High-slope terrain locomotion for torque-controlled quadruped robots
Research into legged robotics is primarily motivated by the prospects of building machines that are able to navigate in challenging and complex environments that are predominantly non-flat. In this context, control of contact forces is fundamental to ensure stable contacts and equilibrium of the rob...
Saved in:
Published in: | Autonomous robots Vol. 41; no. 1; pp. 259 - 272 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York
Springer US
01-01-2017
Springer Nature B.V Springer Verlag |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Research into legged robotics is primarily motivated by the prospects of building machines that are able to navigate in challenging and complex environments that are predominantly non-flat. In this context, control of contact forces is fundamental to ensure stable contacts and equilibrium of the robot. In this paper we propose a planning/control framework for quasi-static walking of quadrupedal robots, implemented for a demanding application in which regulation of ground reaction forces is crucial. Experimental results demonstrate that our 75-kg quadruped robot is able to walk inside two high-slope (
50
∘
) V-shaped walls; an achievement that to the authors’ best knowledge has never been presented before. The robot distributes its weight among the stance legs so as to optimize user-defined criteria. We compute joint torques that result in no foot slippage, fulfillment of the unilateral constraints of the contact forces and minimization of the actuators effort. The presented study is an experimental validation of the effectiveness and robustness of QP-based force distributions methods for quasi-static locomotion on challenging terrain. |
---|---|
AbstractList | Research into legged robotics is primarily motivated by the prospects of building machines that are able to navigate in challenging and complex environments that are predominantly non-flat. In this context, control of contact forces is fundamental to ensure stable contacts and equilibrium of the robot. In this paper we propose a planning/control framework for quasi-static walking of quadrupedal robots, implemented for a demanding application in which regulation of ground reaction forces is crucial. Experimental results demonstrate that our 75-kg quadruped robot is able to walk inside two high-slope (
50
∘
) V-shaped walls; an achievement that to the authors’ best knowledge has never been presented before. The robot distributes its weight among the stance legs so as to optimize user-defined criteria. We compute joint torques that result in no foot slippage, fulfillment of the unilateral constraints of the contact forces and minimization of the actuators effort. The presented study is an experimental validation of the effectiveness and robustness of QP-based force distributions methods for quasi-static locomotion on challenging terrain. Research into legged robotics is primarily motivated by the prospects of building machines that are able to navigate in challenging and complex environments that are predominantly non-flat. In this context, control of contact forces is fundamental to ensure stable contacts and equilibrium of the robot. In this paper we propose a planning/control framework for quasi-static walking of quadrupedal robots, implemented for a demanding application in which regulation of ground reaction forces is crucial. Experimental results demonstrate that our 75-kg quadruped robot