HPLC-ICP-MS method development to monitor arsenic speciation changes by human gut microbiota

ABSTRACT Inorganic arsenic (iAs) has been classified as a type 1 carcinogen and has also been linked to several noncancerous health effects. Prior to 1995, the AsV methylation pathway was generally considered to be a detoxification pathway, but cellular and animal studies involving MMAIII (mono mety...

Full description

Saved in:
Bibliographic Details
Published in:Biomedical chromatography Vol. 26; no. 4; pp. 524 - 533
Main Authors: Alava, Pradeep, Tack, Filip, Laing, Gijs Du, de Wiele, Tom Van
Format: Journal Article
Language:English
Published: Chichester, UK John Wiley & Sons, Ltd 01-04-2012
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract ABSTRACT Inorganic arsenic (iAs) has been classified as a type 1 carcinogen and has also been linked to several noncancerous health effects. Prior to 1995, the AsV methylation pathway was generally considered to be a detoxification pathway, but cellular and animal studies involving MMAIII (mono metyl arsonous acid) and DMAIII (dimethyl arsinous acid) have indicated that their toxicities meet or exceed that of iAs, suggesting an activation process. In addition, thiolated arsenic metabolites were observed in urine after oral exposure of inorganic arsenic in some studies, for which the toxicological profile was not yet fully characterized in human cells. Studies have revealed that microorganisms from the gut environment are important contributors to arsenic speciation changes. This presystemic metabolism necessitates the development of protocols that enable the detection of not only inorganic arsenic species, but also pentavalent and trivalent methylated, thiolated arsenicals in a gastrointestinal environment. We aim to study the biotransformation of arsenic (As) using a Simulator of the Human Intestinal Microbial Ecosystem (SHIME). To be able to analyze the arsenicals resulting from biotransformation reactions occurring in this system, a method using liquid chromatography hyphenated to an inductively coupled plasma mass spectrometer (HPLC‐ICP‐MS) was developed. A Hamilton PRP‐X100 anion exchange column was used. The method allowed separation, identification and quantification of AsIII(arsenite), AsV(arsenate), DMAV(dimethylarsinicacid), MMAV(monomethylarsonicacid) and MMMTA (monomethylmonothioarsenate). Attempts to optimize the same method for also separating MMAIII and DMAIII did not succeed. These compounds could be successfully separated using a method based on the use of a Zorbax C18 column. The properties of the column, buffer strength, pH and polar nature of mobile phase were monitored and changed to optimize the developed methods. Linearity, sensitivity, precision, accuracy and resolution of both methods were checked. The combination of the two methods allowed successful quantification of arsenic species in suspensions sampled in vitro from the SHIME reactor or in vivo from the human colon and feces. Copyright © 2011 John Wiley & Sons, Ltd.
AbstractList Inorganic arsenic (iAs) has been classified as a type 1 carcinogen and has also been linked to several noncancerous health effects. Prior to 1995, the As V methylation pathway was generally considered to be a detoxification pathway, but cellular and animal studies involving MMA III (mono metyl arsonous acid) and DMA III (dimethyl arsinous acid) have indicated that their toxicities meet or exceed that of iAs, suggesting an activation process. In addition, thiolated arsenic metabolites were observed in urine after oral exposure of inorganic arsenic in some studies, for which the toxicological profile was not yet fully characterized in human cells. Studies have revealed that microorganisms from the gut environment are important contributors to arsenic speciation changes. This presystemic metabolism necessitates the development of protocols that enable the detection of not only inorganic arsenic species, but also pentavalent and trivalent methylated, thiolated arsenicals in a gastrointestinal environment. We aim to study the biotransformation of arsenic (As) using a Simulator of the Human Intestinal Microbial Ecosystem (SHIME). To be able to analyze the arsenicals resulting from biotransformation reactions occurring in this system, a method using liquid chromatography hyphenated to an inductively coupled plasma mass spectrometer (HPLC‐ICP‐MS) was developed. A Hamilton PRP‐X100 anion exchange column was used. The method allowed separation, identification and quantification of As III (arsenite), As V (arsenate), DMA V (dimethylarsinicacid), MMA V (monomethylarsonicacid) and MMMTA (monomethylmonothioarsenate). Attempts to optimize the same method for also separating MMA III and DMA III did not succeed. These compounds could be successfully separated using a method based on the use of a Zorbax C 18 column. The properties of the column, buffer strength, pH and polar nature of mobile phase were monitored and changed to optimize the developed methods. Linearity, sensitivity, precision, accuracy and resolution of both methods were checked. The combination of the two methods allowed successful quantification of arsenic species in suspensions sampled in vitro from the SHIME reactor or in vivo from the human colon and feces. Copyright © 2011 John Wiley & Sons, Ltd.
