The effects of digital anaesthesia on predictive grip force adjustments during vertical movements of a grasped object
Grip force adjustments to fluctuations of inertial loads induced by vertical arm movements with a grasped object were analysed during normal and impaired finger sensibility. Normally grip force is modulated in a highly economical way in parallel with fluctuations of load force. Two subjects performe...
Saved in:
Published in: | The European journal of neuroscience Vol. 14; no. 4; pp. 756 - 762 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Oxford, UK
Blackwell Science Ltd
01-08-2001
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Grip force adjustments to fluctuations of inertial loads induced by vertical arm movements with a grasped object were analysed during normal and impaired finger sensibility. Normally grip force is modulated in a highly economical way in parallel with fluctuations of load force. Two subjects performed vertical up and down movements of a grasped object, both with normal finger sensibility and then cutaneously anaesthetized finger sensibility. Short breaks were taken in between single movements, during which the object was held stationary. After digital anaesthesia was applied to the grasping fingers, both subjects substantially increased the grip force. The grip force amplitude and timing still anticipated changes in load force, although the established grip force had already overcome movement‐induced load force peaks. This implies that the increase of grip force and consequently the elevated force ratio between maximum grip and maximum load force are not processed to alter the feedforward system of grip force control. Cutaneous afferent information from the grasping digits appears to be necessary for economic scaling of the grip force level, but it plays a subordinate role in the precise anticipatory temporal coupling of grip and load forces during voluntary object manipulation. |
---|---|
AbstractList | Grip force adjustments to fluctuations of inertial loads induced by vertical arm movements with a grasped object were analysed during normal and impaired finger sensibility. Normally grip force is modulated in a highly economical way in parallel with fluctuations of load force. Two subjects performed vertical up and down movements of a grasped object, both with normal finger sensibility and then cutaneously anaesthetized finger sensibility. Short breaks were taken in between single movements, during which the object was held stationary. After digital anaesthesia was applied to the grasping fingers, both subjects substantially increased the grip force. The grip force amplitude and timing still anticipated changes in load force, although the established grip force had already overcome movement‐induced load force peaks. This implies that the increase of grip force and consequently the elevated force ratio between maximum grip and maximum load force are not processed to alter the feedforward system of grip force control. Cutaneous afferent information from the grasping digits appears to be necessary for economic scaling of the grip force level, but it plays a subordinate role in the precise anticipatory temporal coupling of grip and load forces during voluntary object manipulation. Abstract Grip force adjustments to fluctuations of inertial loads induced by vertical arm movements with a grasped object were analysed during normal and impaired finger sensibility. Normally grip force is modulated in a highly economical way in parallel with fluctuations of load force. Two