is able to walk inside two high-slope (\[50^\circ \]) V-shaped walls; an achievement that to the authors’ best knowledge has never been presented before. The robot distributes its weight among the stance legs so as to optimize user-defined criteria. We compute joint torques that result in no foot slippage, fulfillment of the unilateral constraints of the contact forces and minimization of the actuators effort. The presented study is an experimental validation of the effectiveness and robustness of QP-based force distributions methods for quasi-static locomotion on challenging terrain. Research into legged robotics is primarily motivated by the prospects of building machines that are able to navigate in challenging and complex environments that are predominantly non-flat. In this context, control of contact forces is fundamental to ensure stable contacts and equilibrium of the robot. In this paper we propose a planning/control framework for quasi-static walking of quadrupedal robots, implemented for a demanding application in which regulation of ground reaction forces is crucial. Experimental results demonstrate that our 75-kg quadruped robot is able to walk inside two high-slope (50 degrees) V-shaped walls; an achievement that to the authors' best knowledge has never been presented before. The robot distributes its weight among the stance legs so as to optimize user-defined criteria. We compute joint torques that result in no foot slippage, fulfillment of the unilateral constraints of the contact forces and minimization of the actuators effort. The presented study is an experimental validation of the effectiveness and robustness of QP-based force distributions methods for quasi-static locomotion on challenging terrain. |
Author | Semini, Claudio del Prete, Andrea Featherstone, Roy Focchi, Michele Havoutis, Ioannis Caldwell, Darwin G. |
Author_xml | – sequence: 1 givenname: Michele surname: Focchi fullname: Focchi, Michele email: michele.focchi@iit.it organization: Department of Advanced Robotics, Istituto Italiano di Tecnologia – sequence: 2 givenname: Andrea surname: del Prete fullname: del Prete, Andrea organization: LAAS-CNRS – sequence: 3 givenname: Ioannis surname: Havoutis fullname: Havoutis, Ioannis organization: Robot Learning & Interaction Group, Idiap Research Institute – sequence: 4 givenname: Roy surname: Featherstone fullname: Featherstone, Roy organization: Department of Advanced Robotics, Istituto Italiano di Tecnologia – sequence: 5 givenname: Darwin G. surname: Caldwell fullname: Caldwell, Darwin G. organization: Department of Advanced Robotics, Istituto Italiano di Tecnologia – sequence: 6 givenname: Claudio surname: Semini fullname: Semini, Claudio organization: Department of Advanced Robotics, Istituto Italiano di Tecnologia |
BackLink | https://hal.science/hal-01137225$$DView record in HAL |
BookMark | eNp1kM1OwzAQhC0EEm3hAbhF4sTBsGsnsX2syk-RKnGBs-UkTpsqjVs7QeLtcRQEJ047Wn0zGs2cnHeus4TcINwjgHgICBmmFDCnKhOc4hmZ4ShExsQ5mYFiimaZ4pdkHsIeAJQAmJHHdbPd0dC6o016671puqR1pTu4vnFdUjuf9M6fBktL1_Xeta2tktNgKj8co_KucH24Ihe1aYO9_rkL8vH89L5a083by-tquaFlmqmeogRlleUW0gIZK6URuUKJBmV81ZUqqkrwmkVM5rmQvDZ1VVQC0lKKVCq-IHdT7s60-uibg_Ff2plGr5cbPf4AkQvGsk8e2duJPXoX64de793gu1hPR0BBynIQkcKJKr0Lwdv6NxZBj8PqadiYnOtxWI3RwyZPiGy3tf4v-X_TN2p0e68 |
