Ultrafast quenching of the exchange interaction in a Mott insulator

We investigate how fast and how effective photocarrier excitation can modify the exchange interaction J_{ex} in the prototype Mott-Hubbard insulator. We demonstrate an ultrafast quenching of J_{ex} both by evaluating exchange integrals from a time-dependent response formalism and by explicitly simul...

Full description

Saved in:
Bibliographic Details
Published in:Physical review letters Vol. 113; no. 5; p. 057201
Main Authors: Mentink, J H, Eckstein, M
Format: Journal Article
Language:English
Published: United States 01-08-2014
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We investigate how fast and how effective photocarrier excitation can modify the exchange interaction J_{ex} in the prototype Mott-Hubbard insulator. We demonstrate an ultrafast quenching of J_{ex} both by evaluating exchange integrals from a time-dependent response formalism and by explicitly simulating laser-induced spin precession in an antiferromagnet that is canted by an external magnetic field. In both cases, the electron dynamics is obtained from nonequilibrium dynamical mean-field theory. We find that the modified J_{ex} emerges already within a few electron hopping times after the pulse, with a reduction that is comparable to the effect of chemical doping.
AbstractList We investigate how fast and how effective photocarrier excitation can modify the exchange interaction Jex in the prototype Mott-Hubbard insulator. We demonstrate an ultrafast quenching of Jex both by evaluating exchange integrals from a time-dependent response formalism and by explicitly simulating laser-induced spin precession in an antiferromagnet that is canted by an external magnetic field. In both cases, the electron dynamics is obtained from nonequilibrium dynamical mean-field theory. We find that the modified Jex emerges already within a few electron hopping times after the pulse, with a reduction that is comparable to the effect of chemical doping.
We investigate how fast and how effective photocarrier excitation can modify the exchange interaction J_{ex} in the prototype Mott-Hubbard insulator. We demonstrate an ultrafast quenching of J_{ex} both by evaluating exchange integrals from a time-dependent response formalism and by explicitly simulating laser-induced spin precession in an antiferromagnet that is canted by an external magnetic field. In both cases, the electron dynamics is obtained from nonequilibrium dynamical mean-field theory. We find that the modified J_{ex} emerges already within a few electron hopping times after the pulse, with a reduction that is comparable to the effect of chemical doping.
ArticleNumber 057201
Author Eckstein, M
Mentink, J H
Author_xml – sequence: 1
  givenname: J H
  surname: Mentink
  fullname: Mentink, J H
  organization: Max Planck Research Department for Structural Dynamics, University of Hamburg-CFEL, 22761 Hamburg, Germany
– sequence: 2
  givenname: M
  surname: Eckstein
  fullname: Eckstein, M
  organization: Max Planck Research Department for Structural Dynamics, University of Hamburg-CFEL, 22761 Hamburg, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25126933$$D View this record in MEDLINE/PubMed
BookMark eNqFkElPwzAQhS1URBf4C1WOXFI8drzkiCo2qQiE6DlyHKcJSuNiOxX99xi1cOU0T6P3ZvmmaNTb3iA0B7wAwPRm1xy8M_vOhBAbdIGZIBjO0ASwyFMBkI3QBGMKaY6xGKOp9x8YYyBcXqAxYVHklE7Qct0Fp2rlQ_I5mF43bb9JbJ2ExiTmSzeq35ik7YNxSofW9lEnKnm2IUTlh04F6y7Rea06b65OdYbW93fvy8d09fLwtLxdpTpjMqQVcCJKXqrKZIzVoGoNYGjFyxJkJiUz8QfgUkqhtSREQc1ZVTGdc6wJ0XSGro9zd87GY30otq3XputUb-zgCxCSE4gzyP9WxqjATBIarfxo1c76yLQudq7dKncoABc_rIvXyPrN7FeRdWzQ4sg6BuenHUO5NdVf7Bcu_QYTdH72
CitedBy_id crossref_primary_10_1103_PhysRevX_9_021020