subjects performed vertical up and down movements of a grasped object, both with normal finger sensibility and then cutaneously anaesthetized finger sensibility. Short breaks were taken in between single movements, during which the object was held stationary. After digital anaesthesia was applied to the grasping fingers, both subjects substantially increased the grip force. The grip force amplitude and timing still anticipated changes in load force, although the established grip force had already overcome movement‐induced load force peaks. This implies that the increase of grip force and consequently the elevated force ratio between maximum grip and maximum load force are not processed to alter the feedforward system of grip force control. Cutaneous afferent information from the grasping digits appears to be necessary for economic scaling of the grip force level, but it plays a subordinate role in the precise anticipatory temporal coupling of grip and load forces during voluntary object manipulation. |
Author | Glasauer, Stefan Philipp, Jens Hermsdörfer, Joachim Nowak, Dennis A. Meyer, Ludger Mai, Norbert |
Author_xml | – sequence: 1 givenname: Dennis A. surname: Nowak fullname: Nowak, Dennis A. organization: Department of Neurology, Ludwig-Maximilians-Universität München, Klinikum Großhadern, Marchioninistraße 23, D-81377 München, Germany – sequence: 2 givenname: Joachim surname: Hermsdörfer fullname: Hermsdörfer, Joachim organization: Clinical Neuropsychology Research Group, Krankenhaus München-Bogenhausen, Technische Universität München, Dachauerstraße 164, D-80992 München, Germany – sequence: 3 givenname: Stefan surname: Glasauer fullname: Glasauer, Stefan organization: Department of Neurology, Ludwig-Maximilians-Universität München, Klinikum Großhadern, Marchioninistraße 23, D-81377 München, Germany – sequence: 4 givenname: Jens surname: Philipp fullname: Philipp, Jens organization: Department of Neurology, Ludwig-Maximilians-Universität München, Klinikum Großhadern, Marchioninistraße 23, D-81377 München, Germany – sequence: 5 givenname: Ludger surname: Meyer fullname: Meyer, Ludger organization: Department of Surgery, Ludwig-Maximilians-Universität München, Klinikum Großhadern, Marchioninistraße 23, D-81377 München, Germany – sequence: 6 givenname: Norbert surname: Mai fullname: Mai, Norbert organization: Department of Neurology, Ludwig-Maximilians-Universität München, Klinikum Großhadern, Marchioninistraße 23, D-81377 München, Germany |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11556900$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkM1u1DAUhS1URKeFV0BesUtqx7GTLFigqpRWVfnRoLKzHPt66pA_7GSYvj0OGWDL6lq65ztX_s7QST_0gBCmJKUkFxdNSirOkpKKQ5oRQlNCRVWkh2doQ3NBkoqL8gRt_oS-naKzEBpCSCly_gKdUsq5qAjZoHn7CBisBT0FPFhs3M5NqsWqVxCmRwhO4aHHowfj9OT2gHfejdgOXgNWppnD1EEfWTN71-_wHvzkdCzohj2sm9iqIqXCCAYPdRNPvUTPrWoDvDrOc_T1_dX28kNy9_H65vLdXaJzXhaJtqzOMwBCSVarEmxeM1FARSkQkuU1J0oIyqDStSlLVrCaC52pzACzzBSWnaM3a-_ohx9z_JDsXNDQtqqHYQ6yoLTIeM5jsFyD2g8heLBy9K5T_klSIhflspGLTbkol4ty-Vu5PET09fHGXHdg_oFHxzHwdg38dC08_XexvLq9X16RT1behQkOf3nlv0tRsILLh_tr-cBvs-1n9kl-Yb8A3iyjvQ |
