Polyphenylsulfone (PPSU)-Based Copolymeric Membranes: Effects of Chemical Structure and Content on Gas Permeation and Separation
Although various polymer membrane materials have been applied to gas separation, there is a trade-off relationship between permeability and selectivity, limiting their wider applications. In this paper, the relationship between the gas permeation behavior of polyphenylsulfone(PPSU)-based materials a...
Saved in:
Published in: | Polymers Vol. 13; no. 16; p. 2745 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
16-08-2021
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Although various polymer membrane materials have been applied to gas separation, there is a trade-off relationship between permeability and selectivity, limiting their wider applications. In this paper, the relationship between the gas permeation behavior of polyphenylsulfone(PPSU)-based materials and their chemical structure for gas separation has been systematically investigated. A PPSU homopolymer and three kinds of 3,3′,5,5′-tetramethyl-4,4′-biphenol (TMBP)-based polyphenylsulfone (TMPPSf) copolymers were synthesized by controlling the TMBP content. As the TMPPSf content increases, the inter-molecular chain distance (or d-spacing value) increases. Data from positron annihilation life-time spectroscopy (PALS) indicate the copolymer with a higher TMPPSf content has a larger fractional free volume (FFV). The logarithm of their O2, N2, CO2, and CH4 permeability was found to increase linearly with an increase in TMPPSf content but decrease linearly with increasing 1/FFV. The enhanced permeability results from the increases in both sorption coefficient and gas diffusivity of copolymers. Interestingly, the gas permeability increases while the selectivity stays stable due to the presence of methyl groups in TMPPSf, which not only increases the free volume but also rigidifies the polymer chains. This study may provide a new strategy to break the trade-off law and increase the permeability of polymer materials largely. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 2073-4360 2073-4360 |
DOI: | 10.3390/polym13162745 |