Inorganic arsenic (iAs) has been classified as a type 1 carcinogen and has also been linked to several noncancerous health effects. Prior to 1995, the As(V) methylation pathway was generally considered to be a detoxification pathway, but cellular and animal studies involving MMA(III) (mono metyl arsonous acid) and DMA(III) (dimethyl arsinous acid) have indicated that their toxicities meet or exceed that of iAs, suggesting an activation process. In addition, thiolated arsenic metabolites were observed in urine after oral exposure of inorganic arsenic in some studies, for which the toxicological profile was not yet fully characterized in human cells. Studies have revealed that microorganisms from the gut environment are important contributors to arsenic speciation changes. This presystemic metabolism necessitates the development of protocols that enable the detection of not only inorganic arsenic species, but also pentavalent and trivalent methylated, thiolated arsenicals in a gastrointestinal environment. We aim to study the biotransformation of arsenic (As) using a Simulator of the Human Intestinal Microbial Ecosystem (SHIME). To be able to analyze the arsenicals resulting from biotransformation reactions occurring in this system, a method using liquid chromatography hyphenated to an inductively coupled plasma mass spectrometer (HPLC-ICP-MS) was developed. A Hamilton PRP-X100 anion exchange column was used. The method allowed separation, identification and quantification of As(III) (arsenite), As(V) (arsenate), DMA(V) (dimethylarsinicacid), MMA(V) (monomethylarsonicacid) and MMMTA (monomethylmonothioarsenate). Attempts to optimize the same method for also separating MMA(III) and DMA(III) did not succeed. These compounds could be successfully separated using a method based on the use of a Zorbax C₁₈ column. The properties of the column, buffer strength, pH and polar nature of mobile phase were monitored and changed to optimize the developed methods. Linearity, sensitivity, precision, accuracy and resolution of both methods were checked. The combination of the two methods allowed successful quantification of arsenic species in suspensions sampled in vitro from the SHIME reactor or in vivo from the human colon and feces.
ABSTRACT Inorganic arsenic (iAs) has been classified as a type 1 carcinogen and has also been linked to several noncancerous health effects. Prior to 1995, the AsV methylation pathway was generally considered to be a detoxification pathway, but cellular and animal studies involving MMAIII (mono metyl arsonous acid) and DMAIII (dimethyl arsinous acid) have indicated that their toxicities meet or exceed that of iAs, suggesting an activation process. In addition, thiolated arsenic metabolites were observed in urine after oral exposure of inorganic arsenic in some studies, for which the toxicological profile was not yet fully characterized in human cells. Studies have revealed that microorganisms from the gut environment are important contributors to arsenic speciation changes. This presystemic metabolism necessitates the development of protocols that enable the detection of not only inorganic arsenic species, but also pentavalent and trivalent methylated, thiolated arsenicals in a gastrointestinal environment. We aim to study the biotransformation of arsenic (As) using a Simulator of the Human Intestinal Microbial Ecosystem (SHIME). To be able to analyze the arsenicals resulting from biotransformation reactions occurring in this system, a method using liquid chromatography hyphenated to an inductively coupled plasma mass spectrometer (HPLC‐ICP‐MS) was developed. A Hamilton PRP‐X100 anion exchange column was used. The method allowed separation, identification and quantification of AsIII(arsenite), AsV(arsenate), DMAV(dimethylarsinicacid), MMAV(monomethylarsonicacid) and MMMTA (monomethylmonothioarsenate). Attempts to optimize the same method for also separating MMAIII and DMAIII did not succeed. These compounds could be successfully separated using a method based on the use of a Zorbax C18 column. The properties of the column, buffer strength, pH and polar nature of mobile phase were monitored and changed to optimize the developed methods. Linearity, sensitivity, precision, accuracy and resolution of both methods were checked. The combination of the two methods allowed successful quantification of arsenic species in suspensions sampled in vitro from the SHIME reactor or in vivo from the human colon and feces. Copyright © 2011 John Wiley & Sons, Ltd.
Author Laing, Gijs Du
Alava, Pradeep
Tack, Filip
de Wiele, Tom Van
Author_xml – sequence: 1
  givenname: Pradeep
  surname: Alava
  fullname: Alava, Pradeep
  email: pradeep.alava@ugent.be
  organization: Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
– sequence: 2
  givenname: Filip
  surname: Tack
  fullname: Tack, Filip
  organization: Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
– sequence: 3
  givenname: Gijs Du
  surname: Laing
  fullname: Laing, Gijs Du
  organization: Laboratory of Analytical Chemistry and Applied Ecochemistry, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
– sequence: 4
  givenname: Tom Van
  surname: de Wiele
  fullname: de Wiele, Tom Van
  organization: Laboratory of Microbial Ecology and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Gent, Belgium
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21905058$$D View this record in MEDLINE/PubMed
BookMark eNp1kF1LwzAUQIMo7kPBXyB59KXzJm3a5FGLboNNJyqCCCHt7rbo2oymU_fv7dj0zacLl8O53NMhh6UrkZAzBj0GwC-zIu-xBOCAtBkoFYAEdkjawGMVhDJRLdLx_h0AVMyTY9LiTIEAIdvkbTAZpcEwnQTjR1pgvXBTOsVPXLpVgWVNa0cLV9raVdRUHkubU7_C3JraupLmC1PO0dNsQxfrwpR0vq5pYfPKZdbV5oQczczS4-l-dsnz7c1TOghG9_1hejUK8khICCLFwoRzFNzMpsBQxQkqaaQULJZmu8c4k5iI5sVYmCyaqSjMGI8j5JiHJuySi523Oex9hTO9qmxhqo1moLeBdBNIbwM16PkOXa2zAqd_4G-RBgh2wJdd4uZfkb4ep3vhnre-xu8_3lQfOk7CROiXu74eCCknrw9jPQp_AMsGfwg
