Hydrophobic photolabeling as a new method for structural characterization of molten globule and related protein folding intermediates
Recent advances in attempts to unravel the protein folding mechanism have indicated the need to identify the folding intermediates. Despite their transient nature, in a number of cases it has been possible to detect and characterize some of the equilibrium intermediates, for example, the molten glob...
Saved in:
Published in: | Protein science Vol. 8; no. 5; pp. 1099 - 1103 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
Bristol
Cambridge University Press
01-05-1999
Cold Spring Harbor Laboratory Press |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Recent advances in attempts to unravel the protein
folding mechanism have indicated the need to identify the
folding intermediates. Despite their transient nature,
in a number of cases it has been possible to detect and
characterize some of the equilibrium intermediates, for
example, the molten globule (MG) state. The key features
of the MG state are retention of substantial secondary
structure of the native state, considerable loss of tertiary
structure leading to increased hydrophobic exposure, and
a compact structure. NMR, circular dichroism, and fluorescence
spectroscopies have been most useful in characterizing
such intermediates. We report here a new method for structural
characterization of the MG state that involves probing
the exposed hydrophobic sites with a hydrophobic photoactivable
reagent—2[3H]diazofluorene.
This carbene-based reagent binds to hydrophobic sites,
and on photolysis covalently attaches itself to the neighboring
amino acid side chains. The reagent photolabels α-lactalbumin
as a function of pH (3–7.4), the labeling at neutral
pH being negligible and maximal at pH 3. Chemical and proteolytic
fragmentation of the photolabeled protein followed by peptide
sequencing permitted identification of the labeled residues.
The results obtained indicate that the sequence corresponding
to B (23–34) and C (86–98) helix of the native
structure are extensively labeled. The small β-domain
(40–50) is poorly labeled, Val42 being the only residue
that is significantly labeled. Our data, like NMR data,
indicate that in the MG state of α-lactalbumin, the
α-domain has a greater degree of persistent structure
than the β-domain. However, unlike the NMR method,
the photolabeling method is not limited by the size of
the protein and can provide information on several new
residues, for example, Leu115. The current method using
DAF thus allows identification of stable and hydrophobic
exposed regions in folding intermediates as the reagent
binds and on photolysis covalently links to these regions. |
---|---|
AbstractList | Recent advances in attempts to unravel the protein folding mechanism have indicated the need to identify the folding intermediates. Despite their transient nature, in a number of cases it has been possible to detect and characterize some of the equilibrium intermediates, for example, the molten globule (MG) state. The key features of the MG state are retention of substantial secondary structure of the native state, considerable loss of tertiary structure leading to increased hydrophobic exposure, and a compact structure. NMR, circular dichroism, and fluorescence spectroscopies have been most useful in characterizing such intermediates. We report here a new method for structural characterization of the MG state that involves probing the exposed hydrophobic sites with a hydrophobic photoactivable reagent--2[3H]diazofluorene. This carbene-based reagent binds to hydrophobic sites, and on photolysis covalently attaches itself to the neighboring amino acid side chains. The reagent photolabels alpha-lactalbumin as a function of pH (3-7.4), the