Dietary (n-3) polyunsaturated fatty acids remodel mouse T-cell lipid rafts
In vitro evidence indicates that (n-3) polyunsaturated fatty acids (PUFA) suppress T-cell activation in part by displacing proteins from lipid rafts, specialized regions within the plasma membrane that play an important role in T-cell signal transduction. However, the ability of (n-3) PUFA to influe...
Saved in:
Published in: | The Journal of nutrition Vol. 133; no. 6; p. 1913 |
---|---|
Main Authors: | , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
01-06-2003
|
Subjects: | |
Online Access: | Get more information |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In vitro evidence indicates that (n-3) polyunsaturated fatty acids (PUFA) suppress T-cell activation in part by displacing proteins from lipid rafts, specialized regions within the plasma membrane that play an important role in T-cell signal transduction. However, the ability of (n-3) PUFA to influence membrane microdomains in vivo has not been examined to date. Therefore, we compared the effect of dietary (n-3) PUFA on raft (liquid ordered) vs. soluble (liquid disordered) microdomain phospholipid composition in mouse T cells. Mice were fed diets containing either 5 g/100 g corn oil (control) or 4 g/100 g fish oil [contains (n-3) PUFA] + 1 g/100 g corn oil for 14 d. Splenic T-cell lipid rafts were isolated by density gradient centrifugation. Raft sphingomyelin content (mol/100 mol) was decreased (P < 0.05) in T cells isolated from (n-3) PUFA-fed mice. Dietary (n-3) PUFA were selectively incorporated into T-cell raft and soluble membrane phospholipids. Phosphatidylserine and glycerophosphoethanolamine, which are highly localized to the inner cytoplasmic leaflet, were enriched to a greater extent with unsaturated fatty acids compared with sphingomyelin, phosphatidylinositol and glycerophosphocholine. These data indicate for the first time that dietary (n-3) PUFA differentially modulate T-cell raft and soluble membrane phospholipid and fatty acyl composition. |
---|---|
ISSN: | 0022-3166 |
DOI: | 10.1093/jn/133.6.1913 |