Hydrophobic photolabeling as a new method for structural characterization of molten globule and related protein folding intermediates

Recent advances in attempts to unravel the protein folding mechanism have indicated the need to identify the folding intermediates. Despite their transient nature, in a number of cases it has been possible to detect and characterize some of the equilibrium intermediates, for example, the molten glob...

Full description

Saved in:
Bibliographic Details
Published in:Protein science Vol. 8; no. 5; pp. 1099 - 1103
Main Authors: D'SILVA, PATRICK R., LALA, ANIL K.
Format: Journal Article
Language:English
Published: Bristol Cambridge University Press 01-05-1999
Cold Spring Harbor Laboratory Press
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recent advances in attempts to unravel the protein folding mechanism have indicated the need to identify the folding intermediates. Despite their transient nature, in a number of cases it has been possible to detect and characterize some of the equilibrium intermediates, for example, the molten globule (MG) state. The key features of the MG state are retention of substantial secondary structure of the native state, considerable loss of tertiary structure leading to increased hydrophobic exposure, and a compact structure. NMR, circular dichroism, and fluorescence spectroscopies have been most useful in characterizing such intermediates. We report here a new method for structural characterization of the MG state that involves probing the exposed hydrophobic sites with a hydrophobic photoactivable reagent—2[3H]diazofluorene. This carbene-based reagent binds to hydrophobic sites, and on photolysis covalently attaches itself to the neighboring amino acid side chains. The reagent photolabels α-lactalbumin as a function of pH (3–7.4), the labeling at neutral pH being negligible and maximal at pH 3. Chemical and proteolytic fragmentation of the photolabeled protein followed by peptide sequencing permitted identification of the labeled residues. The results obtained indicate that the sequence corresponding to B (23–34) and C (86–98) helix of the native structure are extensively labeled. The small β-domain (40–50) is poorly labeled, Val42 being the only residue that is significantly labeled. Our data, like NMR data, indicate that in the MG state of α-lactalbumin, the α-domain has a greater degree of persistent structure than the β-domain. However, unlike the NMR method, the photolabeling method is not limited by the size of the protein and can provide information on several new residues, for example, Leu115. The current method using DAF thus allows identification of stable and hydrophobic exposed regions in folding intermediates as the reagent binds and on photolysis covalently links to these regions.
AbstractList Recent advances in attempts to unravel the protein folding mechanism have indicated the need to identify the folding intermediates. Despite their transient nature, in a number of cases it has been possible to detect and characterize some of the equilibrium intermediates, for example, the molten globule (MG) state. The key features of the MG state are retention of substantial secondary structure of the native state, considerable loss of tertiary structure leading to increased hydrophobic exposure, and a compact structure. NMR, circular dichroism, and fluorescence spectroscopies have been most useful in characterizing such intermediates. We report here a new method for structural characterization of the MG state that involves probing the exposed hydrophobic sites with a hydrophobic photoactivable reagent--2[3H]diazofluorene. This carbene-based reagent binds to hydrophobic sites, and on photolysis covalently attaches itself to the neighboring amino acid side chains. The reagent photolabels alpha-lactalbumin as a function of pH (3-7.4), the labeling at neutral pH being negligible and maximal at pH 3. Chemical and proteolytic fragmentation of the photolabeled protein followed by peptide sequencing permitted identification of the labeled residues. The results obtained indicate that the sequence corresponding to B (23-34) and C (86-98) helix of the native structure are extensively labeled. The small beta-domain (40-50) is poorly labeled, Val42 being the only residue that is significantly labeled. Our data, like NMR data, indicate that in the MG state of alpha-lactalbumin, the alpha-domain has a greater degree of persistent structure than the beta-domain. However, unlike the NMR method, the photolabeling method is not limited by the size of the protein and can provide information on several new residues, for example, Leu115. The current method using DAF thus allows identification of stable and hydrophobic exposed regions in folding intermediates as the reagent binds and on photolysis covalently links to these regions.
