High-slope terrain locomotion for torque-controlled quadruped robots

Research into legged robotics is primarily motivated by the prospects of building machines that are able to navigate in challenging and complex environments that are predominantly non-flat. In this context, control of contact forces is fundamental to ensure stable contacts and equilibrium of the rob...

Full description

Saved in:
Bibliographic Details
Published in:Autonomous robots Vol. 41; no. 1; pp. 259 - 272
Main Authors: Focchi, Michele, del Prete, Andrea, Havoutis, Ioannis, Featherstone, Roy, Caldwell, Darwin G., Semini, Claudio
Format: Journal Article
Language:English
Published: New York Springer US 01-01-2017
Springer Nature B.V
Springer Verlag
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Research into legged robotics is primarily motivated by the prospects of building machines that are able to navigate in challenging and complex environments that are predominantly non-flat. In this context, control of contact forces is fundamental to ensure stable contacts and equilibrium of the robot. In this paper we propose a planning/control framework for quasi-static walking of quadrupedal robots, implemented for a demanding application in which regulation of ground reaction forces is crucial. Experimental results demonstrate that our 75-kg quadruped robot is able to walk inside two high-slope ( 50 ∘ ) V-shaped walls; an achievement that to the authors’ best knowledge has never been presented before. The robot distributes its weight among the stance legs so as to optimize user-defined criteria. We compute joint torques that result in no foot slippage, fulfillment of the unilateral constraints of the contact forces and minimization of the actuators effort. The presented study is an experimental validation of the effectiveness and robustness of QP-based force distributions methods for quasi-static locomotion on challenging terrain.
AbstractList Research into legged robotics is primarily motivated by the prospects of building machines that are able to navigate in challenging and complex environments that are predominantly non-flat. In this context, control of contact forces is fundamental to ensure stable contacts and equilibrium of the robot. In this paper we propose a planning/control framework for quasi-static walking of quadrupedal robots, implemented for a demanding application in which regulation of ground reaction forces is crucial. Experimental results demonstrate that our 75-kg quadruped robot is able to walk inside two high-slope ( 50 ∘ ) V-shaped walls; an achievement that to the authors’ best knowledge has never been presented before. The robot distributes its weight among the stance legs so as to optimize user-defined criteria. We compute joint torques that result in no foot slippage, fulfillment of the unilateral constraints of the contact forces and minimization of the actuators effort. The presented study is an experimental validation of the effectiveness and robustness of QP-based force distributions methods for quasi-static locomotion on challenging terrain.
Research into legged robotics is primarily motivated by the prospects of building machines that are able to navigate in challenging and complex environments that are predominantly non-flat. In this context, control of contact forces is fundamental to ensure stable contacts and equilibrium of the robot. In this paper we propose a planning/control framework for quasi-static walking of quadrupedal robots, implemented for a demanding application in which regulation of ground reaction forces is crucial. Experimental results demonstrate that our 75-kg quadruped robot is able to walk inside two high-slope (\[50^\circ \]) V-shaped walls; an achievement that to the authors’ best knowledge has never been presented before. The robot distributes its weight among the stance legs so as to optimize user-defined criteria. We compute joint torques that result in no foot slippage, fulfillment of the unilateral constraints of the contact forces and minimization of the actuators effort. The presented study is an experimental validation of the effectiveness and robustness of QP-based force distributions methods for quasi-static locomotion on challenging terrain.
Research into legged robotics is primarily motivated by the prospects of building machines that are able to navigate in challenging and complex environments that are predominantly non-flat. In this context, control of contact forces is fundamental to ensure stable contacts and equilibrium of the robot. In this paper we propose a planning/control framework for quasi-static walking of quadrupedal robots, implemented for a demanding application in which regulation of ground reaction forces is crucial. Experimental results demonstrate that our 75-kg quadruped robot is able to walk inside two high-slope (50 degrees) V-shaped walls; an achievement that to the authors' best knowledge has never been presented before. The robot distributes its weight among the stance legs so as to optimize user-defined criteria. We compute joint torques that result in no foot slippage, fulfillment of the unilateral constraints of the contact forces and minimization of the actuators effort. The presented study is an experimental validation of the effectiveness and robustness of QP-based force distributions methods for quasi-static locomotion on challenging terrain.