crossref_primary_10_1016_j_physrep_2020_01_004
crossref_primary_10_3367_UFNe_2022_05_039195
crossref_primary_10_7566_JPSJ_86_064702
crossref_primary_10_1103_PhysRevB_108_035151
crossref_primary_10_1016_j_cap_2024_03_015
crossref_primary_10_1038_ncomms10645
crossref_primary_10_1103_PhysRevB_105_094438
crossref_primary_10_1103_PhysRevB_107_144430
crossref_primary_10_1038_srep21235
crossref_primary_10_1103_PhysRevB_100_121114
crossref_primary_10_1103_PhysRevX_9_021037
crossref_primary_10_3367_UFNr_2022_05_039195
crossref_primary_10_1103_PhysRevB_100_060410
crossref_primary_10_1103_PhysRevB_98_174438
crossref_primary_10_1103_PhysRevLett_118_097701
crossref_primary_10_1103_PhysRevB_96_214401
crossref_primary_10_1103_PhysRevB_101_094429
crossref_primary_10_1088_1361_648X_aa8abf
crossref_primary_10_1002_adom_201900958
crossref_primary_10_1038_ncomms9190
crossref_primary_10_1088_0953_8984_28_23_236004
crossref_primary_10_1038_s42005_021_00561_z
crossref_primary_10_1103_PhysRevB_105_155147
crossref_primary_10_1088_1402_4896_aa54cc
crossref_primary_10_1103_PhysRevLett_125_157201
crossref_primary_10_7566_JPSJ_92_081007
crossref_primary_10_1103_PhysRevB_106_075424
crossref_primary_10_1103_PhysRevB_100_220403
crossref_primary_10_1002_andp_201700024
crossref_primary_10_1088_1361_648X_acab49
crossref_primary_10_1103_PhysRevB_96_165151
crossref_primary_10_1103_PhysRevB_103_134402
crossref_primary_10_1103_PhysRevLett_130_106501
crossref_primary_10_1103_PhysRevB_96_024441
crossref_primary_10_1038_s41467_018_07051_x
crossref_primary_10_1103_PhysRevB_94_165120
crossref_primary_10_1103_PhysRevX_5_031039
crossref_primary_10_1103_PhysRevB_98_245106
crossref_primary_10_1080_00018732_2016_1194044
crossref_primary_10_1002_adom_201900892
crossref_primary_10_1038_s42005_021_00715_z
crossref_primary_10_1103_PhysRevLett_117_197201
crossref_primary_10_1088_1402_4896_aa54d4
crossref_primary_10_1038_ncomms7708
crossref_primary_10_1038_s42005_020_00447_6
crossref_primary_10_1103_PhysRevB_109_054302
crossref_primary_10_1103_PhysRevB_91_195203
crossref_primary_10_1103_PhysRevB_101_094409
crossref_primary_10_1103_PhysRevB_94_144435
crossref_primary_10_1103_PhysRevB_97_085152
Cites_doi 10.1103/PhysRevLett.90.247201
10.1103/PhysRevLett.110.126401
10.1103/PhysRevB.82.224302
10.1103/PhysRev.147.392
10.1103/PhysRevLett.76.4250
10.1103/PhysRevLett.107.066403
10.1038/nature11934
10.1103/PhysRevLett.91.090402
10.1140/epjb/e2002-00352-1
10.1103/PhysRevB.61.8906
10.1063/1.1799244
10.1103/PhysRevLett.62.324
10.1103/PhysRevB.82.115115
10.1103/PhysRevB.84.035122
10.1103/PhysRevLett.93.197403
10.1016/j.aop.2013.03.006
10.1038/nature09901
10.1103/PhysRevLett.103.097402
10.1103/PhysRevLett.111.077401
10.1126/science.1150841
10.1103/PhysRevLett.110.136404
10.1103/PhysRevLett.99.047601
10.1103/RevModPhys.68.13
10.1103/PhysRevLett.97.266408
10.1103/RevModPhys.86.779
10.1038/ncomms1666
10.1103/PhysRevB.71.085104
10.1063/1.3436635
10.1103/PhysRevLett.111.016401
10.1103/PhysRevLett.109.057401
10.1103/PhysRevB.86.205101
10.1103/PhysRevB.84.241104
10.1103/RevModPhys.82.2731
ContentType Journal Article
DBID NPM
AAYXX
CITATION
7X8
7U5
8FD
H8D
L7M
DOI 10.1103/physrevlett.113.057201
DatabaseName PubMed
CrossRef
MEDLINE - Academic
Solid State and Superconductivity Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
Aerospace Database
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database
PubMed
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1079-7114
EndPage 057201
ExternalDocumentID 10_1103_PhysRevLett_113_057201
25126933
Genre Journal Article
GroupedDBID ---
-DZ
-~X
123
2-P
29O
3MX
5VS
85S
8NH
ACBEA
ACGFO
ACNCT
AENEX
AEQTI
AFFNX
AFGMR
AGDNE
AJQPL
ALMA_UNASSIGNED_HOLDINGS
APKKM
AUAIK
CS3
D0L
DU5
EBS
EJD
ER.