labeling at neutral pH being negligible and maximal at pH 3. Chemical and proteolytic fragmentation of the photolabeled protein followed by peptide sequencing permitted identification of the labeled residues. The results obtained indicate that the sequence corresponding to B (23-34) and C (86-98) helix of the native structure are extensively labeled. The small beta-domain (40-50) is poorly labeled, Val42 being the only residue that is significantly labeled. Our data, like NMR data, indicate that in the MG state of alpha-lactalbumin, the alpha-domain has a greater degree of persistent structure than the beta-domain. However, unlike the NMR method, the photolabeling method is not limited by the size of the protein and can provide information on several new residues, for example, Leu115. The current method using DAF thus allows identification of stable and hydrophobic exposed regions in folding intermediates as the reagent binds and on photolysis covalently links to these regions. Recent advances in attempts to unravel the protein folding mechanism have indicated the need to identify the folding intermediates. Despite their transient nature, in a number of cases it has been possible to detect and characterize some of the equilibrium intermediates, for example, the molten globule (MG) state. The key features of the MG state are retention of substantial secondary structure of the native state, considerable loss of tertiary structure leading to increased hydrophobic exposure, and a compact structure. NMR, circular dichroism, and fluorescence spectroscopies have been most useful in characterizing such intermediates. We report here a new method for structural characterization of the MG state that involves probing the exposed hydrophobic sites with a hydrophobic photoactivable reagent—2[ 3 H]diazofluorene. This carbene‐based reagent binds to hydrophobic sites, and on photolysis covalently attaches itself to the neighboring amino acid side chains. The reagent photolabels α‐lactalbumin as a function of pH (3–7.4), the labeling at neutral pH being negligible and maximal at pH 3. Chemical and proteolytic fragmentation of the photolabeled protein followed by peptide sequencing permitted identification of the labeled residues. The results obtained indicate that the sequence corresponding to B (23–34) and C (86–98) helix of the native structure are extensively labeled. The small β‐domain (40–50) is poorly labeled, Val42 being the only residue that is significantly labeled. Our data, like NMR data, indicate that in the MG state of α‐lactalbumin, the α‐domain has a greater degree of persistent structure than the β‐domain. However, unlike the NMR method, the photolabeling method is not limited by the size of the protein and can provide information on several new residues, for example, Leu115. The current method using DAF thus allows identification of stable and hydrophobic exposed regions in folding intermediates as the reagent binds and on photolysis covalently links to these regions. Recent advances in attempts to unravel the protein folding mechanism have indicated the need to identify the folding intermediates. Despite their transient nature, in a number of cases it has been possible to detect and characterize some of the equilibrium intermediates, for example, the molten globule (MG) state. The key features of the MG state are retention of substantial secondary structure of the native state, considerable loss of tertiary structure leading to increased hydrophobic exposure, and a compact structure. NMR, circular dichroism, and fluorescence spectroscopies have been most useful in characterizing such intermediates. We report here a new method for structural characterization of the MG state that involves probing the exposed hydrophobic sites with a hydrophobic