CitedBy_id | crossref_primary_10_1016_j_neuroscience_2017_04_010 crossref_primary_10_1016_j_isci_2023_107246 crossref_primary_10_1016_j_brainresrev_2005_10_003 crossref_primary_10_1016_S1388_2457_03_00042_7 crossref_primary_10_1111_j_1460_9568_2010_07444_x crossref_primary_10_1016_j_jht_2013_05_007 crossref_primary_10_1007_s00221_007_1064_3 crossref_primary_10_1016_S1388_2457_02_00386_3 crossref_primary_10_1152_japplphysiol_01385_2011 crossref_primary_10_1016_j_neubiorev_2017_11_016 crossref_primary_10_1109_TNSRE_2024_3415709 crossref_primary_10_1007_s12555_016_0470_3 crossref_primary_10_1152_jn_00416_2019 crossref_primary_10_1002_mds_20309 crossref_primary_10_1126_sciadv_adh9344 crossref_primary_10_1016_j_jelekin_2006_02_002 crossref_primary_10_3390_s20010004 crossref_primary_10_1152_jn_00220_2003 crossref_primary_10_1152_jn_00517_2020 crossref_primary_10_1152_jn_00506_2022 crossref_primary_10_1186_s13063_022_06241_9 crossref_primary_10_1016_j_clinph_2008_04_290 crossref_primary_10_1038_s41598_021_93036_8 crossref_primary_10_1016_j_jbiomech_2011_12_001 crossref_primary_10_1152_jn_00616_2020 crossref_primary_10_1007_s00221_003_1380_1 crossref_primary_10_1152_jn_00195_2016 crossref_primary_10_1123_mcj_7_3_304 crossref_primary_10_1016_j_cortex_2015_10_007 crossref_primary_10_1523_ENEURO_0211_23_2023 crossref_primary_10_1016_j_jfranklin_2021_02_007 crossref_primary_10_3389_fnhum_2016_00596 crossref_primary_10_1007_s00221_019_05498_y crossref_primary_10_1016_j_clinph_2008_12_029 crossref_primary_10_1002_mds_20299 crossref_primary_10_1080_23328940_2015_1008890 crossref_primary_10_1097_00001756_200310060_00009 crossref_primary_10_1007_s00221_008_1675_3 crossref_primary_10_1037_0735_7044_116_5_837 crossref_primary_10_3389_fnbot_2018_00013 crossref_primary_10_1016_j_cogbrainres_2003_11_013 crossref_primary_10_1197_j_jht_2007_06_002 crossref_primary_10_1007_s00221_014_4071_1 crossref_primary_10_1016_j_apmr_2023_02_010 crossref_primary_10_1016_j_clinph_2013_11_020 crossref_primary_10_1109_TOH_2013_60 crossref_primary_10_1016_j_neulet_2007_07_048 crossref_primary_10_1016_j_clinph_2024_02_033 crossref_primary_10_1007_s00221_006_0409_7 crossref_primary_10_1016_j_brainres_2015_05_016 crossref_primary_10_1111_j_1460_9568_2003_03011_x crossref_primary_10_1109_TOH_2020_3009599 crossref_primary_10_1016_S0168_0102_03_00182_2 crossref_primary_10_1109_TOH_2015_2420096 crossref_primary_10_1016_j_neuropsychologia_2004_07_001 crossref_primary_10_1080_00222895_2016_1191416 crossref_primary_10_1080_1463922X_2012_691185 crossref_primary_10_1371_journal_pone_0256753 crossref_primary_10_3389_fnhum_2020_549880 crossref_primary_10_3389_fphys_2018_00938 crossref_primary_10_1177_1545968307311103 crossref_primary_10_1155_2016_8314561 crossref_primary_10_1109_TOH_2021_3060507 crossref_primary_10_1109_TRO_2009_2019789 crossref_primary_10_1152_jn_00087_2021 crossref_primary_10_1371_journal_pone_0138506 crossref_primary_10_1007_s00221_004_2152_2 crossref_primary_10_1109_ACCESS_2019_2924743 crossref_primary_10_1007_s00221_007_1195_6 crossref_primary_10_1007_s00115_003_1676_1 crossref_primary_10_1007_s00221_016_4589_5 crossref_primary_10_1152_jn_00358_2021 crossref_primary_10_1007_s00221_023_06705_7 crossref_primary_10_1007_s00221_018_5315_2 crossref_primary_10_1016_j_clinph_2006_06_005 crossref_primary_10_1007_s10339_004_0042_y crossref_primary_10_1097_00003677_200404000_00007 crossref_primary_10_1007_s00221_015_4241_9 crossref_primary_10_1371_journal_pone_0094452 crossref_primary_10_1007_s00421_008_0671_4 crossref_primary_10_1098_rsif_2012_0467 crossref_primary_10_2147_IJN_S447721 crossref_primary_10_1177_1545968309338194 crossref_primary_10_1016_j_neulet_2006_11_008 crossref_primary_10_1152_jn_00249_2002 crossref_primary_10_1109_ACCESS_2022_3143837 crossref_primary_10_1007_s00221_012_3050_7 crossref_primary_10_1152_jn_00114_2010 crossref_primary_10_1186_s12984_020_0649_y crossref_primary_10_1371_journal_pone_0124137 crossref_primary_10_3233_JAD_210387 crossref_primary_10_1111_j_1460_9568_2008_06039_x