Author Semini, Claudio
del Prete, Andrea
Featherstone, Roy
Focchi, Michele
Havoutis, Ioannis
Caldwell, Darwin G.
Author_xml – sequence: 1
  givenname: Michele
  surname: Focchi
  fullname: Focchi, Michele
  email: michele.focchi@iit.it
  organization: Department of Advanced Robotics, Istituto Italiano di Tecnologia
– sequence: 2
  givenname: Andrea
  surname: del Prete
  fullname: del Prete, Andrea
  organization: LAAS-CNRS
– sequence: 3
  givenname: Ioannis
  surname: Havoutis
  fullname: Havoutis, Ioannis
  organization: Robot Learning & Interaction Group, Idiap Research Institute
– sequence: 4
  givenname: Roy
  surname: Featherstone
  fullname: Featherstone, Roy
  organization: Department of Advanced Robotics, Istituto Italiano di Tecnologia
– sequence: 5
  givenname: Darwin G.
  surname: Caldwell
  fullname: Caldwell, Darwin G.
  organization: Department of Advanced Robotics, Istituto Italiano di Tecnologia
– sequence: 6
  givenname: Claudio
  surname: Semini
  fullname: Semini, Claudio
  organization: Department of Advanced Robotics, Istituto Italiano di Tecnologia
BackLink https://hal.science/hal-01137225$$DView record in HAL
BookMark eNp1kM1OwzAQhC0EEm3hAbhF4sTBsGsnsX2syk-RKnGBs-UkTpsqjVs7QeLtcRQEJ047Wn0zGs2cnHeus4TcINwjgHgICBmmFDCnKhOc4hmZ4ShExsQ5mYFiimaZ4pdkHsIeAJQAmJHHdbPd0dC6o016671puqR1pTu4vnFdUjuf9M6fBktL1_Xeta2tktNgKj8co_KucH24Ihe1aYO9_rkL8vH89L5a083by-tquaFlmqmeogRlleUW0gIZK6URuUKJBmV81ZUqqkrwmkVM5rmQvDZ1VVQC0lKKVCq-IHdT7s60-uibg_Ff2plGr5cbPf4AkQvGsk8e2duJPXoX64de793gu1hPR0BBynIQkcKJKr0Lwdv6NxZBj8PqadiYnOtxWI3RwyZPiGy3tf4v-X_TN2p0e68
CitedBy_id crossref_primary_10_1007_s42235_023_00410_5
crossref_primary_10_1016_j_robot_2023_104411
crossref_primary_10_1177_02783649221102473
crossref_primary_10_1155_2019_3153195
crossref_primary_10_1002_rob_22338
crossref_primary_10_1109_TRO_2019_2954670
crossref_primary_10_3390_app9183911
crossref_primary_10_1109_ACCESS_2019_2954489
crossref_primary_10_1016_j_isci_2021_102948
crossref_primary_10_1142_S0219843621500109
crossref_primary_10_1109_ACCESS_2020_3044933
crossref_primary_10_1177_1729881420921015
crossref_primary_10_3389_frobt_2024_1356345
crossref_primary_10_7717_peerj_cs_821
crossref_primary_10_1109_TSMC_2024_3378912
crossref_primary_10_1115_1_4051356
crossref_primary_10_54097_hset_v38i_5976
crossref_primary_10_1109_ACCESS_2020_2980446
crossref_primary_10_3389_frobt_2023_1198749
crossref_primary_10_3390_app11052102
crossref_primary_10_1002_rob_22292
crossref_primary_10_7746_jkros_2023_18_2_172
crossref_primary_10_1155_2022_9968042
crossref_primary_10_1109_LRA_2018_2836441
crossref_primary_10_1155_2018_8097371
crossref_primary_10_1109_LRA_2024_3380925
crossref_primary_10_1007_s10846_021_01553_5
crossref_primary_10_3389_frobt_2020_528473
crossref_primary_10_1109_TRO_2020_3003464
crossref_primary_10_3389_frobt_2022_874290
crossref_primary_10_1360_TB_2023_0735
crossref_primary_10_3390_app9071335
crossref_primary_10_1177_1729881419827473
crossref_primary_10_3390_electronics8121414
crossref_primary_10_1088_1748_3190_ac92b3
crossref_primary_10_1115_1_4055625
crossref_primary_10_1109_TRO_2024_3381554
crossref_primary_10_1109_LRA_2019_2908502
crossref_primary_10_3390_s20174911
crossref_primary_10_1017_S0263574723001686
crossref_primary_10_1177_1729881420931676
crossref_primary_10_1155_2020_7154254
