Novel Polymer Clay-Based Nanocomposites: Films with Remarkable Optical and Water Vapor Barrier Properties

The impact of varying the copolymer composition of styrene–co‐butyl acrylate copolymers on the dispersion of montmorillonite (MMT) clay and the effect thereof on the transparency and water vapor barrier properties of the resultant films is assessed. The hybrid latexes containing MMT clay concentrati...

Full description

Saved in:
Bibliographic Details
Published in:Macromolecular materials and engineering Vol. 301; no. 7; pp. 836 - 845
Main Authors: Murima, Douglas, Pfukwa, Helen, Tiggelman, Ineke, Hartmann, Patrice C., Pasch, Harald
Format: Journal Article
Language:English
Published: Weinheim Blackwell Publishing Ltd 01-07-2016
John Wiley & Sons, Inc
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The impact of varying the copolymer composition of styrene–co‐butyl acrylate copolymers on the dispersion of montmorillonite (MMT) clay and the effect thereof on the transparency and water vapor barrier properties of the resultant films is assessed. The hybrid latexes containing MMT clay concentrations of 10–30 wt% are prepared using miniemulsion polymerization. The morphology of the resultant latexes shows that the MMT particles are predominantly adhered onto the surface of the latex particles. However, the transparency of the films suggests a fair dispersion of the MMT platelets in the matrix. The thickness‐normalized light transmittance for copolymers with 40 and 50 mol% styrene only decreases from 70% in the neat films to 50% in the nanocomposite films containing 30 wt% clay. The best optical properties are observed for the copolymers with 30 mol% styrene, in which the light transmittance only decreases from 85% (unfilled film) to 60% in the nanocomposite films containing 30 wt% clay. Overall, the water vapor barrier properties are much higher in the copolymer films with 30 mol% styrene due to the unique morphological organization of MMT platelets in the matrix. Hybrid latexes of styrene–butylacrylate copolymers and montmorillonite clay with concentrations of 10–30 wt% clay are prepared and investigated as barrier coatings. The composite films exhibit high optical transparency and excellent water vapor barrier properties. Copolymer films containing 30 mol% styrene are superior to other materials.
AbstractList The impact of varying the copolymer composition of styrene–co‐butyl acrylate copolymers on the dispersion of montmorillonite (MMT) clay and the effect thereof on the transparency and water vapor barrier properties of the resultant films is assessed. The hybrid latexes containing MMT clay concentrations of 10–30 wt% are prepared using miniemulsion polymerization. The morphology of the resultant latexes shows that the MMT particles are predominantly adhered onto the surface of the latex particles. However, the transparency of the films suggests a fair dispersion of the MMT platelets in the matrix. The thickness‐normalized light transmittance for copolymers with 40 and 50 mol% styrene only decreases from 70% in the neat films to 50% in the nanocomposite films containing 30 wt% clay. The best optical properties are observed for the copolymers with 30 mol% styrene, in which the light transmittance only decreases from 85% (unfilled film) to 60% in the nanocomposite films containing 30 wt% clay. Overall, the water vapor barrier properties are much higher in the copolymer films with 30 mol% styrene due to the unique morphological organization of MMT platelets in the matrix. image
The impact of varying the copolymer composition of styrene-co-butyl acrylate copolymers on the dispersion of montmorillonite (MMT) clay and the effect thereof on the transparency and water vapor barrier properties of the resultant films is assessed. The hybrid latexes containing MMT clay concentrations of 10-30 wt% are prepared using miniemulsion polymerization. The morphology of the resultant latexes shows that the MMT particles are predominantly adhered onto the surface of the latex particles. However, the transparency of the films suggests a fair dispersion of the MMT platelets in the matrix. The thickness-normalized light transmittance for copolymers with 40 and 50 mol% styrene only decreases from 70% in the neat films to 50% in the nanocomposite films containing 30 wt% clay. The best optical properties are observed for the copolymers with 30 mol% styrene, in which the light transmittance only decreases from 85% (unfilled film) to 60% in the nanocomposite films containing 30 wt% clay. Overall, the water vapor barrier properties are much higher in the copolymer films with 30 mol% styrene due to the unique morphological organization of MMT platelets in the matrix.
The impact of varying the copolymer composition of styrene–co‐butyl acrylate copolymers on the dispersion of montmorillonite (MMT) clay and the effect thereof on the transparency and water vapor barrier properties of the resultant films is assessed. The hybrid latexes containing MMT clay concentrations of 10–30 wt% are prepared using miniemulsion polymerization. The morphology of the resultant latexes shows that the MMT particles are predominantly adhered onto the surface of the latex particles. However, the transparency of the films suggests a fair dispersion of the MMT platelets in the matrix. The thickness‐normalized light transmittance for copolymers with 40 and 50 mol% styrene only decreases from 70% in the neat films to 50% in the nanocomposite films containing 30 wt% clay. The best optical properties are observed for the copolymers with 30 mol% styrene, in which the light transmittance only decreases from 85% (unfilled film) to 60% in the nanocomposite films containing 30 wt% clay. Overall, the water vapor barrier properties are much higher in the copolymer films with 30 mol% styrene due to the unique morphological organization of MMT platelets in the matrix. Hybrid latexes of styrene–butylacrylate copolymers and montmorillonite clay with concentrations of 10–30 wt% clay are prepared and investigated as barrier coatings. The composite films exhibit high optical transparency and excellent water vapor barrier properties. Copolymer films containing 30 mol% styrene are superior to other materials.