F5P
MVM
N9A
NPBMV
NPM
P0-
P2P
ROL
S7W
SJN
TN5
UBE
UCJ
VQA
WH7
XSW
YNT
ZPR
~02
186
3O-
41~
6TJ
8WZ
9M8
A6W
AAYJJ
AAYXX
ABTAH
ACKIV
CITATION
H~9
NEJ
NHB
OHT
OK1
RNS
T9H
UBC
VOH
XJT
XOL
YYP
ZCG
ZY4
7X8
7U5
8FD
H8D
L7M
ID FETCH-LOGICAL-c458t-d1627b6bade455f1afc11e3d6bb184885e572168887cc822a1f65dd5c960c22c3
IEDL.DBID ZPR
ISSN 0031-9007
IngestDate Fri Oct 25 05:19:04 EDT 2024
Thu Oct 24 22:38:16 EDT 2024
Thu Sep 26 16:53:48 EDT 2024
Tue Oct 15 23:49:26 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c458t-d1627b6bade455f1afc11e3d6bb184885e572168887cc822a1f65dd5c960c22c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://bib-pubdb1.desy.de/record/307304/files/10.1103_PhysRevLett.113.057201.pdf
PMID 25126933
PQID 1553705823
PQPubID 23479
PageCount 1
ParticipantIDs proquest_miscellaneous_1786217212
proquest_miscellaneous_1553705823
crossref_primary_10_1103_PhysRevLett_113_057201
pubmed_primary_25126933
PublicationCentury 2000
PublicationDate 2014-Aug-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-Aug-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physical review letters
PublicationTitleAlternate Phys Rev Lett
PublicationYear 2014
References PhysRevLett.113.057201Cc9R1
PhysRevLett.113.057201Cc7R1
PhysRevLett.113.057201Cc8R1
PhysRevLett.113.057201Cc6R1
PhysRevLett.113.057201Cc3R1
PhysRevLett.113.057201Cc11R1
PhysRevLett.113.057201Cc33R1
PhysRevLett.113.057201Cc4R1
PhysRevLett.113.057201Cc10R1
PhysRevLett.113.057201Cc32R1
PhysRevLett.113.057201Cc1R1
PhysRevLett.113.057201Cc31R1
PhysRevLett.113.057201Cc2R1
PhysRevLett.113.057201Cc30R1
PhysRevLett.113.057201Cc26R1
PhysRevLett.113.057201Cc25R1
PhysRevLett.113.057201Cc23R1
PhysRevLett.113.057201Cc29R1
PhysRevLett.113.057201Cc28R1
PhysRevLett.113.057201Cc27R1
PhysRevLett.113.057201Cc22R1
PhysRevLett.113.057201Cc21R1
PhysRevLett.113.057201Cc20R1
PhysRevLett.113.057201Cc15R1
PhysRevLett.113.057201Cc14R1
PhysRevLett.113.057201Cc13R1
PhysRevLett.113.057201Cc12R1
PhysRevLett.113.057201Cc19R1
PhysRevLett.113.057201Cc34R1
PhysRevLett.113.057201Cc18R1
PhysRevLett.113.057201Cc35R1
PhysRevLett.113.057201Cc17R1
PhysRevLett.113.057201Cc16R1
References_xml – ident: PhysRevLett.113.057201Cc10R1
  doi: 10.1103/PhysRevLett.90.247201
– ident: PhysRevLett.113.057201Cc25R1
  doi: 10.1103/PhysRevLett.110.126401
– ident: PhysRevLett.113.057201Cc29R1
  doi: 10.1103/PhysRevB.82.224302
– ident: PhysRevLett.113.057201Cc32R1
  doi: 10.1103/PhysRev.147.392
– ident: PhysRevLett.113.057201Cc12R1
  doi: 10.1103/PhysRevLett.76.4250
– ident: PhysRevLett.113.057201Cc35R1
  doi: 10.1103/PhysRevLett.107.066403
– ident: PhysRevLett.113.057201Cc4R1
  doi: 10.1038/nature11934
– ident: PhysRevLett.113.057201Cc6R1
  doi: 10.1103/PhysRevLett.91.090402
– ident: PhysRevLett.113.057201Cc27R1
  doi: 10.1140/epjb/e2002-00352-1
– ident: PhysRevLett.113.057201Cc26R1
  doi: 10.1103/PhysRevB.61.8906
– ident: PhysRevLett.113.057201Cc9R1
  doi: 10.1063/1.1799244
– ident: PhysRevLett.113.057201Cc22R1
  doi: 10.1103/PhysRevLett.62.324
– ident: PhysRevLett.113.057201Cc23R1
  doi: 10.1103/PhysRevB.82.115115
– ident: PhysRevLett.113.057201Cc28R1
  doi: 10.1103/PhysRevB.84.035122
