Ultrafast quenching of the exchange interaction in a Mott insulator
We investigate how fast and how effective photocarrier excitation can modify the exchange interaction J_{ex} in the prototype Mott-Hubbard insulator. We demonstrate an ultrafast quenching of J_{ex} both by evaluating exchange integrals from a time-dependent response formalism and by explicitly simul...
Saved in:
Published in: | Physical review letters Vol. 113; no. 5; p. 057201 |
---|---|
Main Authors: | , |
Format: | Journal Article |
Language: | English |
Published: |
United States
01-08-2014
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | We investigate how fast and how effective photocarrier excitation can modify the exchange interaction J_{ex} in the prototype Mott-Hubbard insulator. We demonstrate an ultrafast quenching of J_{ex} both by evaluating exchange integrals from a time-dependent response formalism and by explicitly simulating laser-induced spin precession in an antiferromagnet that is canted by an external magnetic field. In both cases, the electron dynamics is obtained from nonequilibrium dynamical mean-field theory. We find that the modified J_{ex} emerges already within a few electron hopping times after the pulse, with a reduction that is comparable to the effect of chemical doping. |
---|---|
AbstractList | We investigate how fast and how effective photocarrier excitation can modify the exchange interaction Jex in the prototype Mott-Hubbard insulator. We demonstrate an ultrafast quenching of Jex both by evaluating exchange integrals from a time-dependent response formalism and by explicitly simulating laser-induced spin precession in an antiferromagnet that is canted by an external magnetic field. In both cases, the electron dynamics is obtained from nonequilibrium dynamical mean-field theory. We find that the modified Jex emerges already within a few electron hopping times after the pulse, with a reduction that is comparable to the effect of chemical doping. We investigate how fast and how effective photocarrier excitation can modify the exchange interaction J_{ex} in the prototype Mott-Hubbard insulator. We demonstrate an ultrafast quenching of J_{ex} both by evaluating exchange integrals from a time-dependent response formalism and by explicitly simulating laser-induced spin precession in an antiferromagnet that is canted by an external magnetic field. In both cases, the electron dynamics is obtained from nonequilibrium dynamical mean-field theory. We find that the modified J_{ex} emerges already within a few electron hopping times after the pulse, with a reduction that is comparable to the effect of chemical doping. |
ArticleNumber | 057201 |
Author | Eckstein, M Mentink, J H |
Author_xml | – sequence: 1 givenname: J H surname: Mentink fullname: Mentink, J H organization: Max Planck Research Department for Structural Dynamics, University of Hamburg-CFEL, 22761 Hamburg, Germany – sequence: 2 givenname: M surname: Eckstein fullname: Eckstein, M organization: Max Planck Research Department for Structural Dynamics, University of Hamburg-CFEL, 22761 Hamburg, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25126933$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkElPwzAQhS1URBf4C1WOXFI8drzkiCo2qQiE6DlyHKcJSuNiOxX99xi1cOU0T6P3ZvmmaNTb3iA0B7wAwPRm1xy8M_vOhBAbdIGZIBjO0ASwyFMBkI3QBGMKaY6xGKOp9x8YYyBcXqAxYVHklE7Qct0Fp2rlQ_I5mF43bb9JbJ2ExiTmSzeq35ik7YNxSofW9lEnKnm2IUTlh04F6y7Rea06b65OdYbW93fvy8d09fLwtLxdpTpjMqQVcCJKXqrKZIzVoGoNYGjFyxJkJiUz8QfgUkqhtSREQc1ZVTGdc6wJ0XSGro9zd87GY30otq3XputUb-zgCxCSE4gzyP9WxqjATBIarfxo1c76yLQudq7dKncoABc_rIvXyPrN7FeRdWzQ4sg6BuenHUO5NdVf7Bcu_QYTdH72 |