crossref_primary_10_1016_j_clinph_2005_02_015 crossref_primary_10_1038_s41598_024_62768_8 crossref_primary_10_1016_j_neulet_2008_10_097 crossref_primary_10_1115_1_4039145 crossref_primary_10_7554_eLife_52653 crossref_primary_10_1080_00222895_2019_1664977 crossref_primary_10_1016_j_tins_2004_08_006 crossref_primary_10_1109_TOH_2016_2526613 crossref_primary_10_3389_fnhum_2021_662006 crossref_primary_10_1016_j_neubiorev_2009_03_004 crossref_primary_10_1080_146608202760839005 crossref_primary_10_1007_s00221_011_2695_y crossref_primary_10_1016_j_humov_2004_10_005 crossref_primary_10_1016_j_neulet_2008_01_067 crossref_primary_10_1080_10669817_2017_1393177 crossref_primary_10_1109_TBME_2014_2325948 crossref_primary_10_1152_jn_00958_2002 crossref_primary_10_1016_j_sysconle_2015_10_009 |
Cites_doi | 10.1007/BF00229422 10.1152/jn.1999.82.5.2393 10.1007/BF00238156 10.1007/BF00241382 10.1007/BF00229016 10.1523/JNEUROSCI.18-18-07511.1998 10.1007/BF00237997 10.1080/00140138808966676 10.1152/jn.1996.75.5.1963 10.1523/JNEUROSCI.19-08-03238.1999 10.1152/jn.1999.81.4.1706 10.1016/s0893-6080(96)00035-4 10.1007/BF00229017 10.1016/0304-3940(93)90481-Y 10.1523/JNEUROSCI.17-04-01519.1997 10.1093/brain/121.9.1771 10.1007/BF00236209 10.1007/BF00229662 10.1007/BF00229015 10.1016/B978-012759440-8/50025-6 |
ContentType | Journal Article |
Copyright | Federation of European Neuroscience Societies |
Copyright_xml | – notice: Federation of European Neuroscience Societies |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1046/j.0953-816x.2001.01697.x |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1460-9568 |
EndPage | 762 |
ExternalDocumentID | 10_1046_j_0953_816x_2001_01697_x 11556900 EJN1697 ark_67375_WNG_W5J2TQ3P_R |
Genre | shortCommunication Journal Article |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1OB 1OC 29G 31~ 33P 36B 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIVO ABJNI ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AFZJQ AHBTC AHEFC AIACR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CAG COF CS3 D-6 D-7 D-E D-F DC6 DCZOG DPXWK DR2 DRFUL DRMAN DRSTM EAD EAP EAS EBC EBD EBS EBX EJD EMB EMK EMOBN EPS ESX EX3 F00 F01 F04 F5P FEDTE FUBAC FZ0 G-S G.N GAKWD GODZA H.X HF~ HGLYW HVGLF HZI HZ~ IHE IX1 J0M K48 KBYEO LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 Q~Q R.K RIG RIWAO RJQFR ROL RX1 SAMSI SUPJJ SV3 TEORI TUS UB1 W8V W99 WBKPD WHG WIH WIJ WIK WNSPC WOHZO WOW WQJ WRC WUP WXI WXSBR WYISQ XG1 YFH ZGI ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c4587-cf3b42ee0102ba8ef4b367e911e0024b50a6613e9cbd88373b56c2a2de3f3d7f3 |
IEDL.DBID | 33P |
ISSN | 0953-816X |
IngestDate | Fri Aug 16 05:38:10 EDT 2024 Fri Aug 23 02:59:25 EDT 2024 Sat Sep 28 08:39:26 EDT 2024 Sat Aug 24 00:53:26 EDT 2024 Wed Oct 30 09:54:57 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4587-cf3b42ee0102ba8ef4b367e911e0024b50a6613e9cbd88373b56c2a2de3f3d7f3 |
Notes | ArticleID:EJN1697 ark:/67375/WNG-W5J2TQ3P-R istex:FC696DEBAE8E53C42225AC331638D2E8494B81C5 Abteilung für Neurologie, Städtisches Krankenhaus Bogenhausen, Englschalkingerstraße 77, D‐81925 München, Germany. Deceased. Present address ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 11556900 |
PQID | 71172545 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | proquest_miscellaneous_71172545 crossref_primary_10_1046_j_0953_816x_2001_01697_x pubmed_primary_11556900 wiley_primary_10_1046_j_0953_816x_2001_01697_x_EJN1697 istex_primary_ark_67375_WNG_W5J2TQ3P_R |
PublicationCentury | 2000 |
PublicationDate | August 2001 |