photoactivable reagent—2[3H]diazofluorene. This carbene-based reagent binds to hydrophobic sites, and on photolysis covalently attaches itself to the neighboring amino acid side chains. The reagent photolabels α-lactalbumin as a function of pH (3–7.4), the labeling at neutral pH being negligible and maximal at pH 3. Chemical and proteolytic fragmentation of the photolabeled protein followed by peptide sequencing permitted identification of the labeled residues. The results obtained indicate that the sequence corresponding to B (23–34) and C (86–98) helix of the native structure are extensively labeled. The small β-domain (40–50) is poorly labeled, Val42 being the only residue that is significantly labeled. Our data, like NMR data, indicate that in the MG state of α-lactalbumin, the α-domain has a greater degree of persistent structure than the β-domain. However, unlike the NMR method, the photolabeling method is not limited by the size of the protein and can provide information on several new residues, for example, Leu115. The current method using DAF thus allows identification of stable and hydrophobic exposed regions in folding intermediates as the reagent binds and on photolysis covalently links to these regions. Recent advances in attempts to unravel the protein folding mechanism have indicated the need to identify the folding intermediates. Despite their transient nature, in a number of cases it has been possible to detect and characterize some of the equilibrium intermediates, for example, the molten globule (MG) state. The key features of the MG state are retention of substantial secondary structure of the native state, considerable loss of tertiary structure leading to increased hydrophobic exposure, and a compact structure. NMR, circular dichroism, and fluorescence spectroscopies have been most useful in characterizing such intermediates. We report here a new method for structural characterization of the MG state that involves probing the exposed hydrophobic sites with a hydrophobic photoactivable reagent—2[3H]diazofluorene. This carbene‐based reagent binds to hydrophobic sites, and on photolysis covalently attaches itself to the neighboring amino acid side chains. The reagent photolabels α‐lactalbumin as a function of pH (3–7.4), the labeling at neutral pH being negligible and maximal at pH 3. Chemical and proteolytic fragmentation of the photolabeled protein followed by peptide sequencing permitted identification of the labeled residues. The results obtained indicate that the sequence corresponding to B (23–34) and C (86–98) helix of the native structure are extensively labeled. The small β‐domain (40–50) is poorly labeled, Val42 being the only residue that is significantly labeled. Our data, like NMR data, indicate that in the MG state of α‐lactalbumin, the α‐domain has a greater degree of persistent structure than the β‐domain. However, unlike the NMR method, the photolabeling method is not limited by the size of the protein and can provide information on several new residues, for example, Leu115. The current method using DAF thus allows identification of stable and hydrophobic exposed regions in folding intermediates as the reagent binds and on photolysis covalently links to these regions. |
Author | D'SILVA, PATRICK R. LALA, ANIL K. |
AuthorAffiliation | Department of Chemistry and Biotechnology Center, Indian Institute of Technology Bombay, Powai |
AuthorAffiliation_xml | – name: Department of Chemistry and Biotechnology Center, Indian Institute of Technology Bombay, Powai |