CitedBy_id | crossref_primary_10_1103_PhysRevX_9_021020 crossref_primary_10_1016_j_physrep_2020_01_004 crossref_primary_10_3367_UFNe_2022_05_039195 crossref_primary_10_7566_JPSJ_86_064702 crossref_primary_10_1103_PhysRevB_108_035151 crossref_primary_10_1016_j_cap_2024_03_015 crossref_primary_10_1038_ncomms10645 crossref_primary_10_1103_PhysRevB_105_094438 crossref_primary_10_1103_PhysRevB_107_144430 crossref_primary_10_1038_srep21235 crossref_primary_10_1103_PhysRevB_100_121114 crossref_primary_10_1103_PhysRevX_9_021037 crossref_primary_10_3367_UFNr_2022_05_039195 crossref_primary_10_1103_PhysRevB_100_060410 crossref_primary_10_1103_PhysRevB_98_174438 crossref_primary_10_1103_PhysRevLett_118_097701 crossref_primary_10_1103_PhysRevB_96_214401 crossref_primary_10_1103_PhysRevB_101_094429 crossref_primary_10_1088_1361_648X_aa8abf crossref_primary_10_1002_adom_201900958 crossref_primary_10_1038_ncomms9190 crossref_primary_10_1088_0953_8984_28_23_236004 crossref_primary_10_1038_s42005_021_00561_z crossref_primary_10_1103_PhysRevB_105_155147 crossref_primary_10_1088_1402_4896_aa54cc crossref_primary_10_1103_PhysRevLett_125_157201 crossref_primary_10_7566_JPSJ_92_081007 crossref_primary_10_1103_PhysRevB_106_075424 crossref_primary_10_1103_PhysRevB_100_220403 crossref_primary_10_1002_andp_201700024 crossref_primary_10_1088_1361_648X_acab49 crossref_primary_10_1103_PhysRevB_96_165151 crossref_primary_10_1103_PhysRevB_103_134402 crossref_primary_10_1103_PhysRevLett_130_106501 crossref_primary_10_1103_PhysRevB_96_024441 crossref_primary_10_1038_s41467_018_07051_x crossref_primary_10_1103_PhysRevB_94_165120 crossref_primary_10_1103_PhysRevX_5_031039 crossref_primary_10_1103_PhysRevB_98_245106 crossref_primary_10_1080_00018732_2016_1194044 crossref_primary_10_1002_adom_201900892 crossref_primary_10_1038_s42005_021_00715_z crossref_primary_10_1103_PhysRevLett_117_197201 crossref_primary_10_1088_1402_4896_aa54d4 crossref_primary_10_1038_ncomms7708 crossref_primary_10_1038_s42005_020_00447_6 crossref_primary_10_1103_PhysRevB_109_054302 crossref_primary_10_1103_PhysRevB_91_195203 crossref_primary_10_1103_PhysRevB_101_094409 crossref_primary_10_1103_PhysRevB_94_144435 crossref_primary_10_1103_PhysRevB_97_085152 |
Cites_doi | 10.1103/PhysRevLett.90.247201 10.1103/PhysRevLett.110.126401 10.1103/PhysRevB.82.224302 10.1103/PhysRev.147.392 10.1103/PhysRevLett.76.4250 10.1103/PhysRevLett.107.066403 10.1038/nature11934 10.1103/PhysRevLett.91.090402 10.1140/epjb/e2002-00352-1 10.1103/PhysRevB.61.8906 10.1063/1.1799244 10.1103/PhysRevLett.62.324 10.1103/PhysRevB.82.115115 10.1103/PhysRevB.84.035122 10.1103/PhysRevLett.93.197403 10.1016/j.aop.2013.03.006 10.1038/nature09901 10.1103/PhysRevLett.103.097402 10.1103/PhysRevLett.111.077401 10.1126/science.1150841 10.1103/PhysRevLett.110.136404 10.1103/PhysRevLett.99.047601 10.1103/RevModPhys.68.13 10.1103/PhysRevLett.97.266408 10.1103/RevModPhys.86.779 10.1038/ncomms1666 10.1103/PhysRevB.71.085104 10.1063/1.3436635 10.1103/PhysRevLett.111.016401 10.1103/PhysRevLett.109.057401 10.1103/PhysRevB.86.205101 10.1103/PhysRevB.84.241104 10.1103/RevModPhys.82.2731 |
ContentType | Journal Article |
DBID | NPM AAYXX CITATION 7X8 7U5 8FD H8D L7M |
DOI | 10.1103/physrevlett.113.057201 |