Recent advances in attempts to unravel the protein folding mechanism have indicated the need to identify the folding intermediates. Despite their transient nature, in a number of cases it has been possible to detect and characterize some of the equilibrium intermediates, for example, the molten globule (MG) state. The key features of the MG state are retention of substantial secondary structure of the native state, considerable loss of tertiary structure leading to increased hydrophobic exposure, and a compact structure. NMR, circular dichroism, and fluorescence spectroscopies have been most useful in characterizing such intermediates. We report here a new method for structural characterization of the MG state that involves probing the exposed hydrophobic sites with a hydrophobic photoactivable reagent—2[ 3 H]diazofluorene. This carbene‐based reagent binds to hydrophobic sites, and on photolysis covalently attaches itself to the neighboring amino acid side chains. The reagent photolabels α‐lactalbumin as a function of pH (3–7.4), the labeling at neutral pH being negligible and maximal at pH 3. Chemical and proteolytic fragmentation of the photolabeled protein followed by peptide sequencing permitted identification of the labeled residues. The results obtained indicate that the sequence corresponding to B (23–34) and C (86–98) helix of the native structure are extensively labeled. The small β‐domain (40–50) is poorly labeled, Val42 being the only residue that is significantly labeled. Our data, like NMR data, indicate that in the MG state of α‐lactalbumin, the α‐domain has a greater degree of persistent structure than the β‐domain. However, unlike the NMR method, the photolabeling method is not limited by the size of the protein and can provide information on several new residues, for example, Leu115. The current method using DAF thus allows identification of stable and hydrophobic exposed regions in folding intermediates as the reagent binds and on photolysis covalently links to these regions.
Recent advances in attempts to unravel the protein folding mechanism have indicated the need to identify the folding intermediates. Despite their transient nature, in a number of cases it has been possible to detect and characterize some of the equilibrium intermediates, for example, the molten globule (MG) state. The key features of the MG state are retention of substantial secondary structure of the native state, considerable loss of tertiary structure leading to increased hydrophobic exposure, and a compact structure. NMR, circular dichroism, and fluorescence spectroscopies have been most useful in characterizing such intermediates. We report here a new method for structural characterization of the MG state that involves probing the exposed hydrophobic sites with a hydrophobic photoactivable reagent—2[3H]diazofluorene. This carbene-based reagent binds to hydrophobic sites, and on photolysis covalently attaches itself to the neighboring amino acid side chains. The reagent photolabels α-lactalbumin as a function of pH (3–7.4), the labeling at neutral pH being negligible and maximal at pH 3. Chemical and proteolytic fragmentation of the photolabeled protein followed by peptide sequencing permitted identification of the labeled residues. The results obtained indicate that the sequence corresponding to B (23–34) and C (86–98) helix of the native structure are extensively labeled. The small β-domain (40–50) is poorly labeled, Val42 being the only residue that is significantly labeled. Our data, like NMR data, indicate that in the MG state of α-lactalbumin, the α-domain has a greater degree of persistent structure than the β-domain. However, unlike the NMR method, the photolabeling method is not limited by the size of the protein and can provide information on several new residues, for example, Leu115. The current method using DAF thus allows identification of stable and hydrophobic exposed regions in folding intermediates as the reagent binds and on photolysis covalently links to these regions.
Recent advances in attempts to unravel the protein folding mechanism have indicated the need to identify the folding intermediates. Despite their transient nature, in a number of cases it has been possible to detect and characterize some of the equilibrium intermediates, for example, the molten globule (MG) state. The key features of the MG state are retention of substantial secondary structure of the native state, considerable loss of tertiary structure leading to increased hydrophobic exposure, and a compact structure. NMR, circular dichroism, and fluorescence spectroscopies have been most useful in characterizing such intermediates. We report here a new method for structural characterization of the MG state that involves probing the exposed hydrophobic sites with a hydrophobic photoactivable reagent—2[3H]diazofluorene. This carbene‐based reagent binds to hydrophobic sites, and on photolysis covalently attaches itself to the neighboring amino acid side chains. The reagent photolabels α‐lactalbumin as a function of pH (3–7.4), the labeling at neutral pH being negligible and maximal at pH 3. Chemical and proteolytic fragmentation of the photolabeled protein followed by peptide sequencing permitted identification of the labeled residues. The results obtained indicate that the sequence corresponding to B (23–34) and C (86–98) helix of the native structure are extensively labeled. The small β‐domain (40–50) is poorly labeled, Val42 being the only residue that is significantly labeled. Our data, like NMR data, indicate that in the MG state of α‐lactalbumin, the α‐domain has a greater degree of persistent structure than the β‐domain. However, unlike the NMR method, the photolabeling method is not limited by the size of the protein and can provide information on several new residues, for example, Leu115. The current method using DAF thus allows identification of stable and hydrophobic exposed regions in folding intermediates as the reagent binds and on photolysis covalently links to these regions.
Author D'SILVA, PATRICK R.
LALA, ANIL K.