CitedBy_id | crossref_primary_10_1007_s42235_023_00410_5 crossref_primary_10_1016_j_robot_2023_104411 crossref_primary_10_1177_02783649221102473 crossref_primary_10_1155_2019_3153195 crossref_primary_10_1002_rob_22338 crossref_primary_10_1109_TRO_2019_2954670 crossref_primary_10_3390_app9183911 crossref_primary_10_1109_ACCESS_2019_2954489 crossref_primary_10_1016_j_isci_2021_102948 crossref_primary_10_1142_S0219843621500109 crossref_primary_10_1109_ACCESS_2020_3044933 crossref_primary_10_1177_1729881420921015 crossref_primary_10_3389_frobt_2024_1356345 crossref_primary_10_7717_peerj_cs_821 crossref_primary_10_1109_TSMC_2024_3378912 crossref_primary_10_1115_1_4051356 crossref_primary_10_54097_hset_v38i_5976 crossref_primary_10_1109_ACCESS_2020_2980446 crossref_primary_10_3389_frobt_2023_1198749 crossref_primary_10_3390_app11052102 crossref_primary_10_1002_rob_22292 crossref_primary_10_7746_jkros_2023_18_2_172 crossref_primary_10_1155_2022_9968042 crossref_primary_10_1109_LRA_2018_2836441 crossref_primary_10_1155_2018_8097371 crossref_primary_10_1109_LRA_2024_3380925 crossref_primary_10_1007_s10846_021_01553_5 crossref_primary_10_3389_frobt_2020_528473 crossref_primary_10_1109_TRO_2020_3003464 crossref_primary_10_3389_frobt_2022_874290 crossref_primary_10_1360_TB_2023_0735 crossref_primary_10_3390_app9071335 crossref_primary_10_1177_1729881419827473 crossref_primary_10_3390_electronics8121414 crossref_primary_10_1088_1748_3190_ac92b3 crossref_primary_10_1115_1_4055625 crossref_primary_10_1109_TRO_2024_3381554 crossref_primary_10_1109_LRA_2019_2908502 crossref_primary_10_3390_s20174911 crossref_primary_10_1017_S0263574723001686 crossref_primary_10_1177_1729881420931676 crossref_primary_10_1155_2020_7154254 crossref_primary_10_1007_s10514_022_10068_3 crossref_primary_10_1007_s42235_022_00269_y crossref_primary_10_1007_s11633_023_1429_5 crossref_primary_10_1007_s42235_020_0091_7 crossref_primary_10_1109_LRA_2023_3313919 crossref_primary_10_1007_s12555_020_0734_9 crossref_primary_10_1007_s40747_022_00652_6 crossref_primary_10_1155_2022_4510678 crossref_primary_10_1017_S0263574724000274 crossref_primary_10_1109_TITS_2021_3135347 crossref_primary_10_1109_LRA_2019_2899434 crossref_primary_10_1126_scirobotics_abf1628 crossref_primary_10_1109_LRA_2019_2896723 crossref_primary_10_1109_LRA_2020_2969160 crossref_primary_10_1007_s11465_023_0760_4 crossref_primary_10_1109_LRA_2021_3127639 crossref_primary_10_1177_1729881419841537 crossref_primary_10_1007_s42235_019_0021_8 crossref_primary_10_1631_jzus_A2200310 crossref_primary_10_1002_rob_22197 crossref_primary_10_1007_s10846_021_01418_x crossref_primary_10_1007_s11465_022_0742_y crossref_primary_10_1016_j_ifacol_2021_11_155 crossref_primary_10_1007_s11044_021_09809_6 crossref_primary_10_1016_j_robot_2023_104401 crossref_primary_10_1088_1748_3190_ad5899 crossref_primary_10_1109_ACCESS_2023_3332820 crossref_primary_10_1109_LRA_2022_3186515 crossref_primary_10_3390_machines11020133 crossref_primary_10_1007_s10514_023_10117_5 crossref_primary_10_1088_1742_6596_2647_16_162009 crossref_primary_10_3390_biomimetics8010112 crossref_primary_10_1007_s10846_021_01406_1 crossref_primary_10_1016_j_birob_2021_100029 crossref_primary_10_1109_LRA_2017_2652491 crossref_primary_10_1007_s11044_020_09728_y crossref_primary_10_1109_ACCESS_2019_2962527 crossref_primary_10_1186_s10033_024_01000_0 crossref_primary_10_36306_konjes_803239 crossref_primary_10_1016_j_isatra_2023_06_014 crossref_primary_10_1049_ell2_12414 crossref_primary_10_1109_LRA_2024_3382532 crossref_primary_10_1109_TMECH_2021_3083594 crossref_primary_10_1109_LRA_2023_3331288 crossref_primary_10_3390_s20041185 crossref_primary_10_1109_ACCESS_2020_2992794 |