crossref_primary_10_1007_s10514_022_10068_3
crossref_primary_10_1007_s42235_022_00269_y
crossref_primary_10_1007_s11633_023_1429_5
crossref_primary_10_1007_s42235_020_0091_7
crossref_primary_10_1109_LRA_2023_3313919
crossref_primary_10_1007_s12555_020_0734_9
crossref_primary_10_1007_s40747_022_00652_6
crossref_primary_10_1155_2022_4510678
crossref_primary_10_1017_S0263574724000274
crossref_primary_10_1109_TITS_2021_3135347
crossref_primary_10_1109_LRA_2019_2899434
crossref_primary_10_1126_scirobotics_abf1628
crossref_primary_10_1109_LRA_2019_2896723
crossref_primary_10_1109_LRA_2020_2969160
crossref_primary_10_1007_s11465_023_0760_4
crossref_primary_10_1109_LRA_2021_3127639
crossref_primary_10_1177_1729881419841537
crossref_primary_10_1007_s42235_019_0021_8
crossref_primary_10_1631_jzus_A2200310
crossref_primary_10_1002_rob_22197
crossref_primary_10_1007_s10846_021_01418_x
crossref_primary_10_1007_s11465_022_0742_y
crossref_primary_10_1016_j_ifacol_2021_11_155
crossref_primary_10_1007_s11044_021_09809_6
crossref_primary_10_1016_j_robot_2023_104401
crossref_primary_10_1088_1748_3190_ad5899
crossref_primary_10_1109_ACCESS_2023_3332820
crossref_primary_10_1109_LRA_2022_3186515
crossref_primary_10_3390_machines11020133
crossref_primary_10_1007_s10514_023_10117_5
crossref_primary_10_1088_1742_6596_2647_16_162009
crossref_primary_10_3390_biomimetics8010112
crossref_primary_10_1007_s10846_021_01406_1
crossref_primary_10_1016_j_birob_2021_100029
crossref_primary_10_1109_LRA_2017_2652491
crossref_primary_10_1007_s11044_020_09728_y
crossref_primary_10_1109_ACCESS_2019_2962527
crossref_primary_10_1186_s10033_024_01000_0
crossref_primary_10_36306_konjes_803239
crossref_primary_10_1016_j_isatra_2023_06_014
crossref_primary_10_1049_ell2_12414
crossref_primary_10_1109_LRA_2024_3382532
crossref_primary_10_1109_TMECH_2021_3083594
crossref_primary_10_1109_LRA_2023_3331288
crossref_primary_10_3390_s20041185
crossref_primary_10_1109_ACCESS_2020_2992794
Cites_doi 10.1109/ROBOT.1990.126126
10.1007/s10514-015-9479-3
10.1109/IROS.2010.5650416
10.1177/0278364912469821
10.1109/TRO.2008.2001360
10.1109/IROS.2012.6385694
10.1109/TCBB.2006.4,0504378
10.1109/Humanoids.2011.6100882
10.1007/s10514-012-9294-z
10.1109/HUMANOIDS.2015.7363480
10.1109/TRO.2004.840898
10.1109/ROBOT.2008.4543459
10.1109/ICRA.2011.5980156
10.1007/s10514-013-9341-4
10.1109/TRO.2007.904896
10.1145/1576246.1531386
10.1002/rob.21571
10.1145/1833351.1781157
10.1177/02783640122067309
10.1109/ICRA.2012.6224628
10.1177/0959651811402275
10.1109/IRDS.2002.1041675
10.1177/027836498900800603
10.1109/IROS.2015.7353668
10.1007/s12532-014-0071-1
10.1109/IROS.2010.5648837
ContentType Journal Article
Copyright Springer Science+Business Media New York 2016
Autonomous Robots is a copyright of Springer, (2016). All Rights Reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer Science+Business Media New York 2016
– notice: Autonomous Robots is a copyright of Springer, (2016). All Rights Reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
F28
FR3
HCIFZ
JQ2
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
S0W
1XC
VOOES
DOI 10.1007/s10514-016-9573-1
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Database (Proquest)
ProQuest Central
Advanced Technologies & Aerospace Collection