PublicationDateYYYYMMDD | 2001-08-01 |
PublicationDate_xml | – month: 08 year: 2001 text: August 2001 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: France |
PublicationTitle | The European journal of neuroscience |
PublicationTitleAlternate | Eur J Neurosci |
PublicationYear | 2001 |
Publisher | Blackwell Science Ltd |
Publisher_xml | – name: Blackwell Science Ltd |
References | Buchholz, B., Fredderick, L.J., Armstrong, T.J. (1988) An investigation of human palmar skin friction and the effects of materials, pinch force and moisture. Ergonomics, 31, 317-325. Häger-Ross, C. & Johansson, R.S. (1996) Nondigital afferent input in reactive control of fingertip forces during precision grip. Exp. Brain Res., 110, 131-141. Flanagan, J.R., Burstedt, M.K., Johansson, R.S. (1999) Control of fingertip forces in multidigit manipulation. J. Neurophysiol., 81, 1706-1717. Johansson, R.S., Häger, C., Bäckström, L. (1992a) Somatosensory control of precision grip during unpredictable pulling loads. III. Impairments during digital anesthesia. Exp. Brain Res., 89, 204-213. Johansson, R.S., Riso, R., Häger, C., Bäckström, L. (1992c) Somatosensory control of precision grip during unpredictable pulling loads. I. Changes in load force amplitude. Exp. Brain Res., 89, 181-191. Flanagan, J.R., Tresilian, J., Wing, A.M. (1993) Coupling of grip force and load force during arm movements with grasped objects. Neurosci. Lett., 152, 53-56. Cole, K.J., Rotella, D.L., Harper, J.G. (1999) Mechanisms for age-related changes of fingertip forces during precision gripping and lifting in adults. J. Neurosci., 19, 3238-3247. Fellows, S.J., Noth, J., Schwarz, M. (1998) Precision grip and Parkinson's disease. Brain, 121, 1771-1784.DOI: 10.1093/brain/121.9.1771 Johansson, R.S., Häger, C., Riso, R. (1992b) Somatosensory control of precision grip during unpredictable pulling loads. II. Changes in load force rate. Exp. Brain Res., 89, 192-203. Cadoret, G. & Smith, A.M. (1996) Friction, not texture, dictates grip forces used during object manipulation. J. Neurophysiol., 75, 1963-1969. Burstedt, M.K., Flanagan, J.R., Johansson, R.S. (1999) Control of grasp stability in humans under different frictional conditions during multidigit manipulations. J. Neurophysiol., 82, 2393-2405. Macefield, V.G. & Johansson, R.S. (1996) Control of grip force during restraint of an object held between finger and thumb: responses of muscle and joint afferents from the digits. Exp. Brain Res., 108, 172-184. Forssberg, H., Eliasson, A.C., Kinoshita, H., Johansson, R.S., Westling, G. (1991) Development of human precision grip I: Basic coordination of force. Exp. Brain Res., 85, 451-457. Johansson, R.S. & Westling, G. (1984) Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects. Exp. Brain Res., 56, 550-564. Blakemore, S.J., Goodbody, S.J., Wolpert, D.M. (1998) Predicting the consequences of our own actions: The role of sensorimotor context estimation. J. Neurosci., 18, 7511-7518. Flanagan, J.R. & Wing, A.M. (1993) Modulation of grip force with load force during point-to-point arm movements. Exp. Brain Res., 95, 131-143. Westling, G. & Johansson, R.S. (1987) Responses in glabrous skin mechanoreceptors during precision grip in humans. Exp. Brain Res., 66, 128-140. Miall, R.C. & Wolpert, D.M. (1996) Forward models for physiological motor control. Neural Networks, 9, 1265-1279.DOI: 10.1016/s0893-6080(96)00035-4 Westling, G. & Johansson, R.S. (1984) Factors influencing the force control during precision grip. Exp. Brain Res., 53, 277-284. Flanagan, J.R. & Wing, A.M. (1997) The role of internal models in motion planning and control: Evidence from grip force adjustments during movements of hand held loads. J. Neurosci., 17, 1519-1528. 