Author_xml | – sequence: 1 givenname: PATRICK R. surname: D'SILVA fullname: D'SILVA, PATRICK R. organization: Biomembrane Laboratory, Department of Chemistry and Biotechnology Center, Indian Institute of Technology Bombay, Powai, Bombay 400 076, India – sequence: 2 givenname: ANIL K. surname: LALA fullname: LALA, ANIL K. organization: Biomembrane Laboratory, Department of Chemistry and Biotechnology Center, Indian Institute of Technology Bombay, Powai, Bombay 400 076, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/10338020$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcFrFDEUxoNU7LZ68i45eZFZk8kkk1wEKWqFQkUUvIVM5s1uSiZZk4xlvft_m2UXqSCe3uF9-X3fy3eBzkIMgNBzStaUUvJ6l9dyzdeUKPUIrWgnVCOV-HaGVkQJ2kgm5Dm6yPmOENLRlj1B55QwJklLVujX9X5McbeNg7O4jhK9GcC7sMEmY4MD3OMZyjaOeIoJ55IWW5ZkPLZbk4wtkNxPU1wMOE54jr5AwBsfh8UDNmHECbwpMOJdigVcqBQ_Hugu1KczjK5u81P0eDI-w7PTvERf37_7cnXd3Nx--Hj19qaxHVeqGZSaOtNzztlEB2qkakdLho5IOxkB1PLeMtEb0fGeMjH1UnBh-r4FDrK1I7tEb47c3TJUbwuh1FP0LrnZpL2Oxum_N8Ft9Sb-0C3tOsZoBbw8AVL8vkAuenbZgvcmQFyyFqq6MdFW4auj0KaYc4Lpjwkl-lCb3mUtNdeH2qr6xcNcD7THnqqAHQX3zsP-fyz96fOtJPyEbU4hzDwkN25A38UlhfrF_4zxGwc2uFo |
CitedBy_id | crossref_primary_10_1074_jbc_275_16_11771 crossref_primary_10_1016_j_jmb_2004_08_005 crossref_primary_10_1063_1_1409360 crossref_primary_10_1016_j_jmb_2009_09_058 crossref_primary_10_1002_pro_132571 crossref_primary_10_1007_s10967_009_0023_9 |
Cites_doi | 10.1096/fasebj.10.1.8566530 10.1021/bi00058a003 10.1111/j.1462-5822.2007.00901.x 10.1002/bip.360310111 10.1021/ja00029a016 10.1016/S0021-9258(19)88643-X 10.1002/pro.5560040813 10.1021/bi00072a025 10.1146/annurev.bi.59.070190.003215 10.1016/0014-5793(83)80010-6 10.1006/jmbi.1996.0666 10.1006/jmbi.1995.0579 10.1016/S0021-9258(18)47555-2 10.1016/S0065-3233(08)60546-X 10.1074/jbc.272.44.27722 10.1021/bi00039a015 10.1007/BF02863628 10.1021/ja00361a014 10.1016/0003-2697(92)90492-P 10.1038/352036a0 10.1038/nsb0897-630 10.1016/S0969-2126(96)00075-5 10.1016/0003-2697(87)90587-2 10.1111/j.1470-8744.1990.tb00133.x |
ContentType | Journal Article |
Copyright | 1999 The Protein Society Copyright © 1999 The Protein Society |
Copyright_xml | – notice: 1999 The Protein Society – notice: Copyright © 1999 The Protein Society |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1110/ps.8.5.1099 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1469-896X |
EndPage | 1103 |
ExternalDocumentID | 10_1110_ps_8_5_1099 10338020 PRO8051099 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Department of Science and Technology, New Delhi |
GroupedDBID | --- .GJ 05W 0R~ 123 1L6 1OC 24P 29P 2WC 31~ 33P 3SF 3WU 4.4 52U 53G 5RE 6TJ 8-0 8-1 8UM A00 A8Z AAESR AAEVG AAHHS AAIHA AANLZ AAONW AASGY AAXRX AAZKR ABCUV ABGDZ ABHUG ABLJU ABMYL ABWRO ACAHQ ACCFJ ACCZN ACFBH ACGFO ACGFS ACIWK ACPOU ACPRK ACQPF ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFVGU AFZJQ AGJLS AHBTC AHMBA AIAGR AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB AOIJS ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI C1A C45 CAG COF CS3 DCZOG DIK DRFUL DRSTM DU5 E3Z EBD EBS EJD EMOBN ESTFP F5P G-S GODZA GX1 HH5 HYE HZ~ IH2 LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ NNB O66 O9- OK1 OVD P2P P2W P4E PQQKQ QRW RCA RIG ROL RPM RWI SJN SUPJJ SV3 TEORI TR2 WBKPD WIH WIK WIN WNSPC WOHZO WOQ WXSBR WYISQ WYJ XV2 Y6R YKV ZGI ZXP ZZTAW ~02 ~S- AITYG HGLYW OIG CGR CUY CVF ECM EIF NPM AAMNL AAYXX CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c4599-b99f4a75553f1b1a892dc0b408cfa6e1c57c367a6457136f78656a772e5e82cd3 |
IEDL.DBID | RPM |
ISSN | 0961-8368 |
IngestDate | Tue Sep 17 21:31:02 EDT 2024 Sat Aug 17 02:36:51 EDT 2024 Thu Nov 21 22:26:00 EST 2024 Sat Sep 28 07:34:28 EDT 2024 Sat Aug 24 00:56:44 EDT 2024 Wed Mar 13 05:52:05 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | protein folding intermediates molten globule state diazofluorene bovine α-lactalbumin hydrophobic photolabeling |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4599-b99f4a75553f1b1a892dc0b408cfa6e1c57c367a6457136f78656a772e5e82cd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1110/ps.8.5.1099 |