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DELNET Engineering & Technology Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
DatabaseTitleList
Technology Collection

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7527
EndPage 272
ExternalDocumentID oai_HAL_hal_01137225v3
10_1007_s10514_016_9573_1
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23N
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAG
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADMVV
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEKVL
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SCV
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8W
Z92
ZMTXR
_50
~02
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
7SC
7SP
7TB
8FD
DWQXO
F28
FR3
JQ2
L7M
L~C
L~D
PQEST
PQQKQ
PQUKI
PRINS
1XC
AAYZH
VOOES
ID FETCH-LOGICAL-c459t-1809e9e3e04b122c8a769181a18e04fd9bdd73f2809866783fafdbd704c874893
IEDL.DBID AEJHL
ISSN 0929-5593
IngestDate Tue Oct 15 15:06:55 EDT 2024
Thu Oct 10 19:44:21 EDT 2024
Fri Sep 13 01:22:47 EDT 2024
Sat Dec 16 12:10:27 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Multi-contact inter-action
Quadruped locomotion
Whole-body control
Ground Reaction Force optimization
Force control
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c459t-1809e9e3e04b122c8a769181a18e04fd9bdd73f2809866783fafdbd704c874893
ORCID 0000-0003-1275-2851
OpenAccessLink https://hal.science/hal-01137225
PQID 2259042607
PQPubID 326361
PageCount 14
ParticipantIDs hal_primary_oai_HAL_hal_01137225v3
proquest_journals_2259042607
crossref_primary_10_1007_s10514_016_9573_1
springer_journals_10_1007_s10514_016_9573_1
PublicationCentury 2000
PublicationDate 2017-01-01
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Autonomous robots
PublicationTitleAbbrev Auton Robot
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References de Lasa, M., Mordatch, I., Hertzmann, A., et al. (2010). Feature-based locomotion controllers. ACM Transactions on Graphics, 29(4), 1. doi:10.1145/1833351.1781157, http://portal.acm.org/citation.cfm?doid=1833351.1781157.
Gautier, M. (1991). Numerical calculation of the base inertial parameters of robots. Journal of Robotic Systems, 8(4), 1020–1025, doi:10.1109/ROBOT.1990.126126, http://onlinelibrary.wiley.com/doi/10.1002/rob.4620080405/abstract.
Semini, C., Tsagarakis, N. G., Guglielmino, E., Focchi, M., Cannella, F., Caldwell, D. G., et al. (2011). Design of HyQ—A hydraulically and electrically actuated quadruped robot. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 225(6), 831–849. doi:10.1177/0959651811402275.
Frigerio, M., Buchli, J., Caldwell, D. G., et al. (2012). Code generation of algebraic quantities for robot controllers. 2012 IEEE/RSJ international conference on intelligent robots and systems (pp. 2346–2351). doi:10.1109/IROS.2012.6385694, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6385694.
Buchli, J., Kalakrishnan, M., Pastor, P., & Schaal, S., (2009). Compliant quadruped locomotion over rough terrain. In IEEE/RSJ international conference on intelligent robots and systems 2009 IROS 2009. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5354681.
Righetti, L., Buchli, J., Mistry, M., Kalakrishnan, M., Schaal, S., et al. (2013). Optimal distribution of contact forces with inverse dynamics control. The International Journal of Robotics Research. doi:10.1177/0278364912469821.
