Gene expression in endothelial cells and intimal smooth muscle cells in atherosclerosis-prone or atherosclerosis-resistant regions of the human aorta
We compared the atherogenic gene expression in the intimas of atherosclerosis-prone regions (proximal walls), which are exposed to disturbed shear stress, and atherosclerosis-resistant regions (apices), which are exposed to unidirectional laminar shear stress, at the orifices of the intercostal arte...
Saved in:
Published in: | Journal of vascular research Vol. 45; no. 4; p. 303 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
01-01-2008
|
Subjects: | |
Online Access: | Get more information |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We compared the atherogenic gene expression in the intimas of atherosclerosis-prone regions (proximal walls), which are exposed to disturbed shear stress, and atherosclerosis-resistant regions (apices), which are exposed to unidirectional laminar shear stress, at the orifices of the intercostal arteries of human aortas.
Expression of mRNAs, detected by in situ RT-PCR, for IL-1 beta, TNF-alpha, VCAM-1, PAF receptor and GRP in endothelial cells (ECs), and of PDGF receptor beta (PDGFR-beta), MCP-1, GRP and collagen type-1 by smooth muscle cells (SMCs) in the proximal walls, was significantly enhanced, while seldom observed in the elastic-hyperplastic layer of the apices. Protein expression of PDGFR-beta, IL-1 beta and TNF-alpha was also observed on the proximal walls. SMC growth in the apices was inhibited. Cultured SMC growth and their expression of PDGFR-beta were also significantly inhibited by elastin.
These results suggest that the construction of the elastic-hyperplastic layer and the subsequent inhibition of SMC growth by elastin, with stabilized ECs under unidirectional laminar shear stress, resulted in atherosclerosis-resistant regions at the apices of human aortas, and that the continuous induction of atherogenic gene expression by ECs activated by disturbed shear stress inhibits the formation of atherosclerosis-resistant intima along the proximal walls. |
---|---|
ISSN: | 1423-0135 |
DOI: | 10.1159/000113602 |