CitedBy_id crossref_primary_10_1016_j_chemosphere_2014_08_010
crossref_primary_10_1021_acs_est_6b00235
crossref_primary_10_1016_j_jfca_2020_103562
crossref_primary_10_1039_C5JA00155B
crossref_primary_10_1016_j_chemosphere_2016_10_091
crossref_primary_10_1039_c3ja90005c
crossref_primary_10_1002_etc_4025
crossref_primary_10_1016_j_heliyon_2019_e02079
crossref_primary_10_1016_j_aca_2020_01_042
crossref_primary_10_1016_j_scitotenv_2016_06_071
crossref_primary_10_1021_acs_analchem_6b04388
crossref_primary_10_1007_s11356_019_06073_2
crossref_primary_10_1016_j_ecoenv_2020_110797
crossref_primary_10_1039_c3ja90039h
crossref_primary_10_1007_s00204_021_03028_w
crossref_primary_10_1111_1758_2229_12814
crossref_primary_10_1016_j_chemosphere_2022_135164
crossref_primary_10_1016_j_jhazmat_2012_05_042
crossref_primary_10_1016_j_jfca_2023_105162
crossref_primary_10_1016_j_jhazmat_2021_127899
crossref_primary_10_1289_ehp_1307759
crossref_primary_10_1016_j_jes_2016_11_004
crossref_primary_10_1016_j_toxlet_2019_04_014
crossref_primary_10_1021_acs_chemrestox_6b00066
crossref_primary_10_1039_c2ay25094b
crossref_primary_10_1021_jf4034738
crossref_primary_10_1016_j_scitotenv_2020_140429
crossref_primary_10_3390_w14192975
crossref_primary_10_1016_j_envint_2022_107314
crossref_primary_10_1007_s11356_017_8743_9
crossref_primary_10_1007_s11356_013_1741_7
crossref_primary_10_1016_j_envpol_2016_11_045
crossref_primary_10_1016_j_envpol_2020_114580
crossref_primary_10_1007_s10653_015_9742_8
crossref_primary_10_1016_j_trac_2013_08_004
crossref_primary_10_1016_j_chemosphere_2023_137735
crossref_primary_10_1016_j_toxlet_2013_01_013
crossref_primary_10_1016_j_microc_2017_06_011
crossref_primary_10_1080_10934529_2013_732367
crossref_primary_10_1016_j_toxlet_2013_09_016
crossref_primary_10_1016_j_jfca_2024_106020
crossref_primary_10_1007_s00216_017_0434_3
Cites_doi 10.1002/jat.2550010508
10.1016/j.femsec.2004.07.014
10.3109/08910609409141354
10.1093/oxfordjournals.aje.a116313
10.1021/tx049978q
10.1021/es062410e
10.1016/S0039-9140(02)00260-6
10.1021/ac0714462
10.1021/tx050111h
10.1016/j.taap.2007.11.008
10.1021/tx0155496
10.1080/009841098159385
10.1021/es048150n
10.1016/j.taap.2003.10.020
10.1021/es0707815
10.1007/s002040000134
10.1093/clinchem/45.2.301
10.1021/tx049963s
10.1002/(SICI)1099-0739(199911)13:11<837::AID-AOC924>3.0.CO;2-Z
10.1016/j.talanta.2007.03.021
10.1039/b817820h
10.1073/pnas.0506836103
10.1021/tx700038x
10.1016/S0041-008X(02)00022-4
10.1016/S0039-9140(98)00093-9
10.1289/ehp.0901794
10.1016/0021-9673(96)00469-4
10.1039/b816906c
10.1093/toxsci/kfh265
10.1016/j.taap.2007.10.011
10.1039/b718840d
10.1016/0021-9673(95)01187-0
10.1039/b713145c
10.1039/a704841f
10.1016/j.taap.2008.12.008
10.1016/j.taap.2006.12.014
ContentType Journal Article
Copyright Copyright © 2011 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2011 John Wiley & Sons, Ltd.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
DOI 10.1002/bmc.1700
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList CrossRef
MEDLINE

Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
Chemistry
EISSN 1099-0801
EndPage 533
ExternalDocumentID 10_1002_bmc_1700
21905058
BMC1700
ark_67375_WNG_H588PZQM_L
Genre article
Validation Studies
Journal Article
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23N
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AQPKS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HF~
HGLYW
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH5
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WRJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
CGR
CUY
CVF
ECM
EIF
NPM
AAMNL
AAYXX
CITATION
ID FETCH-LOGICAL-c4580-4913722e52afd01e967e98a885168a2e52e6b8e7517065ab4f943b1264e2ec3a3
IEDL.DBID 33P
ISSN 0269-3879
IngestDate Thu Nov 21 22:57:11 EST 2024
Sat Sep 28 08:01:16 EDT 2024
Sat Aug 24 01:06:57 EDT 2024
Wed Oct 30 09:53:04 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Copyright © 2011 John Wiley & Sons, Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4580-4913722e52afd01e967e98a885168a2e52e6b8e7517065ab4f943b1264e2ec3a3
Notes istex:6311B461047E1A1C2DE3C3FE97330D75B9E3EC32
ArticleID:BMC1700
ark:/67375/WNG-H588PZQM-L
OpenAccessLink https://biblio.ugent.be/publication/2096236/file/2096246
PMID 21905058
PageCount 10
ParticipantIDs crossref_primary_10_1002_bmc_1700
pubmed_primary_21905058
wiley_primary_10_1002_bmc_1700_BMC1700
istex_primary_ark_67375_WNG_H588PZQM_L
PublicationCentury 2000
PublicationDate April 2012
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: April 2012
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: England
PublicationTitle Biomedical chromatography
PublicationTitleAlternate Biomed. Chromatogr
PublicationYear 2012
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References Kubachka KM, Kohan MC, Conklin SD, Herbin-Davis K, Creed JT and Thomas DJ. In vitro biotransformation of dimethylarsinic acid and trimethylarsine oxide by anaerobic microflora of mouse cecum analyzed by HPLC-ICP-MS and HPLC-ESI-MS. Journal of Analytical Atomic Spectrometry 2009b; 24: 1062-1068.
Terasahde P, Pantsar-Kallio M, Manninen PKG. Simultaneous determination of arsenic species by ion chromatography-inductively coupled plasma mass spectrometry. Journal of Chromatography. A 1996; 750: 83-88.
Van de Wiele T, Boon N, Possemiers S, Jacobs H and Verstraete W. Prebiotic effects of chicory inulin in the simulator of the human intestinal microbial ecosystem. FEMS Microbiology Ecology 2004; 51: 143-153.