Hutter, M., Hoepflinger, M., & Gehring, C. (2012). Hybrid operational space control for compliant legged systems. In Proceedings of robotics: Science and systems, 2012. http://roboticsproceedings.org/rss08/p17.pdf.
Lee, S. H., & Goswami, A. (2012). A momentum-based balance controller for humanoid robots on non-level and non-stationary ground. Autonomous Robots, 33(4), 399–414. doi:10.1007/s10514-012-9294-z.
Feng, S., Xinjilefu, X., Atkeson, C. G., & Kim, J. (2015). Optimization based controller design and implementation for the Atlas robot in the DARPA robotics challenge finals. In 2015 IEEE-RAS international conference on humanoid robots.
Lee, S., & Goswami, A. (2010). Ground reaction force control at each foot: A momentum-based humanoid balance controller for non-level and non-stationary ground. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2010 (pp. 3157–3162). doi:10.1109/IROS.2010.5650416, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5650416, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5650416.
Ott, C., Roa, M. A., Hirzinger, G., et al. (2011). Posture and balance control for biped robots based on contact force optimization. In 2011 11th IEEE-RAS international conference on humanoid robots (pp. 26–33). doi:10.1109/Humanoids.2011.6100882, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6100882.
Gehring, C., Coros, S., Hutter, M., Bloesch, M., Hoepflinger, M., & Siegwart, R. (2013). Control of dynamic gaits for a quadrupedal robot. In IEEE international conference on robotics and automation (ICRA). https://infoscience.epfl.ch/record/189756.
Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., & Hirukawa, H. (2003). Resolved momentum control : humanoid motion planning based on the linear and angular momentum National Institute of Advanced Industrial Science and Technology (AIST). In 2003 IEEE/RSJ international conference on intelligent robots and systems (IROS), October (pp. 1644–1650).
Hyon, S., Hale, J., Cheng, G., et al. (2007). Full-body compliant humanhumanoid interaction: Balancing in the presence of unknown external forces. IEEE transactions on robotics, 23(5), 884–898. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4339533.
Cheng, G., Hyon, S. H., Ude, A., Morimoto, J., Hale, J. G., Hart, J., Nakanishi, J., Bentivegna, D., Hodgins, J., Atkeson, C., Mistry, M., Schaal. S., et al. (2008). CB: Exploring neuroscience with a humanoid research platform. In 2008 IEEE international conference on robotics and automation (pp. 1772–1773). doi:10.1109/ROBOT.2008.4543459, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4543459.
Kuindersma, S., Deits, R., Andr, M. F., Dai, H., Permenter, F., Pat, K., & Russ, M. (2016). Optimization-based locomotion planning, estimation, and control design for Atlas. Autonomous Robots, 40(3), 429–455.
JohnsonMShrewsburyBBertrandSWuTDuranDFloydMAbelesPStephenDMertinsNLesmanACarffJRifenburghWKavetiPStraatmanWSmithJGriffioenMLaytonBde BoerTKoolenTNeuhausPPrattJTeam IHMC’s lessons learned from the DARPA robotics challenge trialsInternational Journal of Field Robotics20153219220810.1002/rob.21571
Macchietto, A., & Shelton, C. R. (2009). Momentum control for balance. In ACM Transactions on graphics (TOG).
Schaal, S., (2001). The S L Simulation and Real-Time Control Software Package.
Pratt, J., Chew, C., Torres, A., Dilworth, P., Pratt, G., et al. (2001). Virtual model control: An intuitive approach for bipedal locomotion. The International Journal of Robotics Research, 20, 129–143. doi:10.1177/02783640122067309, http://ijr.sagepub.com/content/20/2/129.short.
Orin, D. E., Goswami, A., Lee, S. H., et al. (2013). Centroidal dynamics of a humanoid robot. Autonomous Robots, 35(2–3), 161–176. doi:10.1007/s10514-013-9341-4.
Armstrong, B. (1989). On finding exciting trajectories for identification experiments involving systems with nonlinear dynamics. The International Journal of Robotics Research, 8(6), 28–48. doi:10.1177/027836498900800603.
