journal Article
Language:English
Published: Boston Springer US 01-02-2013
Springer
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Chitosan (CS) nanofibers were prepared by an electrospinning technique and then treated with simulated body fluid (SBF) to encourage hydroxyapatite (HA) formation on their surface. The CS/HA nanofibers were subjected to scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Fourier transform infrared spectroscopy, and X-ray diffraction (XRD) to confirm HA formation as well as determine the morphology of the nanofibrous scaffolds. The SEM image indicated that the distribution of HA on the CS nanofibers was homogeneous. The results from EDS and XRD indicated that HA was formed on the nanofibrous surfaces after 6-day incubation in the SBF. The calcium/phosphorus ratio of deposited HA was close to that of natural bone. To determine biocompatibility, the CS/HA scaffolds were applied to the culture of rat osteosarcoma cell lines (UMR-106). The cell densities on the CS/HA nanofibers were higher than those on the CS nanofibers, the CS/HA film, and the CS film, indicating that cell proliferation on CS/HA nanofibers was enhanced. Moreover, the early osteogenic differentiation on CS/HA was also more significant, due to the differences in chemical composition and the surface area of CS/HA nanofibers. The biocompatibility and the cell affinity were enhanced using the CS/HA nanofibers. This indicates that electrospun CS/HA scaffolds would be a potential material in bone tissue engineering.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-012-6921-1