Cites_doi | 10.1109/ROBOT.1990.126126 10.1007/s10514-015-9479-3 10.1109/IROS.2010.5650416 10.1177/0278364912469821 10.1109/TRO.2008.2001360 10.1109/IROS.2012.6385694 10.1109/TCBB.2006.4,0504378 10.1109/Humanoids.2011.6100882 10.1007/s10514-012-9294-z 10.1109/HUMANOIDS.2015.7363480 10.1109/TRO.2004.840898 10.1109/ROBOT.2008.4543459 10.1109/ICRA.2011.5980156 10.1007/s10514-013-9341-4 10.1109/TRO.2007.904896 10.1145/1576246.1531386 10.1002/rob.21571 10.1145/1833351.1781157 10.1177/02783640122067309 10.1109/ICRA.2012.6224628 10.1177/0959651811402275 10.1109/IRDS.2002.1041675 10.1177/027836498900800603 10.1109/IROS.2015.7353668 10.1007/s12532-014-0071-1 10.1109/IROS.2010.5648837 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2016 Autonomous Robots is a copyright of Springer, (2016). All Rights Reserved. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Springer Science+Business Media New York 2016 – notice: Autonomous Robots is a copyright of Springer, (2016). All Rights Reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7SC 7SP 7TB 8FD 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO F28 FR3 HCIFZ JQ2 L6V L7M L~C L~D M7S P5Z P62 PQEST PQQKQ PQUKI PRINS PTHSS S0W 1XC VOOES |
DOI | 10.1007/s10514-016-9573-1 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Database (Proquest) ProQuest Central Advanced Technologies & Aerospace Collection AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DELNET Engineering & Technology Collection Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic |
DatabaseTitleList | Technology Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7527 |
EndPage | 272 |
ExternalDocumentID | oai_HAL_hal_01137225v3 10_1007_s10514_016_9573_1 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23N 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAG ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADMVV ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEKVL AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCLPG SCO SCV SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z8W Z92 ZMTXR _50 ~02 ~EX AACDK AAEOY AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 7SC 7SP 7TB 8FD DWQXO F28 FR3 JQ2 L7M L~C L~D PQEST PQQKQ PQUKI PRINS 1XC AAYZH VOOES |
ID | FETCH-LOGICAL-c459t-1809e9e3e04b122c8a769181a18e04fd9bdd73f2809866783fafdbd704c874893 |
IEDL.DBID | AEJHL |
ISSN | 0929-5593 |
IngestDate | Tue Oct 15 15:06:55 EDT 2024 Thu Oct 10 19:44:21 EDT 2024 Fri Sep 13 01:22:47 EDT 2024 Sat Dec 16 12:10:27 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Multi-contact inter-action Quadruped locomotion Whole-body control Ground Reaction Force optimization Force control |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c459t-1809e9e3e04b122c8a769181a18e04fd9bdd73f2809866783fafdbd704c874893 |
ORCID | 0000-0003-1275-2851 |
OpenAccessLink | https://hal.science/hal-01137225 |
PQID | 2259042607 |
PQPubID | 326361 |
PageCount | 14 |
ParticipantIDs | hal_primary_oai_HAL_hal_01137225v3 proquest_journals_2259042607 crossref_primary_10_1007_s10514_016_9573_1 springer_journals_10_1007_s10514_016_9573_1 |
PublicationCentury | 2000 |
PublicationDate | 2017-01-01 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationTitle | Autonomous robots |
PublicationTitleAbbrev | Auton Robot |
PublicationYear | 2017 |
Publisher | Springer US Springer Nature B.V Springer Verlag |
Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Verlag |