AuthorAffiliation Department of Chemistry and Biotechnology Center, Indian Institute of Technology Bombay, Powai
AuthorAffiliation_xml – name: Department of Chemistry and Biotechnology Center, Indian Institute of Technology Bombay, Powai
Author_xml – sequence: 1
  givenname: PATRICK R.
  surname: D'SILVA
  fullname: D'SILVA, PATRICK R.
  organization: Biomembrane Laboratory, Department of Chemistry and Biotechnology Center, Indian Institute of Technology Bombay, Powai, Bombay 400 076, India
– sequence: 2
  givenname: ANIL K.
  surname: LALA
  fullname: LALA, ANIL K.
  organization: Biomembrane Laboratory, Department of Chemistry and Biotechnology Center, Indian Institute of Technology Bombay, Powai, Bombay 400 076, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/10338020$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFrFDEUxoNU7LZ68i45eZFZk8kkk1wEKWqFQkUUvIVM5s1uSiZZk4xlvft_m2UXqSCe3uF9-X3fy3eBzkIMgNBzStaUUvJ6l9dyzdeUKPUIrWgnVCOV-HaGVkQJ2kgm5Dm6yPmOENLRlj1B55QwJklLVujX9X5McbeNg7O4jhK9GcC7sMEmY4MD3OMZyjaOeIoJ55IWW5ZkPLZbk4wtkNxPU1wMOE54jr5AwBsfh8UDNmHECbwpMOJdigVcqBQ_Hugu1KczjK5u81P0eDI-w7PTvERf37_7cnXd3Nx--Hj19qaxHVeqGZSaOtNzztlEB2qkakdLho5IOxkB1PLeMtEb0fGeMjH1UnBh-r4FDrK1I7tEb47c3TJUbwuh1FP0LrnZpL2Oxum_N8Ft9Sb-0C3tOsZoBbw8AVL8vkAuenbZgvcmQFyyFqq6MdFW4auj0KaYc4Lpjwkl-lCb3mUtNdeH2qr6xcNcD7THnqqAHQX3zsP-fyz96fOtJPyEbU4hzDwkN25A38UlhfrF_4zxGwc2uFo
CitedBy_id crossref_primary_10_1074_jbc_275_16_11771
crossref_primary_10_1016_j_jmb_2004_08_005
crossref_primary_10_1063_1_1409360
crossref_primary_10_1016_j_jmb_2009_09_058
crossref_primary_10_1002_pro_132571
crossref_primary_10_1007_s10967_009_0023_9
Cites_doi 10.1096/fasebj.10.1.8566530
10.1021/bi00058a003
10.1111/j.1462-5822.2007.00901.x
10.1002/bip.360310111
10.1021/ja00029a016
10.1016/S0021-9258(19)88643-X
10.1002/pro.5560040813
10.1021/bi00072a025
10.1146/annurev.bi.59.070190.003215
10.1016/0014-5793(83)80010-6
10.1006/jmbi.1996.0666
10.1006/jmbi.1995.0579
10.1016/S0021-9258(18)47555-2
10.1016/S0065-3233(08)60546-X
10.1074/jbc.272.44.27722
10.1021/bi00039a015
10.1007/BF02863628
10.1021/ja00361a014
10.1016/0003-2697(92)90492-P
10.1038/352036a0
10.1038/nsb0897-630
10.1016/S0969-2126(96)00075-5
10.1016/0003-2697(87)90587-2
10.1111/j.1470-8744.1990.tb00133.x
ContentType Journal Article
Copyright 1999 The Protein Society
Copyright © 1999 The Protein Society
Copyright_xml – notice: 1999 The Protein Society
– notice: Copyright © 1999 The Protein Society
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1110/ps.8.5.1099
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1469-896X
EndPage 1103
ExternalDocumentID 10_1110_ps_8_5_1099
10338020
PRO8051099
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Department of Science and Technology, New Delhi
GroupedDBID ---
.GJ
05W
0R~
123
1L6
1OC
24P
29P
2WC
31~
33P
3SF
3WU
4.4
52U
53G
5RE
6TJ
8-0
8-1
8UM
A00
A8Z
AAESR
AAEVG
AAHHS
AAIHA
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCUV
ABGDZ
ABHUG
ABLJU
ABMYL
ABWRO
ACAHQ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACIWK
ACPOU
ACPRK
ACQPF
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AHBTC
AHMBA
AIAGR
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AOIJS
ATUGU
AUFTA
AZVAB
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BOGZA
BRXPI
C1A
C45
CAG
COF
CS3
DCZOG
DIK
DRFUL
DRSTM
DU5
E3Z
EBD
EBS
EJD
EMOBN
ESTFP
F5P
G-S
GODZA
GX1
HH5
HYE
HZ~
IH2
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
NNB
O66
O9-
OK1
OVD
P2P
P2W
P4E
PQQKQ
QRW
RCA
RIG
ROL
RPM
RWI
SJN
SUPJJ
SV3
TEORI
TR2
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WOQ
WXSBR
WYISQ
WYJ
XV2
Y6R
YKV
ZGI
ZXP
ZZTAW
~02
~S-
AITYG
HGLYW
OIG
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c4599-b99f4a75553f1b1a892dc0b408cfa6e1c57c367a6457136f78656a772e5e82cd3