1998; 18 1987; 66 1984; 53 1992a; 89 1993; 95 1992c; 89 1999; 19 1991; 85 1984; 56 1993; 152 1997; 17 1996 1996; 110 1992b; 89 1988; 31 1999; 82 1998; 121 1999; 81 1996; 108 1996; 75 1996; 9 1999 e_1_2_6_21_1 e_1_2_6_10_1 e_1_2_6_20_1 Macefield V.G. (e_1_2_6_19_1) 1996; 108 Cole K.J. (e_1_2_6_6_1) 1999; 19 e_1_2_6_9_1 e_1_2_6_8_1 e_1_2_6_5_1 e_1_2_6_4_1 e_1_2_6_7_1 e_1_2_6_13_1 e_1_2_6_14_1 e_1_2_6_3_1 e_1_2_6_11_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_12_1 e_1_2_6_22_1 e_1_2_6_17_1 e_1_2_6_18_1 e_1_2_6_15_1 e_1_2_6_16_1 |
References_xml | – volume: 18 start-page: 7511 year: 1998 end-page: 7518 article-title: Predicting the consequences of our own actions: The role of sensorimotor context estimation publication-title: J. Neurosci. – volume: 152 start-page: 53 year: 1993 end-page: 56 article-title: Coupling of grip force and load force during arm movements with grasped objects publication-title: Neurosci. Lett. – volume: 19 start-page: 3238 year: 1999 end-page: 3247 article-title: Mechanisms for age‐related changes of fingertip forces during precision gripping and lifting in adults publication-title: J. Neurosci. – volume: 89 start-page: 204 year: 1992a end-page: 213 article-title: Somatosensory control of precision grip during unpredictable pulling loads. III. Impairments during digital anesthesia publication-title: Exp. Brain Res. – volume: 95 start-page: 131 year: 1993 end-page: 143 article-title: Modulation of grip force with load force during point‐to‐point arm movements publication-title: Exp. Brain Res. – volume: 31 start-page: 317 year: 1988 end-page: 325 article-title: An investigation of human palmar skin friction and the effects of materials, pinch force and moisture publication-title: Ergonomics – volume: 66 start-page: 128 year: 1987 end-page: 140 article-title: Responses in glabrous skin mechanoreceptors during precision grip in humans publication-title: Exp. Brain Res. – volume: 85 start-page: 451 year: 1991 end-page: 457 article-title: Development of human precision grip I: Basic coordination of force publication-title: Exp. Brain Res. – volume: 121 start-page: 1771 year: 1998 end-page: 1784 article-title: Precision grip and Parkinson's disease publication-title: Brain – volume: 82 start-page: 2393 year: 1999 end-page: 2405 article-title: Control of grasp stability in humans under different frictional conditions during multidigit manipulations publication-title: J. Neurophysiol. – volume: 110 start-page: 131 year: 1996 end-page: 141 article-title: Nondigital afferent input in reactive control of fingertip forces during precision grip publication-title: Exp. Brain Res. – volume: 89 start-page: 192 year: 1992b end-page: 203 article-title: Somatosensory control of precision grip during unpredictable pulling loads. II. Changes in load force rate publication-title: Exp. Brain Res. – volume: 56 start-page: 550 year: 1984 end-page: 564 article-title: Roles of glabrous skin receptors and sensorimotor memory in automatic control of precision grip when lifting rougher or more slippery objects publication-title: Exp. Brain Res. – volume: 89 start-page: 181 year: 1992c end-page: 191 article-title: Somatosensory control of precision grip during unpredictable pulling loads. I. Changes in load force amplitude publication-title: Exp. Brain Res. – volume: 108 start-page: 172 year: 1996 end-page: 184 article-title: Control of grip force during restraint of an object