Rowland IR, Davies MJ. In vitro metabolism of inorganic arsenic by the gastro-intestinal microflora of the rat. Journal of Applied Toxicology 2006; 1: 278-283.
Waalkes MP, Ward JM, Liu J and Diwan BA. Transplacental carcinogenicity of inorganic arsenic in drinking water: induction of hepatic, ovarian, pulmonary and adrenal tumors in mice. Toxicology and Applied Pharmacology 2003; 186: 7-17.
Molly K, Vandewoestyne M, Desmet I and Verstraete W. Validation of the simulator of the human intestinal microbial ecosystems (SHIME) reactor using microorganism-associated activities. Microbial Ecology in Health and Disease 1994; 7: 191-200.
Kubachka KM, Kohan MC, Conklin SD, Herbin-Davis K, Creed JT and Thomas D. Exploring the in vitro formation of trimethylarsine sulfide from dimethylthioarsinic acid in anaerobic microflora of mouse cecum using HPLC-ICP-MS and HPLC-ESI-MS. Toxicology and Applied Pharmacology 2009a; 273: 137-143.
Yathavakilla SKV, Fricke M, Creed PA, Heitkemper DT, Shockey NV and Schwegel C. Arsenic speciation and identification of monomethylarsonous acid and monomethylthioarsonic acid in a complex matrix. Analytical Chemistry 2008; 80: 775-782
Conklin SD, Fricke MW, Creed PA and Creed JT. Investigation of the pH Effects on the Formation of Methylated Thio-Arsenicals, and the Effects of pH and Temperature on Their Stability. Journal of Analytical Atomic Spectrometry 2008; 23: 711-716.
Hughes MF, Devesa V, Adair BM, Conklin SD, Creed JT, Styblo M, Kenyon EM and Thomas DJ. Tissue dosimetry, metabolism and excretion of pentavalent and trivalent dimethylated arsenic in mice after oral administration. Toxicology and Applied Pharmacology 2008; 227: 26-35.
Styblo M, Razo LMD, Vega L, Germolec DR, LeCluyse EL, Hamilton GA, Reed W, Wang C, Cullen WR and Thomas D. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Archives of Toxicology 2000; 74: 289.
Suzuki KT, Mandal BK, Katagiri A, Sakuma Y, Kawakami A, Ogra Y, Yamaguchi K, Sei Y, Yamanaka K, Anzai K, Ohmichi M, Takayama H and Aimi N. Dimethylthioarsenicals as Arsenic Metabolites and Their Chemical Preparations. Chemical Research in Toxicology 2004; 17: 914-921.
Gailer J and Irgolic KJ. Retention behavior of arsenobetaine, arsenocholine, trimethylarsine oxide and tetramethylarsonium iodide on a styrene-divinylbenzene column with benzenesulfonates as ion-pairing reagents. Journal of Chromatography. A 1996; 730: 219-229.
Gailer J, Madden S, Cullen WR and Denton MB. The separation of dimethylarsinic acid, methylarsonous acid, methylarsonic acid, arsenate and dimethylarsinous acid on the Hamilton PRP-X100 anion-exchange column. Applied Organometallic Chemistry 1999; 13: 837-843.
Hughes MF and Kenyon EM. Dose-dependent effects on the disposition of monomethylarsonic acid and dimethylarsinic acid in the mouse after intravenous administration. Journal of Toxicology and Environmental Health 1998; 53: 95-112.
Ackerman AH, Creed PA, Parks AN, Fricke MW, Schwegel CA, Creed JT, Heitkemper DT and Vela NP. Comparison of a chemical and enzymatic extraction of arsenic from rice and an assessment of the arsenic absorption from contaminated water by cooked rice. Environmental Science and Technology 2005; 39: 5241-5246.
Laird BD, Van de Wiele TR, Corriveau MC, Jamieson HE, Parsons MB, Verstraete W and Siciliano SD. Gastrointestinal microbes increase arsenic bioaccessibility of ingested mine tailings using the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). Environmental Science and Technology 2007; 41: 5542-5547.
Naranmandura H and Suzuki KT. Formation of dimethylthioarsenicals in red blood cells. Toxicology and Applied Pharmacology 2008; 227: 390-399.
Suzuki KT, Mandal BK and Ogra Y. Speciation of arsenic in body fluids. Talanta 2002; 58: 111-119.
Van de Wiele T, Gallawa CM, Kubachka KM, Creed JT, Basta N, Dayton EA, Whitacre S, Du Laing G and Bradham K. Arsenic Metabolism by Human Gut Microbiota upon in vitro Digestion of Contaminated Soils. Environmental Health Perspectives 2010; 118(7): 1004-1009.
Suzuki KT, Tomita T, Ogra Y, Ohimichi M. Glutathione-conjugated Arsenics in the Potential Hepato-enteric Circulation in Rats. Chemical Research in Toxicology 2001; 14: 1604.
Dagnac T, Padro A, Rubio R and Rauret G. Speciation of arsenic in mussels by the coupled system liquid chromatography-UV irradiation-hydride generation-inductively coupled plasma mass spectrometry. Talanta 1999; 48: 763-772.
Narukawa T, Kuroiwa T and Chiba K. Mechanism of sensitivity difference between trivalent inorganic As species [As(III)] and pentavalent species [As(V)] with inductively coupled plasma spectrometry. Talanta 2007; 73(1): 157-165.
Thomas DJ, Waters SB and Styblo M. A chemical hypothesis for arsenic methylation in mammals. Toxicology and Applied Pharmacology 2004; 198: 319-326.