References | de Lasa, M., Mordatch, I., Hertzmann, A., et al. (2010). Feature-based locomotion controllers. ACM Transactions on Graphics, 29(4), 1. doi:10.1145/1833351.1781157, http://portal.acm.org/citation.cfm?doid=1833351.1781157. Gautier, M. (1991). Numerical calculation of the base inertial parameters of robots. Journal of Robotic Systems, 8(4), 1020–1025, doi:10.1109/ROBOT.1990.126126, http://onlinelibrary.wiley.com/doi/10.1002/rob.4620080405/abstract. Semini, C., Tsagarakis, N. G., Guglielmino, E., Focchi, M., Cannella, F., Caldwell, D. G., et al. (2011). Design of HyQ—A hydraulically and electrically actuated quadruped robot. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 225(6), 831–849. doi:10.1177/0959651811402275. Frigerio, M., Buchli, J., Caldwell, D. G., et al. (2012). Code generation of algebraic quantities for robot controllers. 2012 IEEE/RSJ international conference on intelligent robots and systems (pp. 2346–2351). doi:10.1109/IROS.2012.6385694, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6385694. Buchli, J., Kalakrishnan, M., Pastor, P., & Schaal, S., (2009). Compliant quadruped locomotion over rough terrain. In IEEE/RSJ international conference on intelligent robots and systems 2009 IROS 2009. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5354681. Righetti, L., Buchli, J., Mistry, M., Kalakrishnan, M., Schaal, S., et al. (2013). Optimal distribution of contact forces with inverse dynamics control. The International Journal of Robotics Research. doi:10.1177/0278364912469821. Hutter, M., Hoepflinger, M., & Gehring, C. (2012). Hybrid operational space control for compliant legged systems. In Proceedings of robotics: Science and systems, 2012. http://roboticsproceedings.org/rss08/p17.pdf. Lee, S. H., & Goswami, A. (2012). A momentum-based balance controller for humanoid robots on non-level and non-stationary ground. Autonomous Robots, 33(4), 399–414. doi:10.1007/s10514-012-9294-z. Feng, S., Xinjilefu, X., Atkeson, C. G., & Kim, J. (2015). Optimization based controller design and implementation for the Atlas robot in the DARPA robotics challenge finals. In 2015 IEEE-RAS international conference on humanoid robots. Lee, S., & Goswami, A. (2010). Ground reaction force control at each foot: A momentum-based humanoid balance controller for non-level and non-stationary ground. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2010 (pp. 3157–3162). doi:10.1109/IROS.2010.5650416, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5650416, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5650416. Ott, C., Roa, M. A., Hirzinger, G., et al. (2011). Posture and balance control for biped robots based on contact force optimization. In 2011 11th IEEE-RAS international conference on humanoid robots (pp. 26–33). doi:10.1109/Humanoids.2011.6100882, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6100882. Gehring, C., Coros, S., Hutter, M., Bloesch, M., Hoepflinger, M., & Siegwart, R. (2013). Control of dynamic gaits for a quadrupedal robot. In IEEE international conference on robotics and automation (ICRA). https://infoscience.epfl.ch/record/189756. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., & Hirukawa, H. (2003). Resolved momentum control : humanoid motion planning based on the linear and angular momentum National Institute of Advanced Industrial Science and Technology (AIST). In 2003 IEEE/RSJ international conference on intelligent robots and systems (IROS), October (pp. 1644–1650). Hyon, S., Hale, J., Cheng, G., et al. (2007). Full-body compliant humanhumanoid interaction: Balancing in the presence of unknown external forces. IEEE transactions on robotics, 23(5), 884–898. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4339533. Cheng, G., Hyon, S. H., Ude, A., Morimoto, J., Hale, J. G., Hart, J., Nakanishi, J., Bentivegna, D., Hodgins, J., Atkeson, C., Mistry, M., Schaal. S., et al. (2008). CB: Exploring neuroscience with a humanoid research platform. In 2008 IEEE international conference on robotics and automation (pp. 1772–1773). doi:10.1109/ROBOT.2008.4543459, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4543459. Kuindersma, S., Deits, R., Andr, M. F., Dai, H., Permenter, F., Pat, K., & Russ, M. (2016). Optimization-based locomotion planning, estimation, and control design for Atlas. Autonomous Robots, 40(3), 429–455. JohnsonMShrewsburyBBertrandSWuTDuranDFloydMAbelesPStephenDMertinsNLesmanACarffJRifenburghWKavetiPStraatmanWSmithJGriffioenMLaytonBde BoerTKoolenTNeuhausPPrattJTeam IHMC’s lessons learned from the DARPA robotics challenge trialsInternational Journal of Field Robotics20153219220810.1002/rob.21571 Macchietto, A., & Shelton, C. R. (2009). Momentum control for balance. In ACM Transactions on graphics (TOG). Schaal, S., (2001). The S L Simulation and Real-Time Control Software Package. Pratt, J., Chew, C., Torres, A., Dilworth, P., Pratt, G., et al. (2001). Virtual model control: An intuitive approach for bipedal locomotion. The International Journal of Robotics Research, 20, 129–143. doi:10.1177/02783640122067309, http://ijr.sagepub.com/content/20/2/129.short. Orin, D. E., Goswami, A., Lee, S. H., et al. (2013). Centroidal dynamics of a humanoid robot. Autonomous Robots, 35(2–3), 161–176. doi:10.1007/s10514-013-9341-4. Armstrong, B. (1989). On finding exciting trajectories for identification experiments involving systems with nonlinear dynamics. The International Journal of Robotics Research, 8(6), 28–48. doi:10.1177/027836498900800603. Lin, P. C., Komsuoglu, H., Koditschek, D., et al. (2005) A leg configuration measurement system for full-body pose estimates in a hexapod robot. IEEE Transactions on Robotics, 21(3), 411–422. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1435485. SchumacherPMZanderigoEMorariMShort Papers200962256264 Righetti, L., Buchli, J., Mistry, M., Schaal, S., et al. (2011). Inverse dynamics control of floating-base robots with external constraints: A unified view. In 2011 IEEE international conference on robotics and automation (pp. 1085–1090). doi:10.1109/ICRA.2011.5980156, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5980156. Bloesch, M., Hutter, M., Hoepflinger, M., Leutenegger, S., Gehring, C., Remy, C. D., & Siegwart, R. (2012). State estimation for legged robots-consistent fusion of leg kinematics and IMU. Robotics: Science and Systems. http://roboticsproceedings.org/rss08/p03.pdf. Stephens, B. J., & Atkeson, C. G., (2010). Dynamic balance force control for compliant humanoid robots. 2010 IEEE/RSJ international conference on intelligent robots and systems (pp. 1248–1255). doi:10.1109/IROS.2010.5648837, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5648837. Guennebaud, G., Furfaro, A., & Gaspero, L. D. (2011). eiquadprog.hh. http://www.diegm.uniud.it/digaspero/index.php/software. Boaventura, T., Semini, C., Buchli, J., Frigerio, M., Focchi, M., & Caldwell, D. G., (2012). Dynamic torque control of a hydraulic quadruped robot. In 2012 IEEE international conference on robotics and automation (pp. 1889–1894). doi:10.1109/ICRA.2012.6224628, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6224628. BretlTLallSTesting static equilibrium for legged robotsIEEE Transactions on Robotics200824479480710.1109/TRO.2008.2001360 Mistry, M., Schaal, S., Yamane, K., et al. (2009). Inertial parameter estimation of floating base humanoid systems using partial force sensing. In IEEE international conference on humanoids 2009. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5379531. Jovic, J., Philipp, F., Escande, A., Ayusawa, K., Yoshida, E., Kheddar, A., Venture, G., et al. (2015). Identification of dynamics of humanoids : Systematic exciting motion generation. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2173–2179). doi:10.1109/IROS.2015.7353668. Gertz, E., & Wright, S. (2001). OOQP user guide. Mathematics and Computer Science Division Technical Memorandum. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.126.4765&rep=rep1&type=pdf. Nishiwaki, K., Kagami, S., Kuniyoshi, Y., Inaba, M., & Inoue, H. (2002). Online generation of humanoid walking motion based on a fast generation method of motion pattern that follows desired ZMP. IEEE/RSJ international conference on intelligent robots and systems (Vol. 3, pp. 2684–2689). doi:10.1109/IRDS.2002.1041675. Ferreau, H. J., Kirches, C., & Potschka, A. (2013). qpOASES: A parametric active-set algorithm for quadratic programming. Mathematical Programming Computation. doi:10.1007/s12532-014-0071-1. T Bretl (9573_CR4) 2008; 24 9573_CR8 9573_CR30 9573_CR9 9573_CR6 9573_CR7 9573_CR12 9573_CR34 9573_CR11 9573_CR10 9573_CR32 9573_CR31 9573_CR16 9573_CR15 9573_CR14 9573_CR13 9573_CR35 9573_CR19 9573_CR18 9573_CR23 9573_CR22 PM Schumacher (9573_CR33) 2009; 6 M Johnson (9573_CR17) 2015; 32 9573_CR21 9573_CR20 9573_CR27 9573_CR26 9573_CR25 9573_CR24 9573_CR29 9573_CR28 9573_CR1 9573_CR5 9573_CR2 9573_CR3 |
References_xml | – ident: 9573_CR11 doi: 10.1109/ROBOT.1990.126126 – ident: 9573_CR20 doi: 10.1007/s10514-015-9479-3 – ident: 9573_CR14 – ident: 9573_CR12 – ident: 9573_CR2 – ident: 9573_CR21 doi: 10.1109/IROS.2010.5650416 – ident: 9573_CR31 doi: 10.1177/0278364912469821 – volume: 24 start-page: 794 issue: 4 year: 2008 ident: 9573_CR4 publication-title: IEEE Transactions on Robotics doi: 10.1109/TRO.2008.2001360 contributor: fullname: T Bretl – ident: 9573_CR10 doi: 10.1109/IROS.2012.6385694 – volume: 6 start-page: 256 issue: 2 year: 2009 ident: 9573_CR33 publication-title: Short Papers doi: 10.1109/TCBB.2006.4,0504378 contributor: fullname: PM Schumacher – ident: 9573_CR25 – ident: 9573_CR28 doi: 10.1109/Humanoids.2011.6100882 – ident: 9573_CR22 doi: 10.1007/s10514-012-9294-z – ident: 9573_CR19 – ident: 9573_CR8 doi: 10.1109/HUMANOIDS.2015.7363480 – ident: 9573_CR32 – ident: 9573_CR23 doi: 10.1109/TRO.2004.840898 – ident: 9573_CR6 doi: 10.1109/ROBOT.2008.4543459 – ident: 9573_CR13 – ident: 9573_CR15 – ident: 9573_CR30 doi: 10.1109/ICRA.2011.5980156 – ident: 9573_CR27 doi: 10.1007/s10514-013-9341-4 – ident: 9573_CR16 doi: 10.1109/TRO.2007.904896 – ident: 9573_CR24 doi: 10.1145/1576246.1531386 – volume: 32 start-page: 192 year: 2015 ident: 9573_CR17 publication-title: International Journal of Field Robotics doi: 10.1002/rob.21571 contributor: fullname: M Johnson – ident: 9573_CR7 doi: 10.1145/1833351.1781157 – ident: 9573_CR29 doi: 10.1177/02783640122067309 – ident: 9573_CR3 doi: 10.1109/ICRA.2012.6224628 – ident: 9573_CR5 – ident: 9573_CR34 doi: 10.1177/0959651811402275 – ident: 9573_CR26 doi: 10.1109/IRDS.2002.1041675 – ident: 9573_CR1 doi: 10.1177/027836498900800603 – ident: 9573_CR18 doi: 10.1109/IROS.2015.7353668 – ident: 9573_CR9 doi: 10.1007/s12532-014-0071-1 – ident: 9573_CR35 doi: 10.1109/IROS.2010.5648837 |