held between finger and thumb: responses of muscle and joint afferents from the digits publication-title: Exp. Brain Res. – volume: 75 start-page: 1963 year: 1996 end-page: 1969 article-title: Friction, not texture, dictates grip forces used during object manipulation publication-title: J. Neurophysiol. – volume: 81 start-page: 1706 year: 1999 end-page: 1717 article-title: Control of fingertip forces in multidigit manipulation publication-title: J. Neurophysiol. – volume: 53 start-page: 277 year: 1984 end-page: 284 article-title: Factors influencing the force control during precision grip publication-title: Exp. Brain Res. – start-page: 381 year: 1996 end-page: 414 – volume: 17 start-page: 1519 year: 1997 end-page: 1528 article-title: The role of internal models in motion planning and control: Evidence from grip force adjustments during movements of hand held loads publication-title: J. Neurosci. – volume: 9 start-page: 1265 year: 1996 end-page: 1279 article-title: Forward models for physiological motor control publication-title: Neural Networks – year: 1999 – ident: e_1_2_6_12_1 doi: 10.1007/BF00229422 – ident: e_1_2_6_4_1 doi: 10.1152/jn.1999.82.5.2393 – ident: e_1_2_6_22_1 doi: 10.1007/BF00238156 – ident: e_1_2_6_13_1 doi: 10.1007/BF00241382 – ident: e_1_2_6_16_1 doi: 10.1007/BF00229016 – ident: e_1_2_6_2_1 doi: 10.1523/JNEUROSCI.18-18-07511.1998 – ident: e_1_2_6_18_1 doi: 10.1007/BF00237997 – ident: e_1_2_6_3_1 doi: 10.1080/00140138808966676 – ident: e_1_2_6_5_1 doi: 10.1152/jn.1996.75.5.1963 – volume: 19 start-page: 3238 year: 1999 ident: e_1_2_6_6_1 article-title: Mechanisms for age‐related changes of fingertip forces during precision gripping and lifting in adults publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.19-08-03238.1999 contributor: fullname: Cole K.J. – ident: e_1_2_6_8_1 doi: 10.1152/jn.1999.81.4.1706 – ident: e_1_2_6_20_1 doi: 10.1016/s0893-6080(96)00035-4 – ident: e_1_2_6_21_1 – ident: e_1_2_6_15_1 doi: 10.1007/BF00229017 – ident: e_1_2_6_9_1 doi: 10.1016/0304-3940(93)90481-Y – ident: e_1_2_6_11_1 doi: 10.1523/JNEUROSCI.17-04-01519.1997 – ident: e_1_2_6_7_1 doi: 10.1093/brain/121.9.1771 – ident: e_1_2_6_23_1 doi: 10.1007/BF00236209 – ident: e_1_2_6_10_1 doi: 10.1007/BF00229662 – volume: 108 start-page: 172 year: 1996 ident: e_1_2_6_19_1 article-title: Control of grip force during restraint of an object held between finger and thumb: responses of muscle and joint afferents from the digits publication-title: Exp. Brain Res. contributor: fullname: Macefield V.G. – ident: e_1_2_6_17_1 doi: 10.1007/BF00229015 – ident: e_1_2_6_14_1 doi: 10.1016/B978-012759440-8/50025-6 |
SSID | ssj0008645 |
Score | 2.1266458 |
Snippet | Grip force adjustments to fluctuations of inertial loads induced by vertical arm movements with a grasped object were analysed during normal and impaired... Abstract Grip force adjustments to fluctuations of inertial loads induced by vertical arm movements with a grasped object were analysed during normal and... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 756 |
SubjectTerms | Adult anaesthesia Anesthetics, Local - pharmacology anticipatory force control Biomechanical Phenomena feedback Feedback - drug effects Feedback - physiology Fingers - innervation Fingers - physiology grip force Hand Strength - physiology Humans Male Mechanoreceptors - drug effects Mechanoreceptors - physiology Movement - drug effects Movement - physiology Peripheral Nerves - drug effects Peripheral Nerves - physiology Psychomotor Performance - drug effects Psychomotor Performance - physiology Reaction Time - drug effects Reaction Time - physiology tactile sensibility Touch - drug effects Touch - physiology Weight-Bearing - physiology |
