Proteasomes Begin Ornithine Decarboxylase Digestion at the C Terminus

Proteasomes denature folded protein substrates and thread them through a narrow pore that leads to the sequestered sites of proteolysis. Whether a protein substrate initiates insertion from its N or C terminus or in a random orientation has not been determined for any natural substrate. We used the...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry Vol. 279; no. 20; pp. 20959 - 20965
Main Authors: Zhang, Mingsheng, MacDonald, Alasdair I, Hoyt, Martin A, Coffino, Philip
Format: Journal Article
Language:English
Published: United States American Society for Biochemistry and Molecular Biology 14-05-2004
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Proteasomes denature folded protein substrates and thread them through a narrow pore that leads to the sequestered sites of proteolysis. Whether a protein substrate initiates insertion from its N or C terminus or in a random orientation has not been determined for any natural substrate. We used the labile enzyme ornithine decarboxylase (ODC), which is recognized by the proteasome via a 37-residue C-terminal tag, to answer this question. Three independent approaches were used to assess orientation as follows. 1) The 461-residue ODC protein chain was interrupted at position 305. The C-terminal fragment was degraded by purified proteasomes, but because processivity requires continuity of the polypeptide chain, the N-terminal fragment was spared. 2) A proteasome-inhibitory viral sequence prevented degradation when introduced near the C terminus but not when inserted elsewhere in ODC. 3) A bulky tightly folded protein obstructed in vivo degradation most effectively when positioned near the C terminus. These data demonstrate that the proteasome initiates degradation of this native substrate at the C terminus. The co-localization of entry site and degradation tag to the ODC C terminus suggests that recognition tags determine the site for initiating entry. Flexibility of a polypeptide terminus may promote the initiation of degradation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M314043200