SSID | ssj0009700 |
Score | 2.5989406 |
Snippet | Research into legged robotics is primarily motivated by the prospects of building machines that are able to navigate in challenging and complex environments... |
SourceID | hal proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 259 |
SubjectTerms | Actuators Artificial Intelligence Computer Imaging Computer Science Contact force Control Engineering Locomotion Mechatronics Optimization Pattern Recognition and Graphics Robot dynamics Robotics Robotics and Automation Robots Slippage Terrain Torque Vision Walking |
Title | High-slope terrain locomotion for torque-controlled quadruped robots |
URI | https://link.springer.com/article/10.1007/s10514-016-9573-1 https://www.proquest.com/docview/2259042607 https://hal.science/hal-01137225 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90e9EHv8XplCI-KZG1TZv2cbqNKmMIKvhW8lUERzvX1b_fS9duU_RBn1qSIw2XNL-75PI7gAuR2BLH2icJp5LQhCnCA1eQRFBuO0JIryTSjh7Z6CXo9Q1NjrPYukjfrusTyXKhXrnrhtiOnq9PQo-5BD2eJkKP5zWg2e3fR8Ml1W518QSBn6C97NZnmT818gWN1l9NLOSKofntbLSEnMH2fzq7A1uVgWl15zNiF9Z0ugebK7SD-9AzwR0kH2cTbaFaTZIICzEtm2f0sdCMtdATx96RKpB9rJX1XnA1LSb4Ns1ENssP4HnQf7qNSJVNgUjqhTNiiLp0qF3docJ2HBlw5oeI79wOsChRoVCKuYmDYoGPEOYmPFFCsQ6VQUlRcwiNNEv1EVjot8mOo5X2PU5Djl4QNuRoW_o08BXzWnBZazWezEkz4iU9slFNbALLjGpiuwXnqPeFnKG7jrrD2JTh2uMyXHA-3Ba062GJq58sj7EmLBn2WQuu6nFYVv_6xeM_SZ_AhmOgvNx2aUNjNi30KaznqjirZh4-B3ejm4dPFu7SEg |
link.rule.ids | 230,315,782,786,887,27935,27936,41075,42144,48346,48349,48359,49651,49654,49664,52155 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED3RdgAGvhGBAhFiAllqYidOxopSFVG6UKR2iuzYEUPVlKbh93NOE1oQDLBF9smxzo7fXXz3DuBaJk6Ma-2TRLCYsIQrIgIqSSKZcFwpY68g0u4988Eo6Nwbmhxa5cIU0e7VlWRxUq8luyG4o-vrk9DjlKDL0zBk56wOjfZoPO6suHbLzBNEfoIGM60uM38a5Asc1V5NMOSapfntcrTAnO7uv2a7BzuliWm3l3tiHzb09AC214gHD6FjwjtINkln2kbFmjIRNqJauqzpY6Mha6MvjtMjZSj7RCv7LRdqns_waZ7KdJEdwUv3fnjXI2U9BRIzL1wQQ9WlQ011i0nHdeNAcD9EhBdOgE2JCqVSnCYuigU-ghhNRKKk4i0WBwVJzTHUp-lUn4CNnlvccrXSvidYKNAPwoFc7cQ-C3zFPQtuKrVGsyVtRrQiSDaqiUxomVFN5FhwhYr_lDOE1712PzJtePpQjkfOO7WgWa1LVH5mWYQ9YcGxzy24rdZh1f3rG0__JH0Jm73hUz_qPwwez2DLNcBe_IRpQn0xz_U51DKVX5Tb8AN2BNSy |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90A9EHv8Xq1CI-KWHrZ9onGW5zwzEEJ_hWkibBh9HWbfXv99K1boo-iG8lCWm4S_K7S-5-AbjiyopR1z5RzI2Jq6ggLHA4Udxlls157BVE2v0nOnoJOl1Nk3Nb5cIU0e7VleQip0GzNCXzZiZUcyXxDYEe3WCfhB51CLo_dX0qhlO83h6M73tL3t0yCwWtAILGs1NdbP7UyRdoWn_VgZErVue3i9ICf3o7_x75LmyXpqfZXsyVPViTyT5srRASHkBHh32Q2STNpIkC189HmIh26eKtHxMNXBN9dBwqKUPcJ1KYbzkT0zzDr2nK0_nsEJ573fFdn5TvLJDY9cI50RReMpSObLncsu04YNQPEfmZFWCREiEXgjrKxmaBj-DmKKYEF7TlxkFBXnMEtSRN5DGY6NHFLVsK6XvMDRn6R9iRLa3YdwNfUM-A60rEUbag04iWxMlaNJEOOdOiiSwDLlEJn-00EXa_PYx0Ge5KDsWt6N0xoFHpKCqX3yzCmrDg3qcG3FQ6WVb_-seTP7W-gI3HTi8aDkYPp7Bpa7wvzmYaUJtPc3kG6zORn5cz8gNkDd1J |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-slope+terrain+locomotion+for+torque-controlled+quadruped+robots&rft.jtitle=Autonomous+robots&rft.au=Focchi%2C+Michele&rft.au=del+Prete%2C+Andrea&rft.au=Havoutis%2C+Ioannis&rft.au=Featherstone%2C+Roy&rft.date=2017-01-01&rft.pub=Springer+US&rft.issn=0929-5593&rft.eissn=1573-7527&rft.volume=41&rft.issue=1&rft.spage=259&rft.epage=272&rft_id=info:doi/10.1007%2Fs10514-016-9573-1&rft.externalDocID=10_1007_s10514_016_9573_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-5593&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-5593&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-5593&client=summon |