Lin, P. C., Komsuoglu, H., Koditschek, D., et al. (2005) A leg configuration measurement system for full-body pose estimates in a hexapod robot. IEEE Transactions on Robotics, 21(3), 411–422. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1435485.
SchumacherPMZanderigoEMorariMShort Papers200962256264
Righetti, L., Buchli, J., Mistry, M., Schaal, S., et al. (2011). Inverse dynamics control of floating-base robots with external constraints: A unified view. In 2011 IEEE international conference on robotics and automation (pp. 1085–1090). doi:10.1109/ICRA.2011.5980156, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5980156.
Bloesch, M., Hutter, M., Hoepflinger, M., Leutenegger, S., Gehring, C., Remy, C. D., & Siegwart, R. (2012). State estimation for legged robots-consistent fusion of leg kinematics and IMU. Robotics: Science and Systems. http://roboticsproceedings.org/rss08/p03.pdf.
Stephens, B. J., & Atkeson, C. G., (2010). Dynamic balance force control for compliant humanoid robots. 2010 IEEE/RSJ international conference on intelligent robots and systems (pp. 1248–1255). doi:10.1109/IROS.2010.5648837, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5648837.
Guennebaud, G., Furfaro, A., & Gaspero, L. D. (2011). eiquadprog.hh. http://www.diegm.uniud.it/digaspero/index.php/software.
Boaventura, T., Semini, C., Buchli, J., Frigerio, M., Focchi, M., & Caldwell, D. G., (2012). Dynamic torque control of a hydraulic quadruped robot. In 2012 IEEE international conference on robotics and automation (pp. 1889–1894). doi:10.1109/ICRA.2012.6224628, http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6224628.
BretlTLallSTesting static equilibrium for legged robotsIEEE Transactions on Robotics200824479480710.1109/TRO.2008.2001360
Mistry, M., Schaal, S., Yamane, K., et al. (2009). Inertial parameter estimation of floating base humanoid systems using partial force sensing. In IEEE international conference on humanoids 2009. http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5379531.
Jovic, J., Philipp, F., Escande, A., Ayusawa, K., Yoshida, E., Kheddar, A., Venture, G., et al. (2015). Identification of dynamics of humanoids : Systematic exciting motion generation. In IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 2173–2179). doi:10.1109/IROS.2015.7353668.
Gertz, E., & Wright, S. (2001). OOQP user guide. Mathematics and Computer Science Division Technical Memorandum. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.126.4765&rep=rep1&type=pdf.
Nishiwaki, K., Kagami, S., Kuniyoshi, Y., Inaba, M., & Inoue, H. (2002). Online generation of humanoid walking motion based on a fast generation method of motion pattern that follows desired ZMP. IEEE/RSJ international conference on intelligent robots and systems (Vol. 3, pp. 2684–2689). doi:10.1109/IRDS.2002.1041675.
Ferreau, H. J., Kirches, C., & Potschka, A. (2013). qpOASES: A parametric active-set algorithm for quadratic programming. Mathematical Programming Computation. doi:10.1007/s12532-014-0071-1.