DatabaseName | PubMed CrossRef MEDLINE - Academic Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | PubMed CrossRef MEDLINE - Academic Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database PubMed MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1079-7114 |
EndPage | 057201 |
ExternalDocumentID | 10_1103_PhysRevLett_113_057201 25126933 |
Genre | Journal Article |
GroupedDBID | --- -DZ -~X 123 2-P 29O 3MX 5VS 85S 8NH ACBEA ACGFO ACNCT AENEX AEQTI AFFNX AFGMR AGDNE AJQPL ALMA_UNASSIGNED_HOLDINGS APKKM AUAIK CS3 D0L DU5 EBS EJD ER. F5P MVM N9A NPBMV NPM P0- P2P ROL S7W SJN TN5 UBE UCJ VQA WH7 XSW YNT ZPR ~02 186 3O- 41~ 6TJ 8WZ 9M8 A6W AAYJJ AAYXX ABTAH ACKIV CITATION H~9 NEJ NHB OHT OK1 RNS T9H UBC VOH XJT XOL YYP ZCG ZY4 7X8 7U5 8FD H8D L7M |
ID | FETCH-LOGICAL-c458t-d1627b6bade455f1afc11e3d6bb184885e572168887cc822a1f65dd5c960c22c3 |
IEDL.DBID | ZPR |
ISSN | 0031-9007 |
IngestDate | Fri Oct 25 05:19:04 EDT 2024 Thu Oct 24 22:38:16 EDT 2024 Thu Sep 26 16:53:48 EDT 2024 Tue Oct 15 23:49:26 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c458t-d1627b6bade455f1afc11e3d6bb184885e572168887cc822a1f65dd5c960c22c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://bib-pubdb1.desy.de/record/307304/files/10.1103_PhysRevLett.113.057201.pdf |
PMID | 25126933 |
PQID | 1553705823 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | proquest_miscellaneous_1786217212 proquest_miscellaneous_1553705823 crossref_primary_10_1103_PhysRevLett_113_057201 pubmed_primary_25126933 |
PublicationCentury | 2000 |
PublicationDate | 2014-Aug-01 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-Aug-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Physical review letters |
PublicationTitleAlternate | Phys Rev Lett |
PublicationYear | 2014 |
References | PhysRevLett.113.057201Cc9R1 PhysRevLett.113.057201Cc7R1 PhysRevLett.113.057201Cc8R1 PhysRevLett.113.057201Cc6R1 PhysRevLett.113.057201Cc3R1 PhysRevLett.113.057201Cc11R1 PhysRevLett.113.057201Cc33R1 PhysRevLett.113.057201Cc4R1 PhysRevLett.113.057201Cc10R1 PhysRevLett.113.057201Cc32R1 PhysRevLett.113.057201Cc1R1 PhysRevLett.113.057201Cc31R1 PhysRevLett.113.057201Cc2R1 PhysRevLett.113.057201Cc30R1 PhysRevLett.113.057201Cc26R1 PhysRevLett.113.057201Cc25R1 PhysRevLett.113.057201Cc23R1 PhysRevLett.113.057201Cc29R1 PhysRevLett.113.057201Cc28R1 PhysRevLett.113.057201Cc27R1 PhysRevLett.113.057201Cc22R1 PhysRevLett.113.057201Cc21R1 PhysRevLett.113.057201Cc20R1 PhysRevLett.113.057201Cc15R1 PhysRevLett.113.057201Cc14R1 PhysRevLett.113.057201Cc13R1 PhysRevLett.113.057201Cc12R1 PhysRevLett.113.057201Cc19R1 PhysRevLett.113.057201Cc34R1 PhysRevLett.113.057201Cc18R1 PhysRevLett.113.057201Cc35R1 PhysRevLett.113.057201Cc17R1 PhysRevLett.113.057201Cc16R1 |
References_xml | – ident: PhysRevLett.113.057201Cc10R1 doi: 10.1103/PhysRevLett.90.247201 – ident: PhysRevLett.113.057201Cc25R1 doi: 10.1103/PhysRevLett.110.126401 – ident: PhysRevLett.113.057201Cc29R1 doi: 10.1103/PhysRevB.82.224302 – ident: PhysRevLett.113.057201Cc32R1 doi: 10.1103/PhysRev.147.392 – ident: PhysRevLett.113.057201Cc12R1 doi: 10.1103/PhysRevLett.76.4250 – ident: PhysRevLett.113.057201Cc35R1 doi: 10.1103/PhysRevLett.107.066403 – ident: PhysRevLett.113.057201Cc4R1 doi: 10.1038/nature11934 – ident: PhysRevLett.113.057201Cc6R1 doi: 10.1103/PhysRevLett.91.090402 – ident: PhysRevLett.113.057201Cc27R1 doi: 10.1140/epjb/e2002-00352-1 – ident: PhysRevLett.113.057201Cc26R1 doi: 10.1103/PhysRevB.61.8906 – ident: PhysRevLett.113.057201Cc9R1 doi: 10.1063/1.1799244 – ident: PhysRevLett.113.057201Cc22R1 doi: 