IEDL.DBID RPM
ISSN 0961-8368
IngestDate Tue Sep 17 21:31:02 EDT 2024
Sat Aug 17 02:36:51 EDT 2024
Thu Nov 21 22:26:00 EST 2024
Sat Sep 28 07:34:28 EDT 2024
Sat Aug 24 00:56:44 EDT 2024
Wed Mar 13 05:52:05 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords protein folding intermediates
molten globule state
diazofluorene
bovine α-lactalbumin
hydrophobic photolabeling
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4599-b99f4a75553f1b1a892dc0b408cfa6e1c57c367a6457136f78656a772e5e82cd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1110/ps.8.5.1099
PMID 10338020
PQID 69772362
PQPubID 23479
PageCount 5
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_2144331
proquest_miscellaneous_69772362
crossref_primary_10_1110_ps_8_5_1099
pubmed_primary_10338020
wiley_primary_10_1110_ps_8_5_1099_PRO8051099
cambridge_journals_10_1110_ps_8_5_1099
PublicationCentury 1900
PublicationDate 1999-05-01
PublicationDateYYYYMMDD 1999-05-01
PublicationDate_xml – month: 05
  year: 1999
  text: 1999-05-01
  day: 01
PublicationDecade 1990
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
– name: United States
PublicationTitle Protein science
PublicationTitleAlternate Protein Sci
PublicationYear 1999
Publisher Cambridge University Press
Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cambridge University Press
– name: Cold Spring Harbor Laboratory Press
References 1991; 352
1987; 262
1990; 12
1987; 166
1990; 59
1997; 272
1992; 267
1995; 34
1991; 31
1992; 207
1996; 264
1995; 253
1995; 4
1970; 227
1997; 4
1996; 10
1983; 105
1984; 93
1983; 164
1995; 47
1993; 32
1992; 114
1996; 4
1984; 23B
1973; 1
7548009 - Biochemistry. 1995 Oct 3;34(39):12596-604
8980675 - J Mol Biol. 1996 Dec 13;264(4):643-9
2449095 - Anal Biochem. 1987 Nov 1;166(2):368-79
8561052 - Adv Protein Chem. 1995;47:83-229
8504087 - Biochemistry. 1993 Jun 1;32(21):5681-91
9346914 - J Biol Chem. 1997 Oct 31;272(44):27722-9
8520481 - Protein Sci. 1995 Aug;4(8):1553-62
5432063 - Nature. 1970 Aug 15;227(5259):680-5
7473740 - J Mol Biol. 1995 Nov 10;253(5):651-7
2197986 - Annu Rev Biochem. 1990;59:631-60
2288716 - Biotechnol Appl Biochem. 1990 Oct;12(5):586-94
3597374 - J Biol Chem. 1987 Jun 15;262(17):8242-51
1489083 - Anal Biochem. 1992 Nov 15;207(1):11-8
8439536 - Biochemistry. 1993 Feb 23;32(7):1707-18
1676490 - Nature. 1991 Jul 4;352(6330):36-42
8805552 - Structure. 1996 Jun 15;4(6):691-703
6317443 - FEBS Lett. 1983 Nov 28;164(1):21-4
9253412 - Nat Struct Biol. 1997 Aug;4(8):630-4
2025683 - Biopolymers. 1991 Jan;31(1):119-28
1400308 - J Biol Chem. 1992 Oct 5;267(28):19914-8
8566530 - FASEB J. 1996 Jan;10(1):102-9
Anjaneyulu PSR (e_1_2_1_3_1) 1984; 23
Lala AK (e_1_2_1_14_1) 1992; 267
e_1_2_1_20_1
e_1_2_1_23_1
e_1_2_1_24_1
e_1_2_1_22_1
e_1_2_1_27_1
e_1_2_1_25_1
e_1_2_1_26_1
Baron WJ (e_1_2_1_5_1) 1973
Anjaneyulu PSR (e_1_2_1_4_1) 1984; 93
e_1_2_1_7_1
Pradhan D (e_1_2_1_21_1) 1987; 262
e_1_2_1_8_1
e_1_2_1_6_1
e_1_2_1_12_1
e_1_2_1_13_1
e_1_2_1_10_1
e_1_2_1_2_1
e_1_2_1_11_1
e_1_2_1_16_1
e_1_2_1_17_1
e_1_2_1_15_1
e_1_2_1_9_1
e_1_2_1_18_1
e_1_2_1_19_1
References_xml – volume: 32
  start-page: 1707
  year: 1993
  end-page: 1718
  article-title: Structure and dynamics of the acid‐denatured molten globule state of α‐lactalbumin: A two‐dimensional NMR study
  publication-title: Biochemistry
– volume: 105
  start-page: 6833
  year: 1983
  end-page: 6845
  article-title: Chemical and physical properties of fluorenylidene: Equilibration of the singlet and triplet carbenes
  publication-title: J Am Chem Soc
– volume: 267
  start-page: 19914
  year: 1992
  end-page: 19918
  article-title: Increased exposure of hydrophobic surface in molten globule state of α‐lactalbumin. Fluorescence and hydrophobic photolabeling studies