T Bretl (9573_CR4) 2008; 24
9573_CR8
9573_CR30
9573_CR9
9573_CR6
9573_CR7
9573_CR12
9573_CR34
9573_CR11
9573_CR10
9573_CR32
9573_CR31
9573_CR16
9573_CR15
9573_CR14
9573_CR13
9573_CR35
9573_CR19
9573_CR18
9573_CR23
9573_CR22
PM Schumacher (9573_CR33) 2009; 6
M Johnson (9573_CR17) 2015; 32
9573_CR21
9573_CR20
9573_CR27
9573_CR26
9573_CR25
9573_CR24
9573_CR29
9573_CR28
9573_CR1
9573_CR5
9573_CR2
9573_CR3
References_xml – ident: 9573_CR11
  doi: 10.1109/ROBOT.1990.126126
– ident: 9573_CR20
  doi: 10.1007/s10514-015-9479-3
– ident: 9573_CR14
– ident: 9573_CR12
– ident: 9573_CR2
– ident: 9573_CR21
  doi: 10.1109/IROS.2010.5650416
– ident: 9573_CR31
  doi: 10.1177/0278364912469821
– volume: 24
  start-page: 794
  issue: 4
  year: 2008
  ident: 9573_CR4
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2008.2001360
  contributor:
    fullname: T Bretl
– ident: 9573_CR10
  doi: 10.1109/IROS.2012.6385694
– volume: 6
  start-page: 256
  issue: 2
  year: 2009
  ident: 9573_CR33
  publication-title: Short Papers
  doi: 10.1109/TCBB.2006.4,0504378
  contributor:
    fullname: PM Schumacher
– ident: 9573_CR25
– ident: 9573_CR28
  doi: 10.1109/Humanoids.2011.6100882
– ident: 9573_CR22
  doi: 10.1007/s10514-012-9294-z
– ident: 9573_CR19
– ident: 9573_CR8
  doi: 10.1109/HUMANOIDS.2015.7363480
– ident: 9573_CR32
– ident: 9573_CR23
  doi: 10.1109/TRO.2004.840898
– ident: 9573_CR6
  doi: 10.1109/ROBOT.2008.4543459
– ident: 9573_CR13
– ident: 9573_CR15
– ident: 9573_CR30
  doi: 10.1109/ICRA.2011.5980156
– ident: 9573_CR27
  doi: 10.1007/s10514-013-9341-4
– ident: 9573_CR16
  doi: 10.1109/TRO.2007.904896
– ident: 9573_CR24
  doi: 10.1145/1576246.1531386
– volume: 32
  start-page: 192
  year: 2015
  ident: 9573_CR17
  publication-title: International Journal of Field Robotics
  doi: 10.1002/rob.21571
  contributor:
    fullname: M Johnson
– ident: 9573_CR7
  doi: 10.1145/1833351.1781157
– ident: 9573_CR29
  doi: 10.1177/02783640122067309
– ident: 9573_CR3
  doi: 10.1109/ICRA.2012.6224628
– ident: 9573_CR5
– ident: 9573_CR34
  doi: 10.1177/0959651811402275
– ident: 9573_CR26
  doi: 10.1109/IRDS.2002.1041675
– ident: 9573_CR1
  doi: 10.1177/027836498900800603
– ident: 9573_CR18
  doi: 10.1109/IROS.2015.7353668
– ident: 9573_CR9
  doi: 10.1007/s12532-014-0071-1
– ident: 9573_CR35
  doi: 10.1109/IROS.2010.5648837
SSID ssj0009700
Score 2.5989406
Snippet Research into legged robotics is primarily motivated by the prospects of building machines that are able to navigate in challenging and complex environments...
SourceID hal
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 259
SubjectTerms Actuators
Artificial Intelligence
Computer Imaging
Computer Science
Contact force
Control
Engineering
Locomotion
Mechatronics
Optimization
Pattern Recognition and Graphics
Robot dynamics
Robotics
Robotics and Automation
Robots
Slippage
Terrain
Torque