Rabieh S, Hirner AV and Matschullat J. Determination of arsenic species in human urine using high performance liquid chromatography (HPLC) coupled with inductively coupled plasma mass spectrometry (ICP-MS). Journal of Analytical Atomic Spectrometry 2008; 23: 544-549.
Raml R, Goessler W, Traar P, Ochi T and Francesconi KA. Novel Thioarsenic Metabolites in Human Urine after Ingestion of an Arsenosugar, 2',3'-Dihydroxypropyl 5-Deoxy-5-dimethylarsinoyl-b-D-riboside. Chemical Research in Toxicology 2005; 18: 1444-1450.
Bates MN, Smith AH and Hopenhayn-Rich C. Arsenic ingestion and internal cancers: a review. American Journal of Epidemiology 1992; 135: 462-476.
Cui X, Kobayashi Y, Hayakawa T and Hirano S. Arsenic Speciation in Bile and Urine Following Oral and Intravenous Exposure to Inorganic and Organic Arsenics in Rats. The Journal of Toxicological Sciences 2004; 82: 478-487.
Wallschlager D and London J. Determination of methylated arsenic-sulfur compounds in ground-water. Environmental Science and Technology 2008; 42: 228-234.
Qin J, Rosen BP, Zhang Y, Wang G, Franke S and Rensing C. Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proceedings of National Academy of Sciences, USA 2006; 103: 2075-2080.
Raab A, Baskaran C, Feldmann J and Meharg AA. Cooking rice in a high water to rice ratio reduces inorganic arsenic content. Enivironmental Monitoring 2009; 11: 41-44.
European Pharmacopeia, 2007 chapter 2.2.46, 6th edn, Vol. VII: 69-73.
Zhang X, Cornelis R, Mees L, Vanholder R, Lameire N. Chemical speciation of arsenic in serum of uraemic patients.Analyst 1998; 123: 13.
Benramdane L, Accominotti M, Fanton L, Malicier D, Vallon JJ. Arsenic speciation in human organs following fatal arsenic trioxide poisoning-a case report. Clinical Chemistry 1999; 45: 301-306.
Hansen HR, Raab A, Jaspars M, Milne BF and Feldmann J. Sulfur-containing arsenical mistaken for dimethylarsinous acid (DMA(III)) and identified as a natural metabolite in urine: Major implications for studies on arsenic metabolism and toxicity. Chemical Research in Toxicology 2004; 17: 1086-1091.
Raml R, Rumpler A, Goessler W, Vahter M, Li L, Ochi T and Francesconi KA. Thio-dimethylarsinate is a common metabolite in urine samples from arsenic-exposed women in Bangladesh. Toxicology and Applied Pharmacology 2007; 222: 374-380.
Naranmandura H, Suzuki N, Iwata K, Hirano S and Suzuki T. Arsenic metabolism and thioarsenicals in hamsters and rats. Chemical Research in Toxicology 2007; 20: 616-624.
2007; 222
2002; 58
2004; 82
2007; VII
2009b; 24
1999; 48
1999; 45
2009a; 273
2008; 227
2007; 73
2006; 1
2009; 11
2004; 198
2004; 51
2010; 118
2004; 17
1992; 135
2000; 74
1999; 13
2008; 23
2007; 41
2008; 42
2007; 20
1996; 730
2005; 39
1998; 53
2005; 18
2001; 14
1996; 750
1998; 123
2008; 80
1994; 7
2006; 103
2003; 186
Benramdane L (e_1_2_6_4_1) 1999; 45
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
(e_1_2_6_8_1) 2007
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 17
  start-page: 1086
  year: 2004
  end-page: 1091
  article-title: Sulfur‐containing arsenical mistaken for dimethylarsinous acid (DMA(III)) and identified as a natural metabolite in urine: Major implications for studies on arsenic metabolism and toxicity
  publication-title: Chemical Research in Toxicology
– volume: 730
  start-page: 219
  year: 1996
  end-page: 229
  article-title: Retention behavior of arsenobetaine, arsenocholine, trimethylarsine oxide and tetramethylarsonium iodide on a styrene‐divinylbenzene column with benzenesulfonates as ion‐pairing reagents
  publication-title: Journal of Chromatography. A
– volume: 11
  start-page: 41
  year: 2009
  end-page: 44
  article-title: Cooking rice in a high water to rice ratio reduces inorganic arsenic content
  publication-title: Enivironmental Monitoring
– volume: 222
  start-page: 374
  year: 2007
  end-page: 380
  article-title: Thio‐dimethylarsinate is a common metabolite in urine samples from arsenic‐exposed women in Bangladesh
  publication-title: Toxicology and Applied Pharmacology
– volume: 39
  start-page: 5241
  year: 2005
  end-page: 5246
  article-title: Comparison of a chemical and enzymatic extraction of arsenic from rice and an assessment of the arsenic absorption from contaminated water by cooked rice
  publication-title: Environmental Science and Technology
– volume: 118
  start-page: 1004
  issue: 7
  year: 2010
  end-page: 1009
  article-title: Arsenic Metabolism by Human Gut Microbiota upon Digestion of Contaminated Soils
  publication-title: Environmental Health Perspectives
– volume: 17
  start-page: 914
  year: 2004
  end-page: 921
  article-title: Dimethylthioarsenicals as Arsenic Metabolites and Their Chemical Preparations
  publication-title: Chemical Research in Toxicology
– volume: 45
  start-page: 301
  year: 1999
  end-page: 306