PMID | 10338020 |
PQID | 69772362 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_2144331 proquest_miscellaneous_69772362 crossref_primary_10_1110_ps_8_5_1099 pubmed_primary_10338020 wiley_primary_10_1110_ps_8_5_1099_PRO8051099 cambridge_journals_10_1110_ps_8_5_1099 |
PublicationCentury | 1900 |
PublicationDate | 1999-05-01 |
PublicationDateYYYYMMDD | 1999-05-01 |
PublicationDate_xml | – month: 05 year: 1999 text: 1999-05-01 day: 01 |
PublicationDecade | 1990 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol – name: United States |
PublicationTitle | Protein science |
PublicationTitleAlternate | Protein Sci |
PublicationYear | 1999 |
Publisher | Cambridge University Press Cold Spring Harbor Laboratory Press |
Publisher_xml | – name: Cambridge University Press – name: Cold Spring Harbor Laboratory Press |
References | 1991; 352 1987; 262 1990; 12 1987; 166 1990; 59 1997; 272 1992; 267 1995; 34 1991; 31 1992; 207 1996; 264 1995; 253 1995; 4 1970; 227 1997; 4 1996; 10 1983; 105 1984; 93 1983; 164 1995; 47 1993; 32 1992; 114 1996; 4 1984; 23B 1973; 1 7548009 - Biochemistry. 1995 Oct 3;34(39):12596-604 8980675 - J Mol Biol. 1996 Dec 13;264(4):643-9 2449095 - Anal Biochem. 1987 Nov 1;166(2):368-79 8561052 - Adv Protein Chem. 1995;47:83-229 8504087 - Biochemistry. 1993 Jun 1;32(21):5681-91 9346914 - J Biol Chem. 1997 Oct 31;272(44):27722-9 8520481 - Protein Sci. 1995 Aug;4(8):1553-62 5432063 - Nature. 1970 Aug 15;227(5259):680-5 7473740 - J Mol Biol. 1995 Nov 10;253(5):651-7 2197986 - Annu Rev Biochem. 1990;59:631-60 2288716 - Biotechnol Appl Biochem. 1990 Oct;12(5):586-94 3597374 - J Biol Chem. 1987 Jun 15;262(17):8242-51 1489083 - Anal Biochem. 1992 Nov 15;207(1):11-8 8439536 - Biochemistry. 1993 Feb 23;32(7):1707-18 1676490 - Nature. 1991 Jul 4;352(6330):36-42 8805552 - Structure. 1996 Jun 15;4(6):691-703 6317443 - FEBS Lett. 1983 Nov 28;164(1):21-4 9253412 - Nat Struct Biol. 1997 Aug;4(8):630-4 2025683 - Biopolymers. 1991 Jan;31(1):119-28 1400308 - J Biol Chem. 1992 Oct 5;267(28):19914-8 8566530 - FASEB J. 1996 Jan;10(1):102-9 Anjaneyulu PSR (e_1_2_1_3_1) 1984; 23 Lala AK (e_1_2_1_14_1) 1992; 267 e_1_2_1_20_1 e_1_2_1_23_1 e_1_2_1_24_1 e_1_2_1_22_1 e_1_2_1_27_1 e_1_2_1_25_1 e_1_2_1_26_1 Baron WJ (e_1_2_1_5_1) 1973 Anjaneyulu PSR (e_1_2_1_4_1) 1984; 93 e_1_2_1_7_1 Pradhan D (e_1_2_1_21_1) 1987; 262 e_1_2_1_8_1 e_1_2_1_6_1 e_1_2_1_12_1 e_1_2_1_13_1 e_1_2_1_10_1 e_1_2_1_2_1 e_1_2_1_11_1 e_1_2_1_16_1 e_1_2_1_17_1 e_1_2_1_15_1 e_1_2_1_9_1 e_1_2_1_18_1 e_1_2_1_19_1 |
References_xml | – volume: 32 start-page: 1707 year: 1993 end-page: 1718 article-title: Structure and dynamics of the acid‐denatured molten globule state of α‐lactalbumin: A two‐dimensional NMR study publication-title: Biochemistry – volume: 105 start-page: 6833 year: 1983 end-page: 6845 article-title: Chemical and physical properties of fluorenylidene: Equilibration of the singlet and triplet carbenes publication-title: J Am Chem Soc – volume: 267 start-page: 19914 year: 1992 end-page: 19918 article-title: Increased exposure of hydrophobic surface in molten globule state of α‐lactalbumin. Fluorescence and hydrophobic photolabeling studies publication-title: J Biol Chem – volume: 164 start-page: 21 year: 1983 end-page: 24 article-title: Molten‐globule state: A compact form of globular proteins with mobile side‐chains publication-title: FEBS Lett – volume: 47 start-page: 83 year: 1995 end-page: 229 article-title: Molten globule and protein folding publication-title: Adv Protein Chem – volume: 93 start-page: 1229 year: 1984 end-page: 1235 article-title: Design and synthesis of new fluorescent photoaffinity labels to study membrane structure publication-title: Proc Indian Acad Sci (Chem Sci) – volume: 114 start-page: 897 year: 1992 end-page: 905 article-title: Laser flash photolysis of 9‐diazofluorene in low‐temperature glasses publication-title: J Am Chem Soc – volume: 253 start-page: 651 year: 1995 end-page: 657 article-title: Different subdomains are most protected from hydrogen exchange in the molten globule and native states of human α‐lactalbumin publication-title: J Mol Biol – volume: 32 start-page: 5681 year: 1993 end-page: 5691 article-title: Structure and stability of the molten globule state of guinea‐pig α‐lactalbumin: A hydrogen exchange study publication-title: Biochemistry – volume: 12 start-page: 586 year: 1990 end-page: 594 article-title: Hydrophobic photolabeling in membranes: The human erythrocyte glucose transporter publication-title: Biotechnol Appl Biochem – volume: 4 start-page: 1553 year: 1995 end-page: 1562 article-title: Kinetics of interaction of partially folded proteins with a hydrophobic dye: Evidence that molten globule character is maximal in early folding intermediates publication-title: Protein Sci – volume: 59 start-page: 631 year: 1990 end-page: 660 article-title: Intermediates in the folding reactions of small proteins publication-title: Annu Rev Biochem – volume: 166 start-page: 368 year: 1987 end-page: 379 article-title: Tris/tricne buffer system for separation of small polypeptides publication-title: Anal Biochem – volume: 4 start-page: 630 year: 1997 end-page: 634 article-title: Aresidue‐specific NMR view of the non‐cooperative unfolding of a molten globule publication-title: Nat Struct Biol – volume: 31 start-page: 119 year: 1991 end-page: 128 article-title: Study of the “molten globule” intermediate state in protein folding by a hydrophobic fluorescent probe publication-title: Biopolymers – volume: 207 start-page: 11 year: 1992 end-page: 18 article-title: Microsequence analysis of electroblotted proteins. I. Comparison of electroblotting recoveries using different types of PVDF membranes publication-title: Anal Biochem – volume: 4 start-page: 691 year: 1996 end-page: 703 article-title: Crystal structures of guinea‐pig, goat and bovine α‐lactalbumin highlight the enhanced conformational flexibility of regions that are significant for its action in lactose synthase publication-title: Structure – volume: 23B start-page: 802 year: 1984 end-page: 807 article-title: On the importance of indiscriminate insertion for photoactivable reagents—Photolysis of diazofluorene in mixed organic solvents publication-title: Indian J Chem – volume: 272 start-page: 27722 year: 1997 end-page: 27729 article-title: The interaction of the molecular chaperone, α‐crystallin, with molten globule states of bovine α‐lactalbumin publication-title: J Biol Chem – volume: 34 start-page: 12596 year: 1995 end-page: 12604 article-title: Probing the molten globule state of α‐lactalbumin by limited proteolysis publication-title: Biochemistry – volume: 262 start-page: 8242 year: 1987 end-page: 8251 article-title: Photochemical labeling of membrane hydrophobic core of human erythrocytes using a new photoactivable reagent 2[ H]diazofluorene publication-title: J Biol Chem – volume: 1 start-page: 79 year: 1973 end-page: 84 – volume: 10 start-page: 102 year: 1996 end-page: 109 article-title: The molten globule state of α‐lactalbumin publication-title: FASEB J – volume: 352 start-page: 36 year: 1991 end-page: 42 article-title: Chaperonin‐mediated protein folding at the surface of groEL through a “molten globule”‐like intermediate publication-title: Nature – volume: 264 start-page: 643 year: 1996 end-page: 649 article-title: Dominant forces in the recognition of a transient folding intermediate of α‐lactalbumin by GroEL publication-title: J Mol Biol – volume: 227 start-page: 680 year: 1970 end-page: 685 article-title: Cleavage of structural proteins during the assembly of the head of bacteriophage