  publication-title: J Biol Chem
– volume: 164
  start-page: 21
  year: 1983
  end-page: 24
  article-title: Molten‐globule state: A compact form of globular proteins with mobile side‐chains
  publication-title: FEBS Lett
– volume: 47
  start-page: 83
  year: 1995
  end-page: 229
  article-title: Molten globule and protein folding
  publication-title: Adv Protein Chem
– volume: 93
  start-page: 1229
  year: 1984
  end-page: 1235
  article-title: Design and synthesis of new fluorescent photoaffinity labels to study membrane structure
  publication-title: Proc Indian Acad Sci (Chem Sci)
– volume: 114
  start-page: 897
  year: 1992
  end-page: 905
  article-title: Laser flash photolysis of 9‐diazofluorene in low‐temperature glasses
  publication-title: J Am Chem Soc
– volume: 253
  start-page: 651
  year: 1995
  end-page: 657
  article-title: Different subdomains are most protected from hydrogen exchange in the molten globule and native states of human α‐lactalbumin
  publication-title: J Mol Biol
– volume: 32
  start-page: 5681
  year: 1993
  end-page: 5691
  article-title: Structure and stability of the molten globule state of guinea‐pig α‐lactalbumin: A hydrogen exchange study
  publication-title: Biochemistry
– volume: 12
  start-page: 586
  year: 1990
  end-page: 594
  article-title: Hydrophobic photolabeling in membranes: The human erythrocyte glucose transporter
  publication-title: Biotechnol Appl Biochem
– volume: 4
  start-page: 1553
  year: 1995
  end-page: 1562
  article-title: Kinetics of interaction of partially folded proteins with a hydrophobic dye: Evidence that molten globule character is maximal in early folding intermediates
  publication-title: Protein Sci
– volume: 59
  start-page: 631
  year: 1990
  end-page: 660
  article-title: Intermediates in the folding reactions of small proteins
  publication-title: Annu Rev Biochem
– volume: 166
  start-page: 368
  year: 1987
  end-page: 379
  article-title: Tris/tricne buffer system for separation of small polypeptides
  publication-title: Anal Biochem
– volume: 4
  start-page: 630
  year: 1997
  end-page: 634
  article-title: Aresidue‐specific NMR view of the non‐cooperative unfolding of a molten globule
  publication-title: Nat Struct Biol
– volume: 31
  start-page: 119
  year: 1991
  end-page: 128
  article-title: Study of the “molten globule” intermediate state in protein folding by a hydrophobic fluorescent probe
  publication-title: Biopolymers
– volume: 207
  start-page: 11
  year: 1992
  end-page: 18
  article-title: Microsequence analysis of electroblotted proteins. I. Comparison of electroblotting recoveries using different types of PVDF membranes
  publication-title: Anal Biochem
– volume: 4
  start-page: 691
  year: 1996
  end-page: 703
  article-title: Crystal structures of guinea‐pig, goat and bovine α‐lactalbumin highlight the enhanced conformational flexibility of regions that are significant for its action in lactose synthase
  publication-title: Structure
– volume: 23B
  start-page: 802
  year: 1984
  end-page: 807
  article-title: On the importance of indiscriminate insertion for photoactivable reagents—Photolysis of diazofluorene in mixed organic solvents
  publication-title: Indian J Chem
– volume: 272
  start-page: 27722
  year: 1997
  end-page: 27729
  article-title: The interaction of the molecular chaperone, α‐crystallin, with molten globule states of bovine α‐lactalbumin
  publication-title: J Biol Chem
– volume: 34
  start-page: 12596
  year: 1995
  end-page: 12604
  article-title: Probing the molten globule state of α‐lactalbumin by limited proteolysis
  publication-title: Biochemistry
– volume: 262
