Cubic and orthorhombic SnS thin-film absorbers for tin sulfide solar cells
The tin sulfide solar cell has acquired prominence in recent years. We present the characteristics of two polymorphs of SnS and their perspectives in thin‐film solar cells. Thin‐film SnS with cubic crystalline structure (SnS‐CUB) was obtained via two chemical routes. This semiconductor is distinct f...
Saved in:
Published in: | Physica status solidi. A, Applications and materials science Vol. 213; no. 1; pp. 170 - 177 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Weinheim
Blackwell Publishing Ltd
01-01-2016
Wiley Subscription Services, Inc |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The tin sulfide solar cell has acquired prominence in recent years. We present the characteristics of two polymorphs of SnS and their perspectives in thin‐film solar cells. Thin‐film SnS with cubic crystalline structure (SnS‐CUB) was obtained via two chemical routes. This semiconductor is distinct from the more common SnS thin films of orthorhombic crystalline structure (SnS‐ORT), also obtained by chemical routes. The SnS‐CUB reported here with a lattice constant a of 11.587 Å replaces the zinc blende structure previously reported for this material with a of 5.783 Å. Thin films of SnS‐CUB have an optical bandgap (Eg) of 1.66–1.72 eV and electrical conductivity (σ) of 10−6 Ω−1 cm−1. These characteristics distinguish them from SnS‐ORT presented here with an Eg of 1.1 eV and σ typically higher by two orders of magnitude. We discuss the uncertainties that have prevailed in the assignment of crystalline structure for SnS‐CUB and SnS‐ORT. The optical and electrical properties of these two polymorphs of SnS are contrasted in the context of light‐generated current density in solar cells. We conclude that the two SnS polymorphs when considered together as optical absorbers offer wider prospects for tin sulfide thin‐film solar cells. |
---|---|
Bibliography: | ArticleID:PSSA201532426 CeMIE-Sol-35 istex:E02EE0F766F3C66B30133AAD1524E8D23CE6B2C3 PAPIIT-UNAM - No. IN117912; No. IN116015; No. IT100814 ark:/67375/WNG-MXWBZ3K6-4 CONACYT-LIFYCS ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1862-6300 1862-6319 |
DOI: | 10.1002/pssa.201532426 |