Title | The effects of digital anaesthesia on predictive grip force adjustments during vertical movements of a grasped object |
URI | https://api.istex.fr/ark:/67375/WNG-W5J2TQ3P-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1046%2Fj.0953-816x.2001.01697.x https://www.ncbi.nlm.nih.gov/pubmed/11556900 https://search.proquest.com/docview/71172545 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagHOACpeURKOAD6i2rJI7t5Fi1W6o9rAoUtTfLr_SBmqw2RFr-PTP2ZqtKPSDELZdJ4vF4_I098w0hn_PayNpwngpX67SEtZhWzuapMBIJyGxThqKwk-9yflEdTZEmZzbWwkR-iM2BG66M4K9xgWsTu5Bkgd32ZoJUaWmVixWGefkEeUXkBPEkBA2hmoOdbpxyJUK_4lHkYp3UEy84H37RvZ3qCSp99RAMvY9qw7Z0_OJ_DmibPF-DU3oQrekleeTbHbJ70EJgfvub7tOQLhrO4XfI08OxVdwuGcDY6DozhHYNddeX2IuE6lbDGK58f61p19LFEm-F0L_SS_BVFPCy9VS7m6EPue49jUWTNPSIBuOht12gM49v1SCl-4V3tDN4evSK_Dienh2epOt-DqktOfgy2zBTFt4jjZ3RlW9Kw4T04G49QgXDMw1ogfnaGldB4MwMF7bQhfOsYU427DXZarvWvyW0QeRmtZZZ7ktbCK1dDm69LrjnICATko9zpxaRtkOF6_YSS9NQzwr1jE04cxX0rFYJ2Q-TvBHQy5-Y9ia5Op9_Ued8Vpx9ZafqW0I-jVagQNF4w6Jb3w29QvuGiJsn5E00jruPA24TdZYlRAQb-Ou_UtPZHJ_e_avge_Is5s1h0uIe2fq1HPwH8rh3w8ewRP4AQQMPQg |
link.rule.ids | 315,782,786,1408,27935,27936,46066,46490 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LU9RAEO5SOOBFEXxEQeZgcQtuMo8kRwoWV8At1LXgNjWvIFokWxtTtf57pyfJWlRxsCxvuXSS6enu-Xr6BfA2KXRWaM5jYQsVM6-LcW5NEgudYQMyU7JQFDb5kk2v8uMxtsk5G2phuv4Qqws31Ixgr1HB8UL6XR-WDFqOvdLiPBFL9POSA2wskh14QLnOBCtwjgOlFyuznIswsXiguerTeroQ5_1vunNWrSPbl_cB0bu4NhxMJ0_-65I24XGPT8lhJ1BP4YGrtmD7sPK--e0vsk9Cxmi4it-CjaNhWtw2tF7eSJ8cQuqS2JtrHEdCVKX8Ir655kaRuiLzBQaG0MSSa2-uiIfMxhFlv7dNSHdvSFc3ScKYaC8_5LYOHc27typPpZq5s6TWeIH0DL6ejGdHk7gf6RAbxr05MyXVLHUOO9lplbuSaSoy5y2uQ7Sg-Uh5wEBdYbTNve9MNRcmVal1tKQ2K-lzWKvqyr0EUiJ4M0plo8QxkwqlbOIte5Fyxz1BFkEybJ6cd507ZIi4M6xOQz5L5DPO4Uxk4LNcRrAfdnlFoBY_MPMt4_Jy-l5e8tN09oleyM8R7A1iID2jMciiKle3jUQR9043j-BFJx1_Pu6hmyhGowhEEIK__is5Pp3i06t_JdyDjcns47k8_zA9ew2PujQ6zGHcgbWfi9btwsPGtm-CvvwGUusTYw |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BKwEXCi2P0EJ9QL2lbOLYTo5Vu0tZ0GqBovZm-ZVSUJPVhkjLv8fjJFtV6gEhbrlMEo9nxt94XgBvk0KLQjMWc1uoOPO6GOfWJDHXAhuQmTILRWGnX8XsIj8ZY5uc6VAL0_WHWF-4oWYEe40KvrDluz4qGZQcW6XFecJX6OYlh9hXRBx6PLmZISrHcg46X1vlnIeBxQPNRZ_V00U4737TraNqE7m-uguH3oa14VyabP3PFT2Bxz06JUedOD2Fe67ahp2jynvm17_JAQn5ouEifhseHg-z4nag9dJG-tQQUpfEXl3iMBKiKuXX8N01V4rUFVksMSyEBpZcemNFPGA2jij7o21CsntDuqpJEoZEe-kh13XoZ969VXkq1SycJbXG66Nn8G0yPjs-jfuBDrHJmDdmpqQ6S53DPnZa5a7MNOXCeXvrECtoNlIeLlBXGG1z7zlTzbhJVWodLakVJX0OG1VduZdASoRuRikxSlxmUq6UTbxdL1LmmCcQESTD3slF17dDhnh7hrVpyGeJfMYpnIkMfJarCA7CJq8J1PIn5r0JJs9n7-U5m6Znn-lcfolgf5AC6RmNIRZVubptJAq4d7lZBC864bj5uAduvBiNIuBBBv76r-R4OsOnV_9KuA8P5icT-enD7OMuPOpy6DCBcQ82fi1b9xruN7Z9E7TlD_iZEhI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effects+of+digital+anaesthesia+on+predictive+grip+force+adjustments+during+vertical+movements+of+a+grasped+object&rft.jtitle=The+European+journal+of+neuroscience&rft.au=Nowak%2C+Dennis+A.&rft.au=Hermsd%C3%B6rfer%2C+Joachim&rft.au=Glasauer%2C+Stefan&rft.au=Philipp%2C+Jens&rft.date=2001-08-01&rft.pub=Blackwell+Science+Ltd&rft.issn=0953-816X&rft.eissn=1460-9568&rft.volume=14&rft.issue=4&rft.spage=756&rft.epage=762&rft_id=info:doi/10.1046%2Fj.0953-816x.2001.01697.x&rft.externalDBID=10.1046%252Fj.0953-816x.2001.01697.x&rft.externalDocID=EJN1697 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-816X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-816X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-816X&client=summon |