  start-page: 8242
  year: 1987
  end-page: 8251
  article-title: Photochemical labeling of membrane hydrophobic core of human erythrocytes using a new photoactivable reagent 2[ H]diazofluorene
  publication-title: J Biol Chem
– volume: 1
  start-page: 79
  year: 1973
  end-page: 84
– volume: 10
  start-page: 102
  year: 1996
  end-page: 109
  article-title: The molten globule state of α‐lactalbumin
  publication-title: FASEB J
– volume: 352
  start-page: 36
  year: 1991
  end-page: 42
  article-title: Chaperonin‐mediated protein folding at the surface of groEL through a “molten globule”‐like intermediate
  publication-title: Nature
– volume: 264
  start-page: 643
  year: 1996
  end-page: 649
  article-title: Dominant forces in the recognition of a transient folding intermediate of α‐lactalbumin by GroEL
  publication-title: J Mol Biol
– volume: 227
  start-page: 680
  year: 1970
  end-page: 685
  article-title: Cleavage of structural proteins during the assembly of the head of bacteriophage T4
  publication-title: Nature
– ident: e_1_2_1_11_1
  doi: 10.1096/fasebj.10.1.8566530
– ident: e_1_2_1_2_1
  doi: 10.1021/bi00058a003
– volume: 23
  start-page: 802
  year: 1984
  ident: e_1_2_1_3_1
  article-title: On the importance of indiscriminate insertion for photoactivable reagents—Photolysis of diazofluorene in mixed organic solvents
  publication-title: Indian J Chem
  contributor:
    fullname: Anjaneyulu PSR
– ident: e_1_2_1_12_1
  doi: 10.1111/j.1462-5822.2007.00901.x
– ident: e_1_2_1_27_1
  doi: 10.1002/bip.360310111
– ident: e_1_2_1_23_1
  doi: 10.1021/ja00029a016
– volume: 267
  start-page: 19914
  year: 1992
  ident: e_1_2_1_14_1
  article-title: Increased exposure of hydrophobic surface in molten globule state of α‐lactalbumin. Fluorescence and hydrophobic photolabeling studies
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)88643-X
  contributor:
    fullname: Lala AK
– ident: e_1_2_1_7_1
  doi: 10.1002/pro.5560040813
– ident: e_1_2_1_6_1
  doi: 10.1021/bi00072a025
– ident: e_1_2_1_10_1
  doi: 10.1146/annurev.bi.59.070190.003215
– ident: e_1_2_1_18_1
  doi: 10.1016/0014-5793(83)80010-6
– ident: e_1_2_1_9_1
  doi: 10.1006/jmbi.1996.0666
– ident: e_1_2_1_26_1
  doi: 10.1006/jmbi.1995.0579
– volume: 262
  start-page: 8242
  year: 1987
  ident: e_1_2_1_21_1
  article-title: Photochemical labeling of membrane hydrophobic core of human erythrocytes using a new photoactivable reagent 2[3H]diazofluorene
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(18)47555-2
  contributor:
    fullname: Pradhan D
– ident: e_1_2_1_22_1
  doi: 10.1016/S0065-3233(08)60546-X
– ident: e_1_2_1_15_1
  doi: 10.1074/jbc.272.44.27722
– ident: e_1_2_1_20_1
  doi: 10.1021/bi00039a015
– volume: 93
  start-page: 1229
  year: 1984
  ident: e_1_2_1_4_1
  article-title: Design and synthesis of new fluorescent photoaffinity labels to study membrane structure
  publication-title: Proc Indian Acad Sci (Chem Sci)
  doi: 10.1007/BF02863628
  contributor:
    fullname: Anjaneyulu PSR
– start-page: 79
  volume-title: Carbenes
  year: 1973
  ident: e_1_2_1_5_1
  contributor:
    fullname: Baron WJ
– ident: e_1_2_1_8_1
  doi: 10.1021/ja00361a014
– ident: e_1_2_1_17_1
  doi: 10.1016/0003-2697(92)90492-P
– ident: e_1_2_1_16_1
  doi: 10.1038/352036a0
– ident: e_1_2_1_25_1
  doi: 10.1038/nsb0897-630
– ident: e_1_2_1_19_1
  doi: 10.1016/S0969-2126(96)00075-5
– ident: e_1_2_1_24_1
  doi: 10.1016/0003-2697(87)90587-2
– ident: e_1_2_1_13_1
  doi: 10.1111/j.1470-8744.1990.tb00133.x
SSID ssj0004123
Score 1.6401689
Snippet Recent advances in attempts to unravel the protein folding mechanism have indicated the need to identify the folding intermediates. Despite their transient...
Recent advances in attempts to unravel the protein folding mechanism have indicated the need to identify the folding intermediates. Despite their transient...
SourceID pubmedcentral
proquest
crossref
pubmed
wiley
cambridge
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1099
SubjectTerms Animals
bovine α‐lactalbumin
Cattle
Chemistry, Physical - methods
Cyanogen Bromide - pharmacology
diazofluorene
Diazonium Compounds - pharmacology
Fluorenes - pharmacology
hydrophobic photolabeling
Lactalbumin - chemistry
Models, Molecular
molten globule state
Photolysis
Protein Folding
protein folding intermediates
SummonAdditionalLinks – databaseName: Wiley-Blackwell
  dbid: 33P
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagF7jwaIGGRzuHqidS1nHs2AcOVR_aE1Q8JG6W7djqSm2yathDfwD_m7GdXXZVhIR6yiF2lMQz429sf98QckCpobZmoVQ4v5c15xgHvWpKZaU1jFtWi8hGnn5tPv2Qp2dRJufjkguT9SFWC27RM1K8jg5u7FiFhMZTcfPhSB7xKIcU6XuYJyQCB7v4w4qkVS4kL2gpmZAjOw97f1jru66psDk33QGcd89NruPZNCGdP73npzwjT0YkCsfZdJ6TB77bJjvHHWbh17dwCOlsaFp03yaPTpZ14XbIr-lte9PPL3s7c4CXn5gc28RqBzOAAcTpkOtSAwJiyAK1UdwD3EocOnM_oQ9w3V8haoeoS7K48mC6FhK9xreQJCRmHT4lbZBBVLa4SUwXhMcvyPfzs28n03Is5lC6mitVWqVCbRrOOQvUUiNV1bqJxWFzwQhPHW8cE40RNce8WYRGItI0iP0997JyLXtJtrq-87sEqFNNsDTwKB8YKoFxMnBX-xaTH4xgk4IcroZUjy456JztTPR80FLzuPOuCnKwHG89z-Ief2-2v7QFjf867qiYzveLQQtEzxVCgIK8ypax9hjM_RGKF6TZsJlVgyjrvXmnm10mee8oYscYLcj7ZDP_ejN98eWzjGFVqdf_1_wNeZwFKOLRzbdkC23BvyMPh3axl7zoN4JPIC8
  priority: 102
  providerName: Wiley-Blackwell
Title Hydrophobic photolabeling as a new method for structural characterization of molten globule and related protein folding intermediates
URI https://www.cambridge.org/core/product/identifier/S0961836899984274/type/journal_article
https://onlinelibrary.wiley.com/doi/abs/10.1110%2Fps.8.5.1099
https://www.ncbi.nlm.nih.gov/pubmed/10338020
https://search.proquest.com/docview/69772362
https://pubmed.ncbi.nlm.nih.gov/PMC2144331
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2xvcAFQctHChQfqp7IbhzHiX2sllYrJMqKgsQtsh1bXWk3iRr20B_A_2bsJEtXRRy4JIdYjpUZz7yJZ94AnFKqqM6YiyX69zjjHO2glUUstdCKcc2y3FcjL66Lqx_i44WnyeFjLUxI2jd6Na3Xm2m9ugm5le3GzMY8sdny89zTfDFGZxOYIDYcQ_SxGJKmff_4nMaC5WIoykM3N2u7qZhyz6AUyEITDM8S3-j7D6vCvnd6ADkfZk7eR7TBJV0-g6cDliTn_ZqfwyNbH8LReY1x9OaOnJGQ3Rl-mx_C4_nY2e0Ifi3uqtumvWn0yhC8_cTwVoe6dKI6oggibdJ3liYIaUlPMevpOYjZ0Tv31ZukcWTTrBF3E88ssl1bouqKhAIZW5FAArGqcZZwxEU8N8VtqFVBgPsCvl9efJsv4qEdQ2wyLmWspXSZKjjnzFFNlZBpZRKdJcI4lVtqeGFYXqg84xj55q4QiBUVonfLrUhNxV7CQd3U9jUQamThNHXcEwC6NEdL57jJbIXhC9qgJIKznUjKYVN1ZR-vJGXblaLk_uxcRnA6yqtse3qOvw97P8qyxG_tz0RUbZttV-aIf1N04hG86iV7b5pePSIo9mS-G-CJufefoL4Ggu5BPyP4ELTjXysrl1-_CG8YpTz-7xe9gSc9m4TPw3wLB6gW9h1Mump7AhPGlidhh-D1-tPVb_iHFbQ
link.rule.ids 230,315,729,782,786,887,1408,27933,27934,46064,46488,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3RcigXCi0fKR_1oeqJlHUcJ_YFqSqtFlFKBUXiZtmOra7UJquGPfQH8L8Z29llV0VIiFMOsaMknhm_sec9A-xRqqkpmc8lzu95yTnGQSfrXBphNOOGlVVgI4-_1mffxfvjIJPzbs6FSfoQiwW34BkxXgcHDwvSg5eHsrhpfyAOeNBDkmtwv6zQFAOFg53_5kXSIh0lX9FcsEoM_Dzs_nap87KqwursdAdy3q2cXEa0cUo62fzfj3kEDwcwSg6T9TyGe67dgu3DFhPx61uyT2J5aFx334KNo_nRcNvwc3zb3HTTy85MLMHLD8yPTSS2E90TTRCqk3Q0NUFMTJJGbdD3IHahD53on6Tz5Lq7QuBOgjTJ7MoR3TYkMmxcQ6KKxKTFp8Q9MhLELW4i2QUR8hP4dnJ8cTTOh_MccltyKXMjpS91zTlnnhqqhSwaOzLlSFivK0ctry2ral2VHFPnytcCwaZG-O-4E4Vt2FNYb7vWPQdCray9oZ4HBUFfVBgqPbelazD_wSA2ymB_MaZq8MpepYRnpKa9EoqHzXeZwd58wNU06Xv8udnu3BgU_uuwqaJb1816VSGALhAFZPAsmcbSYzD9RzSeQb1iNIsGQdl79U47uYwK30HHjjGawZtoNH97M3X-5bMIkVXKnX9rvgsb44tPp-r0w9nHF_Ag6VGESs6XsI524V7BWt_MXkeX-gWUZSRX
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMdHtEjAhUfLI7zqQ9UTKes4TuwDh6rtahGorHhI3CzbsdWV2mTVsId-AL43Yzu77KoICXHKIU6Ux8z4P7bnZ4B9SjU1JfO5xP49LznHOOhknUsjjGbcsLIK1ciTL_XZd3FyGjA575a1MIkPsRpwC54R43Vw8HnjBycPq-Lm_aE45AGHJLfgdolCPKDzGZv-LoukRdpJvqK5YJUYyvPw8rdrF69DFTY7pxuK8-bCyXVBG3uk8YP_fJeHcH-QouQo2c4juOXaHdg9ajENv7wmByQuDo2j7jtw93i5Mdwu_JxcN1fd_LwzM0vw8AOzYxPL2onuiSYo1EnamJqgIiaJUBvoHsSu6NCp-JN0nlx2FyjbSQCTLC4c0W1DYn2Na0hkSMxavEucISMBbXEVS11QHz-Gb-PTr8eTfNjNIbcllzI3UvpS15xz5qmhWsiisSNTjoT1unLU8tqyqtZVyTFxrnwtUGpqFP-OO1HYhj2B7bZr3TMg1MraG-p54Af6osJA6bktXYPZD4awUQYHq1-qBp_sVUp3RmreK6F4mHqXGewv_7eaJ7rHn5vtLW1B4bcOUyq6dd2iVxXK5wI1QAZPk2Ws3QaTf9TiGdQbNrNqELjem2fa2XnkeweKHWM0gzfRZv72ZGr6-ZMIcVXK5__WfA_uTE_G6uP7sw8v4F6CUYRlnC9hG83CvYKtvlm8jg71C_JLIv0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrophobic+photolabeling+as+a+new+method+for+structural+characterization+of+molten+globule+and+related+protein+folding+intermediates&rft.jtitle=Protein+science&rft.au=D%27Silva%2C+Patrick+R.&rft.au=Lala%2C+Anil+K.&rft.date=1999-05-01&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=0961-8368&rft.eissn=1469-896X&rft.volume=8&rft.issue=5&rft.spage=1099&rft.epage=1103&rft_id=info:doi/10.1110%2Fps.8.5.1099&rft.externalDBID=10.1110%252Fps.8.5.1099&rft.externalDocID=PRO8051099
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-8368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-8368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-8368&client=summon