– ident: PhysRevLett.113.057201Cc8R1
  doi: 10.1103/PhysRevLett.93.197403
– ident: PhysRevLett.113.057201Cc16R1
  doi: 10.1016/j.aop.2013.03.006
– ident: PhysRevLett.113.057201Cc14R1
  doi: 10.1038/nature09901
– ident: PhysRevLett.113.057201Cc2R1
  doi: 10.1103/PhysRevLett.103.097402
– ident: PhysRevLett.113.057201Cc31R1
  doi: 10.1103/PhysRevLett.111.077401
– ident: PhysRevLett.113.057201Cc7R1
  doi: 10.1126/science.1150841
– ident: PhysRevLett.113.057201Cc18R1
  doi: 10.1103/PhysRevLett.110.136404
– ident: PhysRevLett.113.057201Cc13R1
  doi: 10.1103/PhysRevLett.99.047601
– ident: PhysRevLett.113.057201Cc21R1
  doi: 10.1103/RevModPhys.68.13
– ident: PhysRevLett.113.057201Cc19R1
  doi: 10.1103/PhysRevLett.97.266408
– ident: PhysRevLett.113.057201Cc20R1
  doi: 10.1103/RevModPhys.86.779
– ident: PhysRevLett.113.057201Cc15R1
  doi: 10.1038/ncomms1666
– ident: PhysRevLett.113.057201Cc33R1
  doi: 10.1103/PhysRevB.71.085104
– ident: PhysRevLett.113.057201Cc34R1
  doi: 10.1063/1.3436635
– ident: PhysRevLett.113.057201Cc30R1
  doi: 10.1103/PhysRevLett.111.016401
– ident: PhysRevLett.113.057201Cc11R1
  doi: 10.1103/PhysRevLett.109.057401
– ident: PhysRevLett.113.057201Cc17R1
  doi: 10.1103/PhysRevB.86.205101
– ident: PhysRevLett.113.057201Cc3R1
  doi: 10.1103/PhysRevB.84.241104
– ident: PhysRevLett.113.057201Cc1R1
  doi: 10.1103/RevModPhys.82.2731
SSID ssj0001268
Score 2.4749317
Snippet We investigate how fast and how effective photocarrier excitation can modify the exchange interaction J_{ex} in the prototype Mott-Hubbard insulator. We...
We investigate how fast and how effective photocarrier excitation can modify the exchange interaction Jex in the prototype Mott-Hubbard insulator. We...
SourceID proquest
crossref
pubmed
SourceType Aggregation Database
Index Database
StartPage 057201
SubjectTerms Exchange
Filing
Formalism
Insulators
Magnetic fields
Precession
Quenching
Simulation
Title Ultrafast quenching of the exchange interaction in a Mott insulator
URI https://www.ncbi.nlm.nih.gov/pubmed/25126933
https://search.proquest.com/docview/1553705823
https://search.proquest.com/docview/1786217212
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46EHzxfpk3Ivhal2uTPsrc2IuC04FvJc0FBGll7cSfb9JsQ8EJe-lDKG0455CcL_m-cwC4wUQUlmQ6kcq5hDHjkkKFC1eNkEszrnBLkB09i8dXeT8IZXLQ3zf4GNFeYEKO7WdQt4QGJLc-wSBRsCVF1gpGxsulF5M0Lr008A6QmEuCV3_m9260IsVst5rh7vqT3AM787QS3sU42AcbtjwAWy29U9eHoD95b6bKqbqBT4E5HY6dYOWgz_7g4CuKf2F7OBh1DvCthAo-VE3jR-vQ4auaHoHJcPDSHyXz9gmJZlw2icGpd0RaKGMZ5w4rpzG21KRF4WGdlNzyULnHQ2Chtc8TFHYpN4ZrD2o0IZoeg05ZlfYUQMWt1U4E8McYR6xAzjvfcGIKgaxjXdBbmDH_iFUy8hZdIJr_MI0foHk0TRdcL6yd-4AOtxSqtNWszkMjI4G4JPSfd4QHYgG8ki44ia5a_jckbGlG6dnaczoH2_7JIr3vAnSa6cxegs3azK7aMPsG58DPXw
link.rule.ids 315,782,786,2879,27933,27934
linkProvider American Physical Society
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrafast+Quenching+of+the+Exchange+Interaction+in+a+Mott+Insulator&rft.jtitle=Physical+review+letters&rft.au=Mentink%2C+J+H&rft.au=Eckstein%2C+M&rft.date=2014-08-01&rft.issn=0031-9007&rft.eissn=1079-7114&rft.volume=113&rft.issue=5&rft_id=info:doi/10.1103%2FPhysRevLett.113.057201&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon