More practical differentially private publication of key statistics in GWAS

Analyses of datasets that contain personal genomic information are very important for revealing associations between diseases and genomes. Genome-wide association studies, which are large-scale genetic statistical analyses, often involve tests with contingency tables. However, if the statistics obta...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics advances Vol. 1; no. 1; p. vbab004
Main Authors: Yamamoto, Akito, Shibuya, Tetsuo
Format: Journal Article
Language:English
Published: England Oxford University Press 2021
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Analyses of datasets that contain personal genomic information are very important for revealing associations between diseases and genomes. Genome-wide association studies, which are large-scale genetic statistical analyses, often involve tests with contingency tables. However, if the statistics obtained by these tests are made public as they are, sensitive information of individuals could be leaked. Existing studies have proposed privacy-preserving methods for statistics in the χ test with a 3 × 2 contingency table, but they do not cover all the tests used in association studies. In addition, existing methods for releasing differentially private -values are not practical. In this work, we propose methods for releasing statistics in the χ test, the Fisher's exact test and the Cochran-Armitage's trend test while preserving both personal privacy and utility. Our methods for releasing -values are the first to achieve practicality under the concept of differential privacy by considering their base 10 logarithms. We make theoretical guarantees by showing the sensitivity of the above statistics. From our experimental results, we evaluate the utility of the proposed methods and show appropriate thresholds with high accuracy for using the private statistics in actual tests. A python implementation of our experiments is available at https://github.com/ay0408/DP-statistics-GWAS. Supplementary data are available at online.
AbstractList Motivation: Analyses of datasets that contain personal genomic information are very important for revealing associations between diseases and genomes. Genome-wide association studies, which are large-scale genetic statistical analyses, often involve tests with contingency tables. However, if the statistics obtained by these tests are made public as they are, sensitive information of individuals could be leaked. Existing studies have proposed privacy-preserving methods for statistics in the χ2 test with a 3 × 2 contingency table, but they do not cover all the tests used in association studies. In addition, existing methods for releasing differentially private P-values are not practical. Results: In this work, we propose methods for releasing statistics in the χ2 test, the Fisher's exact test and the Cochran-Armitage's trend test while preserving both personal privacy and utility. Our methods for releasing P-values are the first to achieve practicality under the concept of differential privacy by considering their base 10 logarithms. We make theoretical guarantees by showing the sensitivity of the above statistics. From our experimental results, we evaluate the utility of the proposed methods and show appropriate thresholds with high accuracy for using the private statistics in actual tests. Availability and implementationA python implementation of our experiments is available at https://github.com/ay0408/DP-statistics-GWAS. Supplementary informationSupplementary data are available at Bioinformatics Advances online.
Analyses of datasets that contain personal genomic information are very important for revealing associations between diseases and genomes. Genome-wide association studies, which are large-scale genetic statistical analyses, often involve tests with contingency tables. However, if the statistics obtained by these tests are made public as they are, sensitive information of individuals could be leaked. Existing studies have proposed privacy-preserving methods for statistics in the χ test with a 3 × 2 contingency table, but they do not cover all the tests used in association studies. In addition, existing methods for releasing differentially private -values are not practical. In this work, we propose methods for releasing statistics in the χ test, the Fisher's exact test and the Cochran-Armitage's trend test while preserving both personal privacy and utility. Our methods for releasing -values are the first to achieve practicality under the concept of differential privacy by considering their base 10 logarithms. We make theoretical guarantees by showing the sensitivity of the above statistics. From our experimental results, we evaluate the utility of the proposed methods and show appropriate thresholds with high accuracy for using the private statistics in actual tests. A python implementation of our experiments is available at https://github.com/ay0408/DP-statistics-GWAS. Supplementary data are available at online.
Author Yamamoto, Akito
Shibuya, Tetsuo
AuthorAffiliation Division of Medical Data Informatics, Human Genome Center, The Institute of Medical Science, The University of Tokyo , Tokyo 108-8639, Japan
AuthorAffiliation_xml – name: Division of Medical Data Informatics, Human Genome Center, The Institute of Medical Science, The University of Tokyo , Tokyo 108-8639, Japan
Author_xml – sequence: 1
  givenname: Akito
  surname: Yamamoto
  fullname: Yamamoto, Akito
  organization: Division of Medical Data Informatics, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
– sequence: 2
  givenname: Tetsuo
  surname: Shibuya
  fullname: Shibuya, Tetsuo
  organization: Division of Medical Data Informatics, Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36700105$$D View this record in MEDLINE/PubMed
BookMark eNpVUU1PAjEUbAxGELl6NHv0stCPpR8XE0IUjRgPajw23W5Xq2Wr7bIJ_94akODh5b1m5k0nb05Br_GNAeAcwTGCgkxK61XVTbpSlRAWR2CAKZnmaUS9g7kPRjF-QAgxYxQV5AT0CWUQIjgdgPsHH0z2FZRurVYuq2xdm2Ca1irnNgmwnWoTYV26hLfWN5mvs0-zyWKbnjFtxcw22eJ19nQGjmvlohnt-hC83Fw_z2_z5ePibj5b5rqY0jbXyclUIy1UTUlVECwUEpAjRjmCFaWYYCQI5pxgWFW8wJBpzikvjCl4IpEhuNrqJlcrU-nkNignk9eVChvplZX_kca-yzffScEQTFdJApc7geC_1ya2cmWjNs6pxvh1lJhRIQRLlajjLVUHH2Mw9f4bBOVvCHIbgtyFkBYuDs3t6X8nJz9HnoYr
CitedBy_id crossref_primary_10_1089_cmb_2022_0246
Cites_doi 10.1371/journal.pgen.1000167
10.2307/3001775
10.1145/1653662.1653726
10.1093/bioinformatics/btw613
10.2307/2983604
10.1515/1544-6115.1776
10.1109/TCBB.2018.2854776
10.1126/science.1165490
10.1214/aoms/1177729694
10.1002/gepi.20536
10.1016/j.biopsych.2019.10.015
10.1145/2976749.2978318
10.1093/bib/bbx068
10.1093/bioinformatics/btz837
10.1197/jamia.M3191
10.7555/JBR.29.20140007
10.2202/1544-6115.1325
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press.
The Author(s) 2021. Published by Oxford University Press. 2021
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press.
– notice: The Author(s) 2021. Published by Oxford University Press. 2021
DBID NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1093/bioadv/vbab004
DatabaseName PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2635-0041
Editor Mulder, Nicola
Editor_xml – sequence: 1
  givenname: Nicola
  surname: Mulder
  fullname: Mulder, Nicola
EndPage vbab004
ExternalDocumentID 10_1093_bioadv_vbab004
36700105
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: JPMJCR1402JST
– fundername: ;
  grantid: 17H01693; 20H05967; 20K21827
GroupedDBID 0R~
AAPXW
ABDBF
ABXVV
ALMA_UNASSIGNED_HOLDINGS
GROUPED_DOAJ
M~E
NPM
OK1
ROX
RPM
TOX
ZCN
AAYXX
ABEJV
CITATION
7X8
5PM
ID FETCH-LOGICAL-c456t-c0025c1c9af63d4329a1908176810d66232193288320dd84207c88684ee487683
IEDL.DBID RPM
ISSN 2635-0041
IngestDate Tue Sep 17 21:30:28 EDT 2024
Fri Aug 16 14:24:48 EDT 2024
Thu Nov 21 23:20:44 EST 2024
Sat Sep 28 08:17:37 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License The Author(s) 2021. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-c0025c1c9af63d4329a1908176810d66232193288320dd84207c88684ee487683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9710635/
PMID 36700105
PQID 2769997999
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9710635
proquest_miscellaneous_2769997999
crossref_primary_10_1093_bioadv_vbab004
pubmed_primary_36700105
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioinformatics advances
PublicationTitleAlternate Bioinform Adv
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Armitage (2022111617202632500_vbab004-B3) 1955; 11
Wang (2022111617202632500_vbab004-B18) 2009
Zaykin (2022111617202632500_vbab004-B21) 2010; 34
Dwork (2022111617202632500_vbab004-B8) 2006
Coleman (2022111617202632500_vbab004-B5) 2020; 88
Abadi (2022111617202632500_vbab004-B1) 2016
Homer (2022111617202632500_vbab004-B11) 2008; 4
Zerhouni (2022111617202632500_vbab004-B23) 2008; 322
Weber (2022111617202632500_vbab004-B19) 2009; 16
Kullback (2022111617202632500_vbab004-B14) 1951; 22
Chen (2022111617202632500_vbab004-B4) 2019; 20
Yates (2022111617202632500_vbab004-B20) 1934; 1
Zhao (2022111617202632500_vbab004-B24) 2017
Dwork (2022111617202632500_vbab004-B7) 2006
Fisher (2022111617202632500_vbab004-B10) 1935
Almadhoun (2022111617202632500_vbab004-B2) 2020; 36
Hsu (2022111617202632500_vbab004-B12) 2014
Fienberg (2022111617202632500_vbab004-B9) 2011
Zeng (2022111617202632500_vbab004-B22) 2015; 29
Kosheleva (2022111617202632500_vbab004-B13) 2017; 46
Spielman (2022111617202632500_vbab004-B17) 1993; 52
Zheng (2022111617202632500_vbab004-B25) 2017; 33
Matthews (2022111617202632500_vbab004-B15) 2008; 7
Raisaro (2022111617202632500_vbab004-B16) 2019; 16
Dickhaus (2022111617202632500_vbab004-B6) 2012; 11
References_xml – volume: 4
  start-page: e1000167
  year: 2008
  ident: 2022111617202632500_vbab004-B11
  article-title: Resolving individuals contributing trace amounts of DNA to highly complex mixtures using high-density SNP genotyping microarrays
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1000167
  contributor:
    fullname: Homer
– volume: 11
  start-page: 375
  year: 1955
  ident: 2022111617202632500_vbab004-B3
  article-title: Tests for linear trends in proportions and frequencies
  publication-title: Biometrics
  doi: 10.2307/3001775
  contributor:
    fullname: Armitage
– start-page: 534
  year: 2009
  ident: 2022111617202632500_vbab004-B18
  article-title: Learning your identity and disease from research papers: information leaks in genome wide association study
  publication-title: CCS '09: Proceedings of the 16th ACM Conference on Computer and Communications Security
  doi: 10.1145/1653662.1653726
  contributor:
    fullname: Wang
– volume: 52
  start-page: 506
  year: 1993
  ident: 2022111617202632500_vbab004-B17
  article-title: Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM)
  publication-title: Am. J. Hum. Genet
  contributor:
    fullname: Spielman
– volume: 33
  start-page: 272
  year: 2017
  ident: 2022111617202632500_vbab004-B25
  article-title: LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation analysis
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btw613
  contributor:
    fullname: Zheng
– start-page: 4052
  volume-title: Automata, Languages and Programming, ICALP 2006, Lecture Notes in Computer Science
  year: 2006
  ident: 2022111617202632500_vbab004-B7
  contributor:
    fullname: Dwork
– volume: 1
  start-page: 217
  year: 1934
  ident: 2022111617202632500_vbab004-B20
  article-title: Contingency tables involving small numbers and the χ2 test
  publication-title: Suppl. J. R. Stat. Soc
  doi: 10.2307/2983604
  contributor:
    fullname: Yates
– volume: 11
  start-page: doi:10.1515/1544-6115.1776
  year: 2012
  ident: 2022111617202632500_vbab004-B6
  article-title: How to analyze many contingency tables simultaneously in genetic association studies
  publication-title: Stat. Appl. Genet. Mol. Biol
  doi: 10.1515/1544-6115.1776
  contributor:
    fullname: Dickhaus
– volume: 16
  start-page: 1328
  year: 2019
  ident: 2022111617202632500_vbab004-B16
  article-title: MedCo: enabling secure and privacy-preserving exploration of distributed clinical and genomic data
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform
  doi: 10.1109/TCBB.2018.2854776
  contributor:
    fullname: Raisaro
– volume: 322
  start-page: 44
  year: 2008
  ident: 2022111617202632500_vbab004-B23
  article-title: Protecting aggregate genomic data
  publication-title: Science
  doi: 10.1126/science.1165490
  contributor:
    fullname: Zerhouni
– volume: 22
  start-page: 79
  year: 1951
  ident: 2022111617202632500_vbab004-B14
  article-title: On information and sufficiency
  publication-title: Ann. Math. Statist
  doi: 10.1214/aoms/1177729694
  contributor:
    fullname: Kullback
– start-page: 398
  year: 2014
  ident: 2022111617202632500_vbab004-B12
  contributor:
    fullname: Hsu
– volume: 34
  start-page: 725
  year: 2010
  ident: 2022111617202632500_vbab004-B21
  article-title: P-value based analysis for shared controls design in genome-wide association studies
  publication-title: Genet. Epidemiol
  doi: 10.1002/gepi.20536
  contributor:
    fullname: Zaykin
– volume: 88
  start-page: 169
  year: 2020
  ident: 2022111617202632500_vbab004-B5
  article-title: The genetics of the mood disorder spectrum: genome-wide association analyses of more than 185,000 cases and 439,000 controls
  publication-title: Biol. Psychiatry
  doi: 10.1016/j.biopsych.2019.10.015
  contributor:
    fullname: Coleman
– volume: 46
  start-page: 102
  year: 2017
  ident: 2022111617202632500_vbab004-B13