10.1103/PhysRevLett.62.324 – ident: PhysRevLett.113.057201Cc23R1 doi: 10.1103/PhysRevB.82.115115 – ident: PhysRevLett.113.057201Cc28R1 doi: 10.1103/PhysRevB.84.035122 – ident: PhysRevLett.113.057201Cc8R1 doi: 10.1103/PhysRevLett.93.197403 – ident: PhysRevLett.113.057201Cc16R1 doi: 10.1016/j.aop.2013.03.006 – ident: PhysRevLett.113.057201Cc14R1 doi: 10.1038/nature09901 – ident: PhysRevLett.113.057201Cc2R1 doi: 10.1103/PhysRevLett.103.097402 – ident: PhysRevLett.113.057201Cc31R1 doi: 10.1103/PhysRevLett.111.077401 – ident: PhysRevLett.113.057201Cc7R1 doi: 10.1126/science.1150841 – ident: PhysRevLett.113.057201Cc18R1 doi: 10.1103/PhysRevLett.110.136404 – ident: PhysRevLett.113.057201Cc13R1 doi: 10.1103/PhysRevLett.99.047601 – ident: PhysRevLett.113.057201Cc21R1 doi: 10.1103/RevModPhys.68.13 – ident: PhysRevLett.113.057201Cc19R1 doi: 10.1103/PhysRevLett.97.266408 – ident: PhysRevLett.113.057201Cc20R1 doi: 10.1103/RevModPhys.86.779 – ident: PhysRevLett.113.057201Cc15R1 doi: 10.1038/ncomms1666 – ident: PhysRevLett.113.057201Cc33R1 doi: 10.1103/PhysRevB.71.085104 – ident: PhysRevLett.113.057201Cc34R1 doi: 10.1063/1.3436635 – ident: PhysRevLett.113.057201Cc30R1 doi: 10.1103/PhysRevLett.111.016401 – ident: PhysRevLett.113.057201Cc11R1 doi: 10.1103/PhysRevLett.109.057401 – ident: PhysRevLett.113.057201Cc17R1 doi: 10.1103/PhysRevB.86.205101 – ident: PhysRevLett.113.057201Cc3R1 doi: 10.1103/PhysRevB.84.241104 – ident: PhysRevLett.113.057201Cc1R1 doi: 10.1103/RevModPhys.82.2731 |
SSID | ssj0001268 |
Score | 2.4749317 |
Snippet | We investigate how fast and how effective photocarrier excitation can modify the exchange interaction J_{ex} in the prototype Mott-Hubbard insulator. We... We investigate how fast and how effective photocarrier excitation can modify the exchange interaction Jex in the prototype Mott-Hubbard insulator. We... |
SourceID | proquest crossref pubmed |
SourceType | Aggregation Database Index Database |
StartPage | 057201 |
SubjectTerms | Exchange Filing Formalism Insulators Magnetic fields Precession Quenching Simulation |
Title | Ultrafast quenching of the exchange interaction in a Mott insulator |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25126933 https://search.proquest.com/docview/1553705823 https://search.proquest.com/docview/1786217212 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46EHzxfpk3Ivhal2uTPsrc2IuC04FvJc0FBGll7cSfb9JsQ8EJe-lDKG0455CcL_m-cwC4wUQUlmQ6kcq5hDHjkkKFC1eNkEszrnBLkB09i8dXeT8IZXLQ3zf4GNFeYEKO7WdQt4QGJLc-wSBRsCVF1gpGxsulF5M0Lr008A6QmEuCV3_m9260IsVst5rh7vqT3AM787QS3sU42AcbtjwAWy29U9eHoD95b6bKqbqBT4E5HY6dYOWgz_7g4CuKf2F7OBh1DvCthAo-VE3jR-vQ4auaHoHJcPDSHyXz9gmJZlw2icGpd0RaKGMZ5w4rpzG21KRF4WGdlNzyULnHQ2Chtc8TFHYpN4ZrD2o0IZoeg05ZlfYUQMWt1U4E8McYR6xAzjvfcGIKgaxjXdBbmDH_iFUy8hZdIJr_MI0foHk0TRdcL6yd-4AOtxSqtNWszkMjI4G4JPSfd4QHYgG8ki44ia5a_jckbGlG6dnaczoH2_7JIr3vAnSa6cxegs3azK7aMPsG58DPXw |
link.rule.ids | 315,782,786,2879,27933,27934 |
linkProvider | American Physical Society |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultrafast+Quenching+of+the+Exchange+Interaction+in+a+Mott+Insulator&rft.jtitle=Physical+review+letters&rft.au=Mentink%2C+J+H&rft.au=Eckstein%2C+M&rft.date=2014-08-01&rft.issn=0031-9007&rft.eissn=1079-7114&rft.volume=113&rft.issue=5&rft_id=info:doi/10.1103%2FPhysRevLett.113.057201&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9007&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9007&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9007&client=summon |