T4 publication-title: Nature – ident: e_1_2_1_11_1 doi: 10.1096/fasebj.10.1.8566530 – ident: e_1_2_1_2_1 doi: 10.1021/bi00058a003 – volume: 23 start-page: 802 year: 1984 ident: e_1_2_1_3_1 article-title: On the importance of indiscriminate insertion for photoactivable reagents—Photolysis of diazofluorene in mixed organic solvents publication-title: Indian J Chem contributor: fullname: Anjaneyulu PSR – ident: e_1_2_1_12_1 doi: 10.1111/j.1462-5822.2007.00901.x – ident: e_1_2_1_27_1 doi: 10.1002/bip.360310111 – ident: e_1_2_1_23_1 doi: 10.1021/ja00029a016 – volume: 267 start-page: 19914 year: 1992 ident: e_1_2_1_14_1 article-title: Increased exposure of hydrophobic surface in molten globule state of α‐lactalbumin. Fluorescence and hydrophobic photolabeling studies publication-title: J Biol Chem doi: 10.1016/S0021-9258(19)88643-X contributor: fullname: Lala AK – ident: e_1_2_1_7_1 doi: 10.1002/pro.5560040813 – ident: e_1_2_1_6_1 doi: 10.1021/bi00072a025 – ident: e_1_2_1_10_1 doi: 10.1146/annurev.bi.59.070190.003215 – ident: e_1_2_1_18_1 doi: 10.1016/0014-5793(83)80010-6 – ident: e_1_2_1_9_1 doi: 10.1006/jmbi.1996.0666 – ident: e_1_2_1_26_1 doi: 10.1006/jmbi.1995.0579 – volume: 262 start-page: 8242 year: 1987 ident: e_1_2_1_21_1 article-title: Photochemical labeling of membrane hydrophobic core of human erythrocytes using a new photoactivable reagent 2[3H]diazofluorene publication-title: J Biol Chem doi: 10.1016/S0021-9258(18)47555-2 contributor: fullname: Pradhan D – ident: e_1_2_1_22_1 doi: 10.1016/S0065-3233(08)60546-X – ident: e_1_2_1_15_1 doi: 10.1074/jbc.272.44.27722 – ident: e_1_2_1_20_1 doi: 10.1021/bi00039a015 – volume: 93 start-page: 1229 year: 1984 ident: e_1_2_1_4_1 article-title: Design and synthesis of new fluorescent photoaffinity labels to study membrane structure publication-title: Proc Indian Acad Sci (Chem Sci) doi: 10.1007/BF02863628 contributor: fullname: Anjaneyulu PSR – start-page: 79 volume-title: Carbenes year: 1973 ident: e_1_2_1_5_1 contributor: fullname: Baron WJ – ident: e_1_2_1_8_1 doi: 10.1021/ja00361a014 – ident: e_1_2_1_17_1 doi: 10.1016/0003-2697(92)90492-P – ident: e_1_2_1_16_1 doi: 10.1038/352036a0 – ident: e_1_2_1_25_1 doi: 10.1038/nsb0897-630 – ident: e_1_2_1_19_1 doi: 10.1016/S0969-2126(96)00075-5 – ident: e_1_2_1_24_1 doi: 10.1016/0003-2697(87)90587-2 – ident: e_1_2_1_13_1 doi: 10.1111/j.1470-8744.1990.tb00133.x |
SSID | ssj0004123 |
Score | 1.6401689 |
Snippet | Recent advances in attempts to unravel the protein
folding mechanism have indicated the need to identify the
folding intermediates. Despite their transient... Recent advances in attempts to unravel the protein folding mechanism have indicated the need to identify the folding intermediates. Despite their transient... |
SourceID | pubmedcentral proquest crossref pubmed wiley cambridge |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 1099 |
SubjectTerms | Animals bovine α‐lactalbumin Cattle Chemistry, Physical - methods Cyanogen Bromide - pharmacology diazofluorene Diazonium Compounds - pharmacology Fluorenes - pharmacology hydrophobic photolabeling Lactalbumin - chemistry Models, Molecular molten globule state Photolysis Protein Folding protein folding intermediates |
SummonAdditionalLinks | – databaseName: Wiley-Blackwell dbid: 33P link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagF7jwaIGGRzuHqidS1nHs2AcOVR_aE1Q8JG6W7djqSm2yathDfwD_m7GdXXZVhIR6yiF2lMQz429sf98QckCpobZmoVQ4v5c15xgHvWpKZaU1jFtWi8hGnn5tPv2Qp2dRJufjkguT9SFWC27RM1K8jg5u7FiFhMZTcfPhSB7xKIcU6XuYJyQCB7v4w4qkVS4kL2gpmZAjOw97f1jru66psDk33QGcd89NruPZNCGdP73npzwjT0YkCsfZdJ6TB77bJjvHHWbh17dwCOlsaFp03yaPTpZ14XbIr-lte9PPL3s7c4CXn5gc28RqBzOAAcTpkOtSAwJiyAK1UdwD3EocOnM_oQ9w3V8haoeoS7K48mC6FhK9xreQJCRmHT4lbZBBVLa4SUwXhMcvyPfzs28n03Is5lC6mitVWqVCbRrOOQvUUiNV1bqJxWFzwQhPHW8cE40RNce8WYRGItI0iP0997JyLXtJtrq-87sEqFNNsDTwKB8YKoFxMnBX-xaTH4xgk4IcroZUjy456JztTPR80FLzuPOuCnKwHG89z-Ief2-2v7QFjf867qiYzveLQQtEzxVCgIK8ypax9hjM_RGKF6TZsJlVgyjrvXmnm10mee8oYscYLcj7ZDP_ejN98eWzjGFVqdf_1_wNeZwFKOLRzbdkC23BvyMPh3axl7zoN4JPIC8 priority: 102 providerName: Wiley-Blackwell |