  article-title: Arsenic speciation in human organs following fatal arsenic trioxide poisoning–a case report
  publication-title: Clinical Chemistry
– volume: 41
  start-page: 5542
  year: 2007
  end-page: 5547
  article-title: Gastrointestinal microbes increase arsenic bioaccessibility of ingested mine tailings using the Simulator of the Human Intestinal Microbial Ecosystem (SHIME)
  publication-title: Environmental Science and Technology
– volume: 42
  start-page: 228
  year: 2008
  end-page: 234
  article-title: Determination of methylated arsenic‐sulfur compounds in ground‐water
  publication-title: Environmental Science and Technology
– volume: 227
  start-page: 26
  year: 2008
  end-page: 35
  article-title: Tissue dosimetry, metabolism and excretion of pentavalent and trivalent dimethylated arsenic in mice after oral administration
  publication-title: Toxicology and Applied Pharmacology
– volume: 198
  start-page: 319
  year: 2004
  end-page: 326
  article-title: A chemical hypothesis for arsenic methylation in mammals
  publication-title: Toxicology and Applied Pharmacology
– volume: 273
  start-page: 137
  year: 2009a
  end-page: 143
  article-title: Exploring the formation of trimethylarsine sulfide from dimethylthioarsinic acid in anaerobic microflora of mouse cecum using HPLC‐ICP‐MS and HPLC‐ESI‐MS
  publication-title: Toxicology and Applied Pharmacology
– volume: 23
  start-page: 711
  year: 2008
  end-page: 716
  article-title: Investigation of the pH Effects on the Formation of Methylated Thio‐Arsenicals, and the Effects of pH and Temperature on Their Stability
  publication-title: Journal of Analytical Atomic Spectrometry
– volume: 186
  start-page: 7
  year: 2003
  end-page: 17
  article-title: Transplacental carcinogenicity of inorganic arsenic in drinking water: induction of hepatic, ovarian, pulmonary and adrenal tumors in mice
  publication-title: Toxicology and Applied Pharmacology
– volume: 23
  start-page: 544
  year: 2008
  end-page: 549
  article-title: Determination of arsenic species in human urine using high performance liquid chromatography (HPLC) coupled with inductively coupled plasma mass spectrometry (ICP‐MS)
  publication-title: Journal of Analytical Atomic Spectrometry
– volume: 73
  start-page: 157
  issue: 1
  year: 2007
  end-page: 165
  article-title: Mechanism of sensitivity difference between trivalent inorganic As species [As(III)] and pentavalent species [As(V)] with inductively coupled plasma spectrometry
  publication-title: Talanta
– volume: 74
  start-page: 289
  year: 2000
  article-title: Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells
  publication-title: Archives of Toxicology
– volume: 20
  start-page: 616
  year: 2007
  end-page: 624
  article-title: Arsenic metabolism and thioarsenicals in hamsters and rats
  publication-title: Chemical Research in Toxicology
– volume: 58
  start-page: 111
  year: 2002
  end-page: 119
  article-title: Speciation of arsenic in body fluids
  publication-title: Talanta
– volume: 7
  start-page: 191
  year: 1994
  end-page: 200
  article-title: Validation of the simulator of the human intestinal microbial ecosystems (SHIME) reactor using microorganism-associated activities
  publication-title: Microbial Ecology in Health and Disease
– volume: VII
  start-page: 69
  year: 2007
  end-page: 73
– volume: 24
  start-page: 1062
  year: 2009b
  end-page: 1068
  article-title: biotransformation of dimethylarsinic acid and trimethylarsine oxide by anaerobic microflora of mouse cecum analyzed by HPLC‐ICP‐MS and HPLC‐ESI‐MS
  publication-title: Journal of Analytical Atomic Spectrometry
– volume: 1
  start-page: 278
  year: 2006
  end-page: 283
  article-title: metabolism of inorganic arsenic by the gastro‐intestinal microflora of the rat
  publication-title: Journal of Applied Toxicology
– volume: 82
  start-page: 478
  year: 2004
  end-page: 487
  article-title: Arsenic Speciation in Bile and Urine Following Oral and Intravenous Exposure to Inorganic and Organic Arsenics in Rats
  publication-title: The Journal of Toxicological Sciences
– volume: 103
  start-page: 2075
  year: 2006
  end-page: 2080
  article-title: Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S‐adenosylmethionine methyltransferase
  publication-title: Proceedings of National Academy of Sciences, USA
– volume: 80
  start-page: 775
  year: 2008
  end-page: 782
  article-title: Arsenic speciation and identification of monomethylarsonous acid and monomethylthioarsonic acid in a complex matrix
  publication-title: Analytical Chemistry
– volume: 227
  start-page: 390
  year: 2008
  end-page: 399
  article-title: Formation of dimethylthioarsenicals in red blood cells
  publication-title: Toxicology and Applied Pharmacology
– volume: 13
  start-page: 837
  year: 1999
  end-page: 843
  article-title: The separation of dimethylarsinic acid, methylarsonous acid, methylarsonic acid, arsenate and dimethylarsinous acid on the Hamilton PRP‐X100 anion‐exchange column
  publication-title: Applied Organometallic Chemistry
– volume: 14
  start-page: 1604
  year: 2001
  article-title: Glutathione‐conjugated Arsenics in the Potential Hepato‐enteric Circulation in Rats
  publication-title: Chemical Research in Toxicology
– volume: 123
  start-page: 13
  year: 1998
  article-title: Chemical speciation of arsenic in serum of uraemic patients
  publication-title: Analyst
– volume: 53
  start-page: 95
  year: 1998
  end-page: 112
  article-title: Dose‐dependent effects on the disposition of monomethylarsonic acid and dimethylarsinic acid in the mouse after intravenous administration
  publication-title: Journal of Toxicology and Environmental Health
– volume: 18
  start-page: 1444
  year: 2005
  end-page: 1450
  article-title: Novel Thioarsenic Metabolites in Human Urine after Ingestion of an Arsenosugar, 2',3'‐Dihydroxypropyl 5‐Deoxy‐5‐dimethylarsinoyl‐b‐D‐riboside
  publication-title: Chemical Research in Toxicology
– volume: 750
  start-page: 83
  year: 1996
  end-page: 88
  article-title: Simultaneous determination of arsenic species by ion chromatography‐inductively coupled plasma mass spectrometry
  publication-title: Journal of Chromatography. A
– volume: 135
  start-page: 462
  year: 1992
  end-page: 476
  article-title: Arsenic ingestion and internal cancers: a review
  publication-title: American Journal of Epidemiology
– volume: 48
  start-page: 763
  year: 1999
  end-page: 772
  article-title: Speciation of arsenic in mussels by the coupled system liquid chromatography‐UV irradiation‐hydride generation‐inductively coupled plasma mass spectrometry
  publication-title: Talanta
– volume: 51
  start-page: 143
  year: 2004
  end-page: 153
  article-title: Prebiotic effects of chicory inulin in the simulator of the human intestinal microbial ecosystem
  publication-title: FEMS Microbiology Ecology
– ident: e_1_2_6_26_1
  doi: 10.1002/jat.2550010508
– ident: e_1_2_6_33_1
  doi: 10.1016/j.femsec.2004.07.014
– ident: e_1_2_6_17_1
  doi: 10.3109/08910609409141354
– ident: e_1_2_6_3_1
  doi: 10.1093/oxfordjournals.aje.a116313
– ident: e_1_2_6_11_1
  doi: 10.1021/tx049978q
– ident: e_1_2_6_16_1
  doi: 10.1021/es062410e
– ident: e_1_2_6_29_1
  doi: 10.1016/S0039-9140(02)00260-6
– ident: e_1_2_6_37_1
  doi: 10.1021/ac0714462
– ident: e_1_2_6_24_1
  doi: 10.1021/tx050111h
– ident: e_1_2_6_19_1
  doi: 10.1016/j.taap.2007.11.008
– ident: e_1_2_6_28_1
  doi: 10.1021/tx0155496
– ident: e_1_2_6_12_1
  doi: 10.1080/009841098159385
– ident: e_1_2_6_2_1
  doi: 10.1021/es048150n
– ident: e_1_2_6_32_1
  doi: 10.1016/j.taap.2003.10.020
– ident: e_1_2_6_36_1
  doi: 10.1021/es0707815
– ident: e_1_2_6_27_1
  doi: 10.1007/s002040000134
– volume: 45
  start-page: 301
  year: 1999
  ident: e_1_2_6_4_1
  article-title: Arsenic speciation in human organs following fatal arsenic trioxide poisoning–a case report
  publication-title: Clinical Chemistry
  doi: 10.1093/clinchem/45.2.301
  contributor:
    fullname: Benramdane L
– ident: e_1_2_6_30_1
  doi: 10.1021/tx049963s
– start-page: 69
  volume-title: European Pharmacopeia
  year: 2007
  ident: e_1_2_6_8_1
– ident: e_1_2_6_10_1
  doi: 10.1002/(SICI)1099-0739(199911)13:11<837::AID-AOC924>3.0.CO;2-Z
– ident: e_1_2_6_20_1
  doi: 10.1016/j.talanta.2007.03.021
– ident: e_1_2_6_15_1
  doi: 10.1039/b817820h
– ident: e_1_2_6_21_1
  doi: 10.1073/pnas.0506836103
– ident: e_1_2_6_18_1
  doi: 10.1021/tx700038x
– ident: e_1_2_6_35_1
  doi: 10.1016/S0041-008X(02)00022-4
– ident: e_1_2_6_7_1
  doi: 10.1016/S0039-9140(98)00093-9
– ident: e_1_2_6_34_1
  doi: 10.1289/ehp.0901794
– ident: e_1_2_6_31_1
  doi: 10.1016/0021-9673(96)00469-4
– ident: e_1_2_6_22_1
  doi: 10.1039/b816906c
– ident: e_1_2_6_6_1
  doi: 10.1093/toxsci/kfh265
– ident: e_1_2_6_13_1
  doi: 10.1016/j.taap.2007.10.011
– ident: e_1_2_6_23_1
  doi: 10.1039/b718840d
– ident: e_1_2_6_9_1
  doi: 10.1016/0021-9673(95)01187-0
– ident: e_1_2_6_5_1
  doi: 10.1039/b713145c
– ident: e_1_2_6_38_1
  doi: 10.1039/a704841f
– ident: e_1_2_6_14_1
  doi: 10.1016/j.taap.2008.12.008
– ident: e_1_2_6_25_1
  doi: 10.1016/j.taap.2006.12.014
SSID ssj0009627
Score 2.2266846
Snippet ABSTRACT Inorganic arsenic (iAs) has been classified as a type 1 carcinogen and has also been linked to several noncancerous health effects. Prior to 1995, the...
Inorganic arsenic (iAs) has been classified as a type 1 carcinogen and has also been linked to several noncancerous health effects. Prior to 1995, the As(V)...
Inorganic arsenic (iAs) has been classified as a type 1 carcinogen and has also been linked to several noncancerous health effects. Prior to 1995, the As V...