The impact of varying the copolymer composition of styrene-co-butyl acrylate copolymers on the dispersion of montmorillonite (MMT) clay and the effect thereof on the transparency and water vapor barrier properties of the resultant films is assessed. The hybrid latexes containing MMT clay concentrations of 10-30 wt% are prepared using miniemulsion polymerization. The morphology of the resultant latexes shows that the MMT particles are predominantly adhered onto the surface of the latex particles. However, the transparency of the films suggests a fair dispersion of the MMT platelets in the matrix. The thickness-normalized light transmittance for copolymers with 40 and 50 mol% styrene only decreases from 70% in the neat films to 50% in the nanocomposite films containing 30 wt% clay. The best optical properties are observed for the copolymers with 30 mol% styrene, in which the light transmittance only decreases from 85% (unfilled film) to 60% in the nanocomposite films containing 30 wt% clay. Overall, the water vapor barrier properties are much higher in the copolymer films with 30 mol% styrene due to the unique morphological organization of MMT platelets in the matrix. Hybrid latexes of styrene-butylacrylate copolymers and montmorillonite clay with concentrations of 10-30 wt% clay are prepared and investigated as barrier coatings. The composite films exhibit high optical transparency and excellent water vapor barrier properties. Copolymer films containing 30 mol% styrene are superior to other materials.
Author Pfukwa, Helen
Tiggelman, Ineke
Hartmann, Patrice C.
Murima, Douglas
Pasch, Harald
Author_xml – sequence: 1
  givenname: Douglas
  surname: Murima
  fullname: Murima, Douglas
  organization: Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, 7602, Matieland, South Africa
– sequence: 2
  givenname: Helen
  surname: Pfukwa
  fullname: Pfukwa, Helen
  organization: Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, 7602, Matieland, South Africa
– sequence: 3
  givenname: Ineke
  surname: Tiggelman
  fullname: Tiggelman, Ineke
  organization: Mpact Limited, Department of Forestry and Wood Science, University of Stellenbosch, Paul Sauer Building, Bosman Street, 7599, Stellenbosch, South Africa
– sequence: 4
  givenname: Patrice C.
  surname: Hartmann
  fullname: Hartmann, Patrice C.
  organization: Mpact Limited, Department of Forestry and Wood Science, University of Stellenbosch, Paul Sauer Building, Bosman Street, 7599, Stellenbosch, South Africa
– sequence: 5
  givenname: Harald
  surname: Pasch
  fullname: Pasch, Harald
  email: hpasch@sun.ac.za
  organization: Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, 7602, Matieland, South Africa
BookMark eNqFkE1P3DAQQK2KSgXaa8-WeuklW38lsXuDFZ-Chba0SL1Yk-xENXXiYGcL--8x3QqhXjh5RnpvZL0dsjWEAQl5z9mMMyY-9dDjTDBeMcY0e0W2uZKmEKxUW39nXdTKiDdkJ6UbxnitjdwmbhH-oKeXwa97jHTuYV3sQ8IlXcAQ2tCPIbkJ02d66Hyf6J2bftGv2EP8DY1HejFOrgVPYVjSa5jyiR8whkj3IUaXt8sYRoyTw_SWvO7AJ3z3790l3w8PrubHxdnF0cl876xoValZ0Ta17oTQEpRQGkxTN40EY7ASyKtOKSVL0UnO8o4IZduBqHTbGWFka8xS7pKPm7tjDLcrTJPtXWrRexgwrJLlWpSlMqWqM_rhP_QmrOKQf5cpxo2stFaZmm2oNoaUInZ2jC4HWFvO7GN5-1jePpXPgtkId87j-gXanu-dHzx3i43r0oT3T27Obata1qW9XhzZBTv9pn5efbHH8gE9_phz
CitedBy_id crossref_primary_10_1016_j_clema_2022_100071
crossref_primary_10_3390_app8091696
crossref_primary_10_3390_polym13203529
crossref_primary_10_1016_j_porgcoat_2016_09_016
crossref_primary_10_1088_1757_899X_509_1_012056
crossref_primary_10_1016_j_polymer_2017_02_020
crossref_primary_10_1002_pc_24640
crossref_primary_10_1016_j_ceramint_2022_10_255
crossref_primary_10_1002_mame_201800065
crossref_primary_10_1016_j_foodres_2020_109664
crossref_primary_10_1016_j_surfcoat_2024_130800
crossref_primary_10_1002_app_44779
Cites_doi 10.1002/macp.201200330
10.1016/0379-6779(96)80206-2
10.1016/0257-8972(95)02420-4
10.1021/am300542h
10.1007/b100115
10.1021/ma00063a054
10.1016/j.clay.2010.06.007
10.1016/j.polymdegradstab.2008.05.014
10.1021/ma960550a
10.1021/la011693f
10.1016/j.seppur.2011.05.020
10.1016/j.memsci.2009.03.045
10.1017/CBO9780511552083.002
10.1016/j.biomaterials.2005.04.052
10.1054/arth.2001.20540
10.1016/j.memsci.2010.07.032
10.1016/S0032-3861(03)00108-3
10.1016/S0032-3861(00)00385-2
10.1002/app.36829
10.1016/S0927-796X(00)00012-7
10.1002/polb.20316
10.1021/ma951792y
10.1016/j.polymer.2011.11.061
10.1021/cm034369
10.1111/j.1365-2621.1993.tb03246.x
10.1016/S1359-0294(03)00008-6
10.1007/978-3-642-38649-7_11
10.1016/S0955-2219(03)00129-8
10.1016/j.progpolymsci.2003.08.002
10.1166/jctn.2008.2532
10.1021/ie4024929
10.1002/app.24055
10.1016/S0169-1317(01)00059-X
10.1021/ma060900l
10.1016/j.memsci.2008.12.004
10.1016/j.clay.2008.02.006
10.1016/S0032-3861(02)00187-8
10.1002/mame.200700138
10.1016/j.compscitech.2006.10.022
10.1016/j.colsurfb.2009.09.001
10.1016/j.cocis.2012.01.004
10.1002/pol.1962.1205716571
10.1016/j.eurpolymj.2009.01.027
10.1002/app.40617
10.1021/am302110c
10.1021/nl0100163
10.1016/j.memsci.2008.01.011
10.1016/S0032-3861(02)00803-0
10.1002/app.40805
10.1016/j.electacta.2006.02.039
10.1016/j.polymer.2005.02.014
10.1016/j.eurpolymj.2003.08.006
10.1016/j.polymer.2005.10.096
10.1002/macp.200290052
ContentType Journal Article
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright_xml – notice: 2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
DBID BSCLL
AAYXX
CITATION
7SR
8BQ
8FD
JG9
DOI 10.1002/mame.201600080
DatabaseName Istex
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
DatabaseTitleList CrossRef
Materials Research Database

Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1439-2054
EndPage 845
ExternalDocumentID 4109238531
10_1002_mame_201600080
MAME201600080
ark_67375_WNG_N0JS4ZTQ_H
Genre article
GrantInformation_xml – fundername: Mpact Limited
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJCF
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AVUZU
AZBYB
AZFZN
AZVAB
BAFTC
BBNVY
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HBH
HCIFZ
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KB.