Vision
Walking
Title High-slope terrain locomotion for torque-controlled quadruped robots
URI https://link.springer.com/article/10.1007/s10514-016-9573-1
https://www.proquest.com/docview/2259042607
https://hal.science/hal-01137225
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90e9EHv8XplCI-KZG1TZv2cbqNKmMIKvhW8lUERzvX1b_fS9duU_RBn1qSIw2XNL-75PI7gAuR2BLH2icJp5LQhCnCA1eQRFBuO0JIryTSjh7Z6CXo9Q1NjrPYukjfrusTyXKhXrnrhtiOnq9PQo-5BD2eJkKP5zWg2e3fR8Ml1W518QSBn6C97NZnmT818gWN1l9NLOSKofntbLSEnMH2fzq7A1uVgWl15zNiF9Z0ugebK7SD-9AzwR0kH2cTbaFaTZIICzEtm2f0sdCMtdATx96RKpB9rJX1XnA1LSb4Ns1ENssP4HnQf7qNSJVNgUjqhTNiiLp0qF3docJ2HBlw5oeI79wOsChRoVCKuYmDYoGPEOYmPFFCsQ6VQUlRcwiNNEv1EVjot8mOo5X2PU5Djl4QNuRoW_o08BXzWnBZazWezEkz4iU9slFNbALLjGpiuwXnqPeFnKG7jrrD2JTh2uMyXHA-3Ba062GJq58sj7EmLBn2WQuu6nFYVv_6xeM_SZ_AhmOgvNx2aUNjNi30KaznqjirZh4-B3ejm4dPFu7SEg
link.rule.ids 230,315,782,786,887,27935,27936,41075,42144,48346,48349,48359,49651,49654,49664,52155
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV09T8MwED3RdgAGvhGBAhFiAllqYidOxopSFVG6UKR2iuzYEUPVlKbh93NOE1oQDLBF9smxzo7fXXz3DuBaJk6Ma-2TRLCYsIQrIgIqSSKZcFwpY68g0u4988Eo6Nwbmhxa5cIU0e7VlWRxUq8luyG4o-vrk9DjlKDL0zBk56wOjfZoPO6suHbLzBNEfoIGM60uM38a5Asc1V5NMOSapfntcrTAnO7uv2a7BzuliWm3l3tiHzb09AC214gHD6FjwjtINkln2kbFmjIRNqJauqzpY6Mha6MvjtMjZSj7RCv7LRdqns_waZ7KdJEdwUv3fnjXI2U9BRIzL1wQQ9WlQ011i0nHdeNAcD9EhBdOgE2JCqVSnCYuigU-ghhNRKKk4i0WBwVJzTHUp-lUn4CNnlvccrXSvidYKNAPwoFc7cQ-C3zFPQtuKrVGsyVtRrQiSDaqiUxomVFN5FhwhYr_lDOE1712PzJtePpQjkfOO7WgWa1LVH5mWYQ9YcGxzy24rdZh1f3rG0__JH0Jm73hUz_qPwwez2DLNcBe_IRpQn0xz_U51DKVX5Tb8AN2BNSy
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED90A9EHv8Xq1CI-KWHrZ9onGW5zwzEEJ_hWkibBh9HWbfXv99K1boo-iG8lCWm4S_K7S-5-AbjiyopR1z5RzI2Jq6ggLHA4Udxlls157BVE2v0nOnoJOl1Nk3Nb5cIU0e7VleQip0GzNCXzZiZUcyXxDYEe3WCfhB51CLo_dX0qhlO83h6M73tL3t0yCwWtAILGs1NdbP7UyRdoWn_VgZErVue3i9ICf3o7_x75LmyXpqfZXsyVPViTyT5srRASHkBHh32Q2STNpIkC189HmIh26eKtHxMNXBN9dBwqKUPcJ1KYbzkT0zzDr2nK0_nsEJ573fFdn5TvLJDY9cI50RReMpSObLncsu04YNQPEfmZFWCREiEXgjrKxmaBj-DmKKYEF7TlxkFBXnMEtSRN5DGY6NHFLVsK6XvMDRn6R9iRLa3YdwNfUM-A60rEUbag04iWxMlaNJEOOdOiiSwDLlEJn-00EXa_PYx0Ge5KDsWt6N0xoFHpKCqX3yzCmrDg3qcG3FQ6WVb_-seTP7W-gI3HTi8aDkYPp7Bpa7wvzmYaUJtPc3kG6zORn5cz8gNkDd1J
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-slope+terrain+locomotion+for+torque-controlled+quadruped+robots&rft.jtitle=Autonomous+robots&rft.au=Focchi%2C+Michele&rft.au=del+Prete%2C+Andrea&rft.au=Havoutis%2C+Ioannis&rft.au=Featherstone%2C+Roy&rft.date=2017-01-01&rft.pub=Springer+US&rft.issn=0929-5593&rft.eissn=1573-7527&rft.volume=41&rft.issue=1&rft.spage=259&rft.epage=272&rft_id=info:doi/10.1007%2Fs10514-016-9573-1&rft.externalDocID=10_1007_s10514_016_9573_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-5593&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-5593&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-5593&client=summon