SourceID crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 524
SubjectTerms arsenic
Arsenic - analysis
Arsenic - metabolism
Arsenicals - analysis
Arsenicals - metabolism
AsIII
AsV
Calibration
Carcinogens - analysis
Carcinogens - metabolism
Chromatography, High Pressure Liquid - methods
colon suspension
DMAIII
DMAV
gastrointestinal
Gastrointestinal Tract - microbiology
Humans
intestine
Mass Spectrometry - methods
Metagenome
Methylation
MMAIII
MMAV
nonequimolar
Sensitivity and Specificity
SHIME
speciation
Title HPLC-ICP-MS method development to monitor arsenic speciation changes by human gut microbiota
URI https://api.istex.fr/ark:/67375/WNG-H588PZQM-L/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbmc.1700
https://www.ncbi.nlm.nih.gov/pubmed/21905058
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEB7xkIAL0EBpSqm2EsrNEO_D3u2NGmiQkigoIBAXd71eI4RiqjwkuPUn9Df2l3QfcQIHJCQutmSNH5rZnZ1Zz3wfwD6VspkJRgKliQoow3Eg8zAKiqIggnAVZ8J2I7f6cfeaH59YmJzvVS-Mx4eYbbjZmeH8tZ3gMhsdzkFDs4E6sOByxv2aJMF1b5DeHG838mytOBIWPlZUuLNNfFjd-GIlWrZKfXy2DD0PVd1ac7rxnq_chPVphImO_JD4AAu6rMHWUWmy68ETaiBX8-k202uwmlR8bzVY6Ux_s2_Br1avnfz78_cs6Zljp488zzTK5xVGaPyABs4fDJHJjXV5p9DIcdlbSyPfTzxC2RNyLIDodjJGgzuP-jSW23B5enKRtIIpFUOgKOPNgIqQxBhrhmWRN0MtolgLLrmJ1yIu7XUdZVzHzKLxMJnRQlCShSba0lgrIslHWCofSv0JEBMWoMaEGaFStIioIIwWKg4lJXkeFrgO3yqzpL894kbqsZVxarSZWm3WoeHsNROQw3tboRaz9Kr7M20xzns35520XYcdb9CZpPHQlryPm0c4u736jvRHJ7Hnz28V3IU1E01hX9bzBZbGw4neg8VRPvnqxuZ_15bkxw
link.rule.ids 315,782,786,1408,27933,27934,46064,46488
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTtxAEC0FkEIuWYYsk0DSkSJuDuNe7G5xAgMxyng0EUSJuHTa7TZCaEw0ixRu-QS-kS-hl_EMOUSKlIstWeVFXb28Lle9B_CBKtUrBSORNkRHlOE0UlWcRHVdE0G4TkvhqpHzk3TwnR8cOpqc3bYWJvBDLAJubmT4-doNcBeQ3lmyhpYj_dGxy63AGk1sP3T1G2S4ZNxNgl4rToQjkBUt82wP77R3_rEWrblm_XVvIboPVv1qc_Tkv77zKTyeg0y0F3rFM3hgmg5s7DV2gz26RtvIp336eHoH1rNW8q0DD4v5n_YN-JEP-9nt75vjbGiPxQkKUtOoWiYZoekVGvkpYYzs9tg0FxpNvJy9czYKJcUTVF4jLwSIzmdTNLoIxE9T9Ry-Hh2eZnk0V2OINGW8F1ERkxRjw7Cqq15sRJIawRW3kC3hyl03SclNyhwhD1MlrQUlZWwBl8FGE0VewGpz1ZhXgJhwHDUWacRa0zqhgjBa6zRWlFRVXOMuvG_9In8G0g0Z6JWxtK0pXWt2Yds7bGGgxpcuSS1l8tvgk8wZ58OzL4Xsd-Fl8OjC0k7STr-P20d4x_31HXK_yNz59b8avoP1_LToy_7x4PMbeGTBFQ5ZPpuwOh3PzBasTKrZW99R7wBVOujv
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb9QwFH7qIhUuLFNahtVIqLfQiZfE5lbSDlMxMwoqCMTFOI6NKjRpNYtEb_wEfiO_BC-TmfaAhMQlkSJn0Xv2e5-d5-8DeEmV6lWCkUQbohPKcJ6oOs0Say0RhOu8En438uAsH3_mxyeeJud1uxcm8kOsFtz8yAjx2g_wy9oerklDq4l-5cnlNmGbOhTuefMJKdeEu1mUa8WZ8PyxoiWe7eHD9s4bqWjbW_XHtTx0HauGZNO_-z-feQ_uLCEmOop94j5smKYDu0eNm15PrtABCkWfYTW9A7eKVvCtAzuj5X_2Xfg6KIfF75-_TovSHUdnKApNo3pdYoTmF2gSAsIUucmxac41mgUxe-9qFDcUz1B1hYIMIPq2mKPJeaR9mqsH8LF_8qEYJEsthkRTxnsJFSnJMTYMK1v3UiOy3AiuuANsGVf-uskqbnLm6XiYqqgVlFSpg1sGG00U2YOt5qIxDwEx4RlqHM5ItaY2o4IwanWeKkrqOrW4Cy9at8jLSLkhI7kyls6a0luzCwfBX6sGavrdl6jlTH4av5UDxnn55f1IDruwHx26aulCtFfv4-4RwW9_fYd8Myr8-dG_NnwOO-VxXw5Px-8ew22HrHAs8XkCW_PpwjyFzVm9eBa66R-SCueV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HPLC%E2%80%90ICP%E2%80%90MS+method+development+to+monitor+arsenic+speciation+changes+by+human+gut+microbiota&rft.jtitle=Biomedical+chromatography&rft.au=Alava%2C+Pradeep&rft.au=Tack%2C+Filip&rft.au=Laing%2C+Gijs+Du&rft.au=Wiele%2C+Tom+Van&rft.date=2012-04-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=0269-3879&rft.eissn=1099-0801&rft.volume=26&rft.issue=4&rft.spage=524&rft.epage=533&rft_id=info:doi/10.1002%2Fbmc.1700&rft.externalDBID=10.1002%252Fbmc.1700&rft.externalDocID=BMC1700
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0269-3879&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0269-3879&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0269-3879&client=summon