Title | Hydrophobic photolabeling as a new method for structural characterization of molten globule and related protein folding intermediates |
URI | https://www.cambridge.org/core/product/identifier/S0961836899984274/type/journal_article https://onlinelibrary.wiley.com/doi/abs/10.1110%2Fps.8.5.1099 https://www.ncbi.nlm.nih.gov/pubmed/10338020 https://search.proquest.com/docview/69772362 https://pubmed.ncbi.nlm.nih.gov/PMC2144331 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2xvcAFQctHChQfqp7IbhzHiX2sllYrJMqKgsQtsh1bXWk3iRr20B_A_2bsJEtXRRy4JIdYjpUZz7yJZ94AnFKqqM6YiyX69zjjHO2glUUstdCKcc2y3FcjL66Lqx_i44WnyeFjLUxI2jd6Na3Xm2m9ugm5le3GzMY8sdny89zTfDFGZxOYIDYcQ_SxGJKmff_4nMaC5WIoykM3N2u7qZhyz6AUyEITDM8S3-j7D6vCvnd6ADkfZk7eR7TBJV0-g6cDliTn_ZqfwyNbH8LReY1x9OaOnJGQ3Rl-mx_C4_nY2e0Ifi3uqtumvWn0yhC8_cTwVoe6dKI6oggibdJ3liYIaUlPMevpOYjZ0Tv31ZukcWTTrBF3E88ssl1bouqKhAIZW5FAArGqcZZwxEU8N8VtqFVBgPsCvl9efJsv4qEdQ2wyLmWspXSZKjjnzFFNlZBpZRKdJcI4lVtqeGFYXqg84xj55q4QiBUVonfLrUhNxV7CQd3U9jUQamThNHXcEwC6NEdL57jJbIXhC9qgJIKznUjKYVN1ZR-vJGXblaLk_uxcRnA6yqtse3qOvw97P8qyxG_tz0RUbZttV-aIf1N04hG86iV7b5pePSIo9mS-G-CJufefoL4Ggu5BPyP4ELTjXysrl1-_CG8YpTz-7xe9gSc9m4TPw3wLB6gW9h1Mump7AhPGlidhh-D1-tPVb_iHFbQ |
link.rule.ids | 230,315,729,782,786,887,1408,27933,27934,46064,46488,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3RcigXCi0fKR_1oeqJlHUcJ_YFqSqtFlFKBUXiZtmOra7UJquGPfQH8L8Z29llV0VIiFMOsaMknhm_sec9A-xRqqkpmc8lzu95yTnGQSfrXBphNOOGlVVgI4-_1mffxfvjIJPzbs6FSfoQiwW34BkxXgcHDwvSg5eHsrhpfyAOeNBDkmtwv6zQFAOFg53_5kXSIh0lX9FcsEoM_Dzs_nap87KqwursdAdy3q2cXEa0cUo62fzfj3kEDwcwSg6T9TyGe67dgu3DFhPx61uyT2J5aFx334KNo_nRcNvwc3zb3HTTy85MLMHLD8yPTSS2E90TTRCqk3Q0NUFMTJJGbdD3IHahD53on6Tz5Lq7QuBOgjTJ7MoR3TYkMmxcQ6KKxKTFp8Q9MhLELW4i2QUR8hP4dnJ8cTTOh_MccltyKXMjpS91zTlnnhqqhSwaOzLlSFivK0ctry2ral2VHFPnytcCwaZG-O-4E4Vt2FNYb7vWPQdCray9oZ4HBUFfVBgqPbelazD_wSA2ymB_MaZq8MpepYRnpKa9EoqHzXeZwd58wNU06Xv8udnu3BgU_uuwqaJb1816VSGALhAFZPAsmcbSYzD9RzSeQb1iNIsGQdl79U47uYwK30HHjjGawZtoNH97M3X-5bMIkVXKnX9rvgsb44tPp-r0w9nHF_Ag6VGESs6XsI524V7BWt_MXkeX-gWUZSRX |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Lb9QwEMdHtEjAhUfLI7zqQ9UTKes4TuwDh6rtahGorHhI3CzbsdWV2mTVsId-AL43Yzu77KoICXHKIU6Ux8z4P7bnZ4B9SjU1JfO5xP49LznHOOhknUsjjGbcsLIK1ciTL_XZd3FyGjA575a1MIkPsRpwC54R43Vw8HnjBycPq-Lm_aE45AGHJLfgdolCPKDzGZv-LoukRdpJvqK5YJUYyvPw8rdrF69DFTY7pxuK8-bCyXVBG3uk8YP_fJeHcH-QouQo2c4juOXaHdg9ajENv7wmByQuDo2j7jtw93i5Mdwu_JxcN1fd_LwzM0vw8AOzYxPL2onuiSYo1EnamJqgIiaJUBvoHsSu6NCp-JN0nlx2FyjbSQCTLC4c0W1DYn2Na0hkSMxavEucISMBbXEVS11QHz-Gb-PTr8eTfNjNIbcllzI3UvpS15xz5qmhWsiisSNTjoT1unLU8tqyqtZVyTFxrnwtUGpqFP-OO1HYhj2B7bZr3TMg1MraG-p54Af6osJA6bktXYPZD4awUQYHq1-qBp_sVUp3RmreK6F4mHqXGewv_7eaJ7rHn5vtLW1B4bcOUyq6dd2iVxXK5wI1QAZPk2Ws3QaTf9TiGdQbNrNqELjem2fa2XnkeweKHWM0gzfRZv72ZGr6-ZMIcVXK5__WfA_uTE_G6uP7sw8v4F6CUYRlnC9hG83CvYKtvlm8jg71C_JLIv0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hydrophobic+photolabeling+as+a+new+method+for+structural+characterization+of+molten+globule+and+related+protein+folding+intermediates&rft.jtitle=Protein+science&rft.au=D%27Silva%2C+Patrick+R.&rft.au=Lala%2C+Anil+K.&rft.date=1999-05-01&rft.pub=Cold+Spring+Harbor+Laboratory+Press&rft.issn=0961-8368&rft.eissn=1469-896X&rft.volume=8&rft.issue=5&rft.spage=1099&rft.epage=1103&rft_id=info:doi/10.1110%2Fps.8.5.1099&rft.externalDBID=10.1110%252Fps.8.5.1099&rft.externalDocID=PRO8051099 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0961-8368&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0961-8368&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0961-8368&client=summon |