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M7P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PDBOC
PTHSS
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RX1
RYL
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WFSAM
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
7SR
8BQ
8FD
JG9
ID FETCH-LOGICAL-c4580-cb78f2283a4248a9b7bb3a99e62e16f444352f31062eeea5cfa268cf9293c99d3
IEDL.DBID 33P
ISSN 1438-7492
IngestDate Fri Aug 16 07:59:52 EDT 2024
Thu Oct 10 22:39:50 EDT 2024
Thu Sep 12 16:47:40 EDT 2024
Sat Aug 24 00:59:02 EDT 2024
Wed Oct 30 09:48:05 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4580-cb78f2283a4248a9b7bb3a99e62e16f444352f31062eeea5cfa268cf9293c99d3
Notes istex:AEC252ED1BD38DE331F8D13E74C947E4CC3ED945
ArticleID:MAME201600080
ark:/67375/WNG-N0JS4ZTQ-H
Mpact Limited
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1801936884
PQPubID 1016395
PageCount 10
ParticipantIDs proquest_miscellaneous_1825549547
proquest_journals_1801936884
crossref_primary_10_1002_mame_201600080
wiley_primary_10_1002_mame_201600080_MAME201600080
istex_primary_ark_67375_WNG_N0JS4ZTQ_H
PublicationCentury 2000
PublicationDate 2016-07
July 2016
2016-07-00
20160701
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
PublicationTitle Macromolecular materials and engineering
PublicationTitleAlternate Macromol. Mater. Eng
PublicationYear 2016
Publisher Blackwell Publishing Ltd
John Wiley & Sons, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: John Wiley & Sons, Inc
References E. Zengeni, P. C. Hartmann, H. Pasch, Macromol. Chem. Phys. 2013, 214, 62.
E. Picard, J. F. Gé rard, E. Espuche, J. Membr. Sci. 2008, 313, 284.
G. A. Choudalakis, H. Kalo, J. Breu, A. D. Gotsis, J. Appl. Polym. Sci. 2014, 131, 40805.
G. Choudalakis, A. D. Gotsis, Eur. Polym. J. 2009, 45, 967.
M. Alexandre, P. Dubois, Mater. Sci. Eng., R. 2000, 28, 1.
N. Greesh, R. D. Sanderson, P. C. Hartmann, Polymer 2012, 53, 708.
L. P. Ramirez, K. Landfester, Macromol. Chem. Phys. 2003, 204, 10.
E. Zengeni, P. C. Hartmann, H. Pasch, ACS Appl. Mater. Interfaces. 2012, 4, 6957.
H. Chatham, Surf. Coat. Technol. 1996, 78, 1.
Sinha S. Ray, M. Okamoto, Prog. Polym. Sci. 2003, 28, 1539.
S. Ito, M. Hashimoto, B. Wadgaonkar, N. Svizero, R. M. Carvalho, C. Yiu, F. A. Rueggeberg, S. Foulger, T. Saito, Y. Nishitani, Biomaterials 2005, 26, 6449.
Q. Zhou, M. Xanthos, Polym. Degrad. Stab. 2008, 93, 1450.
R. Krishnamoorti, E. P. Giannelis, Macromolecules 1997, 30, 4097.
V. Krikorian, D. J. Pochan, Chem. Mater. 2003, 15, 4317.
R. M. Felder, G. S. Huvard, Curr. Appl Phys. 1980, 16, 315.
W. A. Zhang, D. Z. Chen, H. Y. Xu, X. F. Shen, Y. E. Fang, Eur. Polym. J. 2003, 39, 2323.
M. Okamoto, P. Nam, P. Maiti, T. Kotaka, N. Hasegawa, A. Usuki, Nano Lett. 2001, 1, 295.
F. J. Schork, Y. Luo, W. Smulders, J. P. Russum, A. Butté, K. Fontenot, Adv. Polym. Sci. 2005, 175, 129.
C. Masclaux, F. Gouanve, E. Espuche, J. Membr. Sci. 2010, 363, 221.
X. Q. Cao, R. Vassen, D. Stoever, J. Eur. Ceram. Soc. 2004, 24, 1.
Q. Sun, F. J. Schork, Y. Deng, Compos. Sci. Technol. 2007, 67, 1823.
D. Merinska, A. Kalendova, A. Tesarikova, Barrier Properties of PE, PP and EVA (Nano) Composites-The Influence of Filler Type and Concentration, AIP Publishing, Ischia, Italy 2014, p. 186.
L. B.de Paiva, A. R. Morales, F. R. Valenzuela Díaz, Appl. Clay Sci. 2008, 42, 8.
G. Choudalakis, A. D. Gotsis, Curr. Opin. Colloid Interface Sci. 2012, 17, 132.
X. Fu, S. Qutubuddin, Langmuir 2002, 18, 5058.
M. K. Georges, R. P. N. Veregin, P. M. Kazmaier, G. K. Hamer, Macromolecules 1993, 26, 2987.
N. Gontard, S. Guilbert, J. Cuq, Food Sci. 1993, 58, 206.
O. Gain, E. Espuche, E. Pollet, M. Alexandre, Dubois, P.J. Polym. Sci., Part B: Polym. Phys. 2005, 43, 205.
V. Shklover, L. Braginsky, G. Witz, M. Mishrikey, C. Hafner, J. Comput. Theor. Nanosci. 2008, 5, 862.
N. Greesh, Sinha S. Ray, J. Bandyopadhyay, Ind. Chem. Res. 2013, 52, 16220.
N. Steiert, K. Landfester, Macromol. Mater. Eng. 2007, 292, 1111.
G. Choudalakis, A. D. Gotsis, Handbook of Polymernanocomposites. Processing, Performance and Application, Springer-Verlag, Berlin-Heidelberg 2014, p. 415.
D. J. Voorn, W. Ming, A. M.Van Herk, Macromolecules 2006, 39, 4654.
V. Cloete, PhD Thesis, Stellenbosch University, South Africa, 2011.
E. Zengeni, MSc Thesis, University of Stellenbosch, South Africa, 2009.
Y. S. C. Choi, M. H. Choi, K. H. Wang, Macromolecules 2001, 34, 8.
O. K. Muratoglu, C. R. Bragdon, D. O. O'Connor, M. Jasty, W. H. Harris, J. Arthroplasty 2001, 16, 149.
Herrera-Alonso, M. Jose, E. Marand, J. C. Little, S. S. Cox, J. Membr. Sci. 2009, 337, 208.
G. Schmidt, M. M. Malwitz, Curr. Opin. Colloid Interface Sci. 2003, 8, 103.
Y. Zhong, Z. Zhu, S. Q. Wang, Polymer 2005, 46, 3006.
S. J. Ahmadi, Y. D. Huang, W. Li, J. Membr. Sci. 2004, 39, 1919.
Z. Klapyta, T. Fujita, N. Iyi, Appl. Clay Sci. 2001, 19, 5.
H. Levine, L. Slade, Water Sci. 1988, 3, 79.
T. Mandai, B. M. Mandai, Synth. Met. 1996, 80, 83.
S. Alix, N. Follain, N. Tenn, B. Alexandre, S. Bourbigot, J. Soulestin, S. Marais, J. Phys. Chem. 2012, 116, 4937.
G. Findenig, S. Leimgruber, R. Kargl, S. Spirk, K. Stana- Kleinschek, V. Ribitsch, ACS Appl. Mater. Interfaces 2012, 4, 3199.
T. Fukuda, T. Terauchi, A. Goto, Y. Tsujii, T. Miyamoto, Y. Shimizu, Macromolecules 1996, 29, 3050.
K. Chang, M. Lai, C. Peng, Y. Chen, J. Yeh, C. S. Lin, J. Yang, Electrochim. Acta 2006, 51, 5645.
D. P. N. Vlasveld, J. Groenewold, H. E. N. Bersee, S. J. Picken, Polym. J. 2005, 46, 12567.
X. Fu, S. Qutubuddin, Polymer 2001, 42, 807.
G. Gorrasi, M. Tortora, V. Vittoria, E. Pollet, B. Lepoittevin, M. Alexandre, P. Dubois, Polym. J. 2003, 44, 2271.
A. Etxeberria, A. Garcia, M. Iriarte, J. J. Iruin, C. Uriarte, J. Appl. Polym. Sci. 2006, 102, 2034.
O. Yilmaz, C. Cheaburu, D. Durraccio, G. Gulumser, C. Vasile, Appl. Clay Sci. 2010, 49, 288.
P. Garg, R. P. Singh, V. Choudhary, Sep. Purif. Technol. 2011, 80, 435.
B. Alexandre, D. Langevin, P. Médéric, T. Aubry, H. Couderc, Q. T. Nguyen, A. Saiter, S. Marais, J. Membr. Sci. 2009, 328, 186.
V. Siracusa, I. Blanco, S. Romani, U. Tylewicz, P. Rocculi, M. Dalla Rosa, J. Appl. Polym. Sci. 2012, 125, E390.
R. K. Bharadwaj, A. R. Mehrabi, C. Hamilton, C. Trujillo, M. Murga, R. Fan, A. Chavira, A. K. Thompson, Polymer 2002, 43, 3699.
C. M. Koo, H. T. Ham, M. H. Choi, S. O. Kim, I. J. Chung, Polymer 2003, 44, 681.
H. Yasuda, V. Stannett, J. Polym. Sci., Part A: Polym. Chem. 1962, 57, 907.
A. Arce, F. Fornasiero, O. Rodríguez, C. J. Radke, J. M. Prausnitz, Phys. Chem. 2004, 6, 103.
N. Greesh, Sinha S. Ray, J. Bandyopadhyay, Ind. Eng. Chem. Res. 2013, 52, 16220.
A. Kumari, S. K. Yadav, S. C. Yadav, Colloid Surf. B. 2010, 75, 1.
R. J. Sengwa, S. Choudhary, J. Appl. Polym. Sci. 2014, 131, 39898.
1993; 26
2009; 45
2002; 18
2005; 175
2006; 39
2004; 24
2003; 15
2004; 6
2008; 5
2012; 17
2012; 125
2005; 26
2014; 131
2012; 53
1996; 78
2001; 42
1996; 29
2003; 204
2004; 39
2007; 292
2002; 43
2003; 8
2013; 52
2001; 19
2001; 16
2008; 313
2009; 328
2007; 67
2003; 44
2010; 75
2006; 51
2000; 28
2011
2011; 80
2009
2010; 363
2005; 43
2003; 39
1962; 57
2008; 93
2005; 46
2009; 337
1993; 58
1980; 16
1988; 3
2010; 49
1997; 30
2013; 214
2003; 28
2014
2001; 1
2008; 42
1996; 80
2001; 34
2012; 116
2012; 4
2006; 102
e_1_2_6_51_1
Zengeni E. (e_1_2_6_17_1) 2009
e_1_2_6_53_1
e_1_2_6_32_1
e_1_2_6_30_1
e_1_2_6_19_1
Alix S. (e_1_2_6_2_1) 2012; 116
e_1_2_6_36_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_55_1
e_1_2_6_15_1
e_1_2_6_38_1
Felder R. M. (e_1_2_6_57_1) 1980; 16
e_1_2_6_62_1
e_1_2_6_64_1
e_1_2_6_43_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_60_1
Sengwa R. J. (e_1_2_6_39_1) 2014; 131
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_1_1
e_1_2_6_24_1
e_1_2_6_49_1
e_1_2_6_3_1
e_1_2_6_22_1
e_1_2_6_28_1
e_1_2_6_45_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_50_1
Arce A. (e_1_2_6_59_1) 2004; 6
Merinska D. (e_1_2_6_54_1) 2014
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_12_1
Choi Y. S. C. (e_1_2_6_26_1) 2001; 34
Ahmadi S. J. (e_1_2_6_33_1) 2004; 39
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_58_1
e_1_2_6_63_1
e_1_2_6_42_1
e_1_2_6_21_1
e_1_2_6_40_1
e_1_2_6_61_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_23_1
Cloete V. (e_1_2_6_13_1) 2011
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_27_1
e_1_2_6_46_1
References_xml – volume: 67
  start-page: 1823
  year: 2007
  publication-title: Compos. Sci. Technol.
– year: 2011
– volume: 18
  start-page: 5058
  year: 2002
  publication-title: Langmuir
– year: 2009
– volume: 328
  start-page: 186
  year: 2009
  publication-title: J. Membr. Sci.
– volume: 1
  start-page: 295
  year: 2001
  publication-title: Nano Lett.
– volume: 46
  start-page: 3006
  year: 2005
  publication-title: Polymer
– volume: 30
  start-page: 4097
  year: 1997
  publication-title: Macromolecules
– volume: 116
  start-page: 4937
  year: 2012
  publication-title: J. Phys. Chem.
– volume: 51
  start-page: 5645
  year: 2006
  publication-title: Electrochim. Acta
– volume: 292
  start-page: 1111
  year: 2007
  publication-title: Macromol. Mater. Eng.
– volume: 8
  start-page: 103
  year: 2003
  publication-title: Curr. Opin. Colloid Interface Sci.
– start-page: 186
  year: 2014
– volume: 16
  start-page: 149
  year: 2001
  publication-title: J. Arthroplasty
– volume: 4
  start-page: 3199
  year: 2012
  publication-title: ACS Appl. Mater. Interfaces
– volume: 57
  start-page: 907
  year: 1962
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
– volume: 46
  start-page: 12567
  year: 2005
  publication-title: Polym. J.
– volume: 93
  start-page: 1450
  year: 2008
  publication-title: Polym. Degrad. Stab.
– volume: 42
  start-page: 8
  year: 2008
  publication-title: Appl. Clay Sci.
– volume: 39
  start-page: 2323
  year: 2003
  publication-title: Eur. Polym. J.
– volume: 15
  start-page: 4317
  year: 2003
  publication-title: Chem. Mater.
– volume: 49
  start-page: 288
  year: 2010
  publication-title: Appl. Clay Sci.
– volume: 53
  start-page: 708
  year: 2012
  publication-title: Polymer
– volume: 39
  start-page: 1919
  year: 2004
  publication-title: J. Membr. Sci.
– volume: 102
  start-page: 2034
  year: 2006
  publication-title: J. Appl. Polym. Sci.
– volume: 16
  start-page: 315
  year: 1980
  publication-title: Curr. Appl Phys.
– volume: 214
  start-page: 62
  year: 2013
  publication-title: Macromol. Chem. Phys.
– volume: 80
  start-page: 435
  year: 2011
  publication-title: Sep. Purif. Technol.
– volume: 58
  start-page: 206
  year: 1993
  publication-title: Food Sci.
– volume: 80
  start-page: 83
  year: 1996
  publication-title: Synth. Met.
– volume: 26
  start-page: 2987
  year: 1993
  publication-title: Macromolecules
– volume: 131
  start-page: 40805
  year: 2014
  publication-title: J. Appl. Polym. Sci.
– volume: 313
  start-page: 284
  year: 2008
  publication-title: J. Membr. Sci.
– volume: 4
  start-page: 6957
  year: 2012
  publication-title: ACS Appl. Mater. Interfaces.
– volume: 3
  start-page: 79
  year: 1988
  publication-title: Water Sci.
– volume: 29
  start-page: 3050
  year: 1996
  publication-title: Macromolecules
– volume: 19
  start-page: 5
  year: 2001
  publication-title: Appl. Clay Sci.
– start-page: 415
  year: 2014
– volume: 44
  start-page: 681
  year: 2003
  publication-title: Polymer
– volume: 6
  start-page: 103
  year: 2004
  publication-title: Phys. Chem.
– volume: 28
  start-page: 1
  year: 2000
  publication-title: Mater. Sci. Eng., R.
– volume: 44
  start-page: 2271
  year: 2003
  publication-title: Polym. J.
– volume: 28
  start-page: 1539
  year: 2003
  publication-title: Prog. Polym. Sci.
– volume: 363
  start-page: 221
  year: 2010
  publication-title: J. Membr. Sci.
– volume: 26
  start-page: 6449
  year: 2005
  publication-title: Biomaterials
– volume: 42
  start-page: 807
  year: 2001
  publication-title: Polymer
– volume: 52
  start-page: 16220
  year: 2013
  publication-title: Ind. Eng. Chem. Res.
– volume: 45
  start-page: 967
  year: 2009
  publication-title: Eur. Polym. J.
– volume: 78
  start-page: 1
  year: 1996
  publication-title: Surf. Coat. Technol.
– volume: 125
  start-page: E390
  year: 2012
  publication-title: J. Appl. Polym. Sci.
– volume: 5
  start-page: 862
  year: 2008
  publication-title: J. Comput. Theor. Nanosci.
– volume: 34
  start-page: 8
  year: 2001
  publication-title: Macromolecules
– volume: 204
  start-page: 10
  year: 2003
  publication-title: Macromol. Chem. Phys.
– volume: 337
  start-page: 208
  year: 2009
  publication-title: J. Membr. Sci.
– volume: 39
  start-page: 4654
  year: 2006
  publication-title: Macromolecules
– volume: 175
  start-page: 129
  year: 2005
  publication-title: Adv. Polym. Sci.
– volume: 24
  start-page: 1
  year: 2004
  publication-title: J. Eur. Ceram. Soc.
– volume: 52
  start-page: 16220
  year: 2013
  publication-title: Ind. Chem. Res.
– volume: 43
  start-page: 205
  year: 2005
  publication-title: J. Polym. Sci., Part B: Polym. Phys.
– volume: 131
  start-page: 39898
  year: 2014
  publication-title: J. Appl. Polym. Sci.
– volume: 17
  start-page: 132
  year: 2012
  publication-title: Curr. Opin. Colloid Interface Sci.
– volume: 43
  start-page: 3699
  year: 2002
  publication-title: Polymer
– volume: 75
  start-page: 1
  year: 2010
  publication-title: Colloid Surf. B.
– volume: 39
  start-page: 1919
  year: 2004
  ident: e_1_2_6_33_1
  publication-title: J. Membr. Sci.
  contributor:
    fullname: Ahmadi S. J.
– ident: e_1_2_6_19_1
  doi: 10.1002/macp.201200330
– ident: e_1_2_6_55_1
  doi: 10.1016/0379-6779(96)80206-2
– ident: e_1_2_6_5_1
  doi: 10.1016/0257-8972(95)02420-4
– ident: e_1_2_6_14_1
  doi: 10.1021/am300542h
– ident: e_1_2_6_11_1
  doi: 10.1007/b100115
– ident: e_1_2_6_23_1
  doi: 10.1021/ma00063a054
– ident: e_1_2_6_8_1
  doi: 10.1016/j.clay.2010.06.007
– volume: 6
  start-page: 103
  year: 2004
  ident: e_1_2_6_59_1
  publication-title: Phys. Chem.
  contributor:
    fullname: Arce A.
– volume-title: MSc Thesis
  year: 2009
  ident: e_1_2_6_17_1
  contributor:
    fullname: Zengeni E.
– ident: e_1_2_6_61_1
  doi: 10.1016/j.polymdegradstab.2008.05.014
– ident: e_1_2_6_30_1
  doi: 10.1021/ma960550a
– ident: e_1_2_6_20_1
  doi: 10.1021/la011693f
– ident: e_1_2_6_15_1
  doi: 10.1016/j.seppur.2011.05.020
– ident: e_1_2_6_50_1
  doi: 10.1016/j.memsci.2009.03.045
– ident: e_1_2_6_53_1
  doi: 10.1017/CBO9780511552083.002
– ident: e_1_2_6_52_1
  doi: 10.1016/j.biomaterials.2005.04.052
– ident: e_1_2_6_24_1
  doi: 10.1054/arth.2001.20540
– start-page: 186
  volume-title: Barrier Properties of PE, PP and EVA (Nano) Composites—The Influence of Filler Type and Concentration
  year: 2014
  ident: e_1_2_6_54_1
  contributor:
    fullname: Merinska D.
– volume: 16
  start-page: 315
  year: 1980
  ident: e_1_2_6_57_1
  publication-title: Curr. Appl Phys.
  contributor:
    fullname: Felder R. M.
– volume-title: PhD Thesis
  year: 2011
  ident: e_1_2_6_13_1
  contributor:
    fullname: Cloete V.
– ident: e_1_2_6_41_1
  doi: 10.1016/j.memsci.2010.07.032
– ident: e_1_2_6_49_1
  doi: 10.1016/S0032-3861(03)00108-3
– ident: e_1_2_6_21_1
  doi: 10.1016/S0032-3861(00)00385-2
– volume: 34
  start-page: 8
  year: 2001
  ident: e_1_2_6_26_1
  publication-title: Macromolecules
  contributor:
    fullname: Choi Y. S. C.
– ident: e_1_2_6_7_1
  doi: 10.1002/app.36829
– ident: e_1_2_6_60_1
  doi: 10.1016/S0927-796X(00)00012-7
– ident: e_1_2_6_46_1
  doi: 10.1002/polb.20316
– ident: e_1_2_6_22_1
  doi: 10.1021/ma951792y
– ident: e_1_2_6_28_1
  doi: 10.1016/j.polymer.2011.11.061
– ident: e_1_2_6_31_1
  doi: 10.1021/cm034369
– ident: e_1_2_6_47_1
  doi: 10.1111/j.1365-2621.1993.tb03246.x
– ident: e_1_2_6_51_1
  doi: 10.1016/S1359-0294(03)00008-6
– ident: e_1_2_6_43_1
  doi: 10.1007/978-3-642-38649-7_11
– ident: e_1_2_6_3_1
  doi: 10.1016/S0955-2219(03)00129-8
– ident: e_1_2_6_10_1
  doi: 10.1016/j.progpolymsci.2003.08.002
– ident: e_1_2_6_4_1
  doi: 10.1166/jctn.2008.2532
– ident: e_1_2_6_36_1
  doi: 10.1021/ie4024929
– ident: e_1_2_6_16_1
  doi: 10.1002/app.24055
– ident: e_1_2_6_37_1
  doi: 10.1016/S0169-1317(01)00059-X
– ident: e_1_2_6_63_1
  doi: 10.1021/ma060900l
– ident: e_1_2_6_58_1
  doi: 10.1016/j.memsci.2008.12.004
– volume: 116
  start-page: 4937
  year: 2012
  ident: e_1_2_6_2_1
  publication-title: J. Phys. Chem.
  contributor:
    fullname: Alix S.
– ident: e_1_2_6_12_1
  doi: 10.1016/j.clay.2008.02.006
– ident: e_1_2_6_29_1
  doi: 10.1016/S0032-3861(02)00187-8
– ident: e_1_2_6_35_1
  doi: 10.1002/mame.200700138
– ident: e_1_2_6_9_1
  doi: 10.1016/j.compscitech.2006.10.022
– ident: e_1_2_6_6_1
  doi: 10.1016/j.colsurfb.2009.09.001
– ident: e_1_2_6_64_1
  doi: 10.1016/j.cocis.2012.01.004
– ident: e_1_2_6_27_1
  doi: 10.1021/ie4024929
– ident: e_1_2_6_40_1
  doi: 10.1002/pol.1962.1205716571
– ident: e_1_2_6_44_1
  doi: 10.1016/j.eurpolymj.2009.01.027
– volume: 131
  start-page: 39898
  year: 2014
  ident: e_1_2_6_39_1
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.40617
  contributor:
    fullname: Sengwa R. J.
– ident: e_1_2_6_18_1
  doi: 10.1021/am302110c
– ident: e_1_2_6_45_1
  doi: 10.1021/nl0100163
– ident: e_1_2_6_42_1
  doi: 10.1016/j.memsci.2008.01.011
– ident: e_1_2_6_32_1
  doi: 10.1016/S0032-3861(02)00803-0
– ident: e_1_2_6_56_1
  doi: 10.1002/app.40805
– ident: e_1_2_6_48_1
  doi: 10.1016/j.electacta.2006.02.039
– ident: e_1_2_6_25_1
  doi: 10.1016/j.polymer.2005.02.014
– ident: e_1_2_6_38_1
  doi: 10.1016/j.eurpolymj.2003.08.006
– ident: e_1_2_6_62_1
  doi: 10.1016/j.polymer.2005.10.096
– ident: e_1_2_6_1_1
  doi: 10.1021/ie4024929
– ident: e_1_2_6_34_1
  doi: 10.1002/macp.200290052
SSID ssj0017893
Score 2.26054
Snippet The impact of varying the copolymer composition of styrene–co‐butyl acrylate copolymers on the dispersion of montmorillonite (MMT) clay and the effect thereof...
The impact of varying the copolymer composition of styrene-co-butyl acrylate copolymers on the dispersion of montmorillonite (MMT) clay and the effect thereof...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Publisher
StartPage 836
SubjectTerms Barriers
Clay (material)
Copolymers
Latex
Montmorillonite
morphology
Nanocomposites
Optical properties
Styrenes
transparency
Water vapor
water vapor barrier properties
Title Novel Polymer Clay-Based Nanocomposites: Films with Remarkable Optical and Water Vapor Barrier Properties
URI https://api.istex.fr/ark:/67375/WNG-N0JS4ZTQ-H/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmame.201600080
https://www.proquest.com/docview/1801936884
https://search.proquest.com/docview/1825549547
Volume 301
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BbtQwELWgHIADhUJFoCAjIThFzTpOYnNrl11WSF0WWijiYjmxLaFukiphq_bWT-g39kuYcXZD94QEtzixJcdje96Mx28IeW1iyXPD0jC2SRJyYXiYMzBWEsNjnlqQeIGG4uQwm34X70dIk9Pf4u_4IXqHG64Mv1_jAtd5u_uHNLTUJdJcDlKPemATBlPB3-GIZ_0xQiY86y6m-A4zLtmKtTFiu-vN17TSHRzg8zXIeRO4es0z3vz_Pj8kD5aok-510-QRuWWrLXJ3uEr2tkXu3-AlfExOpvWZndNZPb8obUOHc31xfXm1DwrPUNiOa4xDx2Av276j45_zsqXozqVfbKmbE7yLRT-deh851ZWhxwBnG_pNA9Kn-7rBFHl0hmcADZK5PiFfx6Oj4SRcZmUIC56IKCzyTDgkzdGccaFlnuV5rKW0KbOD1HEOAIw5QI1QtlYnhdMsFYUDHBYXUpp4m2xUdWWfEupcKiKYQvBWcwvIQ2qujbaRc1luBi4gb1dSUacd-YbqaJaZwqFU_VAG5I0XWl8NfhdD1rJEHU8_qGn08ZD_OPqsJgHZWUlVLVdrqwagpmWcCsED8qr_DBLAwxNd2XqBdcD4AmuSZwFhXsZ_6ZI62DsY9aVn_9LoObmHz1108A7Z-NUs7AtyuzWLl36e_wZWDP1z
link.rule.ids 315,782,786,1408,27935,27936,46066,46490
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Pb9MwFH9i22Fw4M8AERhgJASnaK3jJDa3rrQUWENhZUNcLCe2JbQmmVKK2I2PwGfkk-CXNGE9ISGOdmzJ8bP9fu_5-fcAnupAsFTTyA9MGPqMa-an1BkroWYBi4yTeIaG4uQ4Tj7xlyOkyRm0b2EafojO4YY7oz6vcYOjQ_rgD2tornLkuexHNezZgh0WMYHZG4Jg1l0kxLzm3cUk337MBG15G3v0YLP_hl7awSn-vgE6L0PXWveMb_yHUd-E62vgSQbNSrkFV0yxB7vDNt_bHly7RE14G86S8ptZkFm5uMhNRYYLdfHrx89Dp_M0cSdyiaHoGO9lli_I-MsiXxL06JIPJlfVGT7HIu_Oazc5UYUmpw7RVuREObBPDlWFWfLIDK8BKuRzvQMfx6P5cOKvEzP4GQt5z8_SmFvkzVGMMq5EGqdpoIQwETX9yDLmMBi1Dji6sjEqzKyiEc-sg2JBJoQO7sJ2URbmHhBrI95zq8jVKmYc-BCKKa1Mz9o41X3rwfNWLPK84d-QDdMylTiVsptKD57VUuuaud_FqLU4lKfJK5n03hyzz_P3cuLBfitWud6wS9l3mloEEefMgyfdZycBvD9RhSlX2MbZX86gZLEHtBbyX4Ykp4PpqCvd_5dOj2F3Mp8eyaPXydsHcBXrm2Dhfdj-Wq3MQ9ha6tWjetH_BkarAaM
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RVuJx4FFABAoYCcEpatZxEptbu91leTQstKWIi-XEtoS6SVbZbkVv_Qn9jfwSPMlu6J6Q4GjHlpwZ2_ONPf4G4KUOBcs0jf3QRJHPuGZ-Rp2zEmkWstg4jefoKI4OkvQb3xsgTU73ir_lh-gO3HBlNPs1LvCpttt_SEMLVSDNZS9uUM8abDDE4viIIxx39wgJb2h3Mce3nzBBl7SNAd1e7b9iljZQwj9XMOdV5NqYnuGd_x_0Xbi9gJ1kp50n9-CaKTfhRn-Z7W0Tbl0hJrwPJ2l1ZiZkXE3OC1OT_kSd_7q43HUWTxO3H1cYiI7RXmb2hgx_TIoZwfNc8sUUqj7Bx1jk07Q5JCeq1OTY4dmafFUO6pNdVWOOPDLGS4Aa2VwfwNFwcNgf-Yu0DH7OIh74eZZwi6w5ilHGlciSLAuVECamphdbxhwCo9bBRlc2RkW5VTTmuXVALMyF0OFDWC-r0jwCYm3MAzeHXK1ixkEPoZjSygTWJpnuWQ9eL7Uipy37hmx5lqlEUcpOlB68apTWNXO_izFrSSSP07cyDd4fsO-Hn-XIg62lVuViuc5kz9lpEcacMw9edJ-dBvD2RJWmmmMb5305d5IlHtBGx38Zktzf2R90pcf_0uk5XB_vDeXHd-mHJ3ATq9tI4S1YP63n5imszfT8WTPlfwM5GQBS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+Polymer+Clay%E2%80%90Based+Nanocomposites%3A+Films+with+Remarkable+Optical+and+Water+Vapor+Barrier+Properties&rft.jtitle=Macromolecular+materials+and+engineering&rft.au=Murima%2C+Douglas&rft.au=Pfukwa%2C+Helen&rft.au=Tiggelman%2C+Ineke&rft.au=Hartmann%2C+Patrice+C.&rft.date=2016-07-01&rft.issn=1438-7492&rft.eissn=1439-2054&rft.volume=301&rft.issue=7&rft.spage=836&rft.epage=845&rft_id=info:doi/10.1002%2Fmame.201600080&rft.externalDBID=10.1002%252Fmame.201600080&rft.externalDocID=MAME201600080
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1438-7492&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1438-7492&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1438-7492&client=summon