  article-title: Why deep learning methods use KL divergence instead of least squares: a possible pedagogical explanation
  publication-title: Math. Struct. Model
  contributor:
    fullname: Kosheleva
– start-page: 1
  year: 2017
  ident: 2022111617202632500_vbab004-B24
  article-title: Dependent differential privacy for correlated data
  contributor:
    fullname: Zhao
– start-page: 308
  year: 2016
  ident: 2022111617202632500_vbab004-B1
  article-title: Deep learning with differential privacy
  publication-title: CCS '16: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security
  doi: 10.1145/2976749.2978318
  contributor:
    fullname: Abadi
– volume: 20
  start-page: 1
  year: 2019
  ident: 2022111617202632500_vbab004-B4
  article-title: OPATs: omnibus p-value association tests
  publication-title: Brief. Bioinform
  doi: 10.1093/bib/bbx068
  contributor:
    fullname: Chen
– volume: 36
  start-page: 1696
  year: 2020
  ident: 2022111617202632500_vbab004-B2
  article-title: Differential privacy under dependent tuples-the case of genomic privacy
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz837
  contributor:
    fullname: Almadhoun
– volume: 16
  start-page: 624
  year: 2009
  ident: 2022111617202632500_vbab004-B19
  article-title: The Shared Health Research Information Network (SHRINE): a prototype federated query tool for clinical data repositories
  publication-title: J. Am. Med. Inform. Assoc
  doi: 10.1197/jamia.M3191
  contributor:
    fullname: Weber
– start-page: 628
  year: 2011
  ident: 2022111617202632500_vbab004-B9
  article-title: Privacy preserving GWAS data sharing
  contributor:
    fullname: Fienberg
– volume: 29
  start-page: 285
  year: 2015
  ident: 2022111617202632500_vbab004-B22
  article-title: Statistical analysis for genome-wide association study
  publication-title: J. Biomed. Res
  doi: 10.7555/JBR.29.20140007
  contributor:
    fullname: Zeng
– start-page: 3876
  volume-title: Theory of Cryptography, TCC 2006, Lecture Notes in Computer Science, vol 3876
  year: 2006
  ident: 2022111617202632500_vbab004-B8
  contributor:
    fullname: Dwork
– volume: 7
  start-page: doi:10.2202/1544-6115.1325
  year: 2008
  ident: 2022111617202632500_vbab004-B15
  article-title: Collapsing SNP genotypes in case-control genome-wide association studies increases the type I error rate and power
  publication-title: Stat. Appl. Genet. Mol. Biol
  doi: 10.2202/1544-6115.1325
  contributor:
    fullname: Matthews
– volume-title: The Design of Experiments
  year: 1935
  ident: 2022111617202632500_vbab004-B10
  contributor:
    fullname: Fisher
SSID ssj0002776143
Score 2.2201872
Snippet Analyses of datasets that contain personal genomic information are very important for revealing associations between diseases and genomes. Genome-wide...
Motivation: Analyses of datasets that contain personal genomic information are very important for revealing associations between diseases and genomes....
SourceID pubmedcentral
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage vbab004
SubjectTerms Original
Title More practical differentially private publication of key statistics in GWAS
URI https://www.ncbi.nlm.nih.gov/pubmed/36700105
https://search.proquest.com/docview/2769997999
https://pubmed.ncbi.nlm.nih.gov/PMC9710635
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8RADA6uIHgR364vKgieuu08nJkeRV0FUQQVvZXpzBRXdttFXcF_b6aP1dWbh54mLSUk5Msk-QJwaClmaAlPwtjGecgF42HGqAsps0LRTEpJ_HDy5Z28eVJn554m57idhama9k026BXDUa8YPFe9leORido-sej2-jTBsIiBMupAB7HhjxT9paqkYWbO2ZSgkUXZoNT2I_rItLfR2QD0B1X-bo78EW36y7DUwMTgpP6dFZhzxSos1IsjP9fg6rp8dUEz4YRy7ZoTdNfh8BMP_M4yFPi-kwvKPEB_DfwAUc3NHAyK4OLx5G4dHvrn96eXYbMWITSIdt5D43GKISbRuWCWM5pojOqKSE8tZgXiGepRmUJfja1VnMbSKCUUdw6zE6HYBswXZeG2ICAI1oQRSW6d4MQSbRKirCYkI1QLIbtw1OoqHdfsF2ldtWZprdW00WoXDlpVpmigvuqgC1dO3lIqBYJQiU8XNmvVTr_l2eP8is4uyBmlTwU8-fXsCdpERYLd2MD2v9_cgUXq-1Oq65RdmH9_nbg96LzZyX6VmO9XZvUFckjU3g
link.rule.ids 230,315,729,782,786,866,887,4029,27933,27934,27935,53802,53804
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwEB1BEYIL-1LWICFxContYDtHVJaiUoQECG5RYruiqE2qQivx94yzFAo3DjnZjqI8j-aNPfMG4FhTjNDCIHR97XfcgLPATRg1LmWaS5oIIYgtTm4-iLsXeXFpZXLOqlqYPGlfJd3TtNc_TbuveW7loK-8Kk_Mu283QnSL6Ci9WZhDe_XpjyD9Lb9Lw9g8YBOJRuYl3SzWY2-cxHaXTrugP7zyd3rkD39ztfzPL12BpZJgOufF8CrMmHQN5ouWk5_r0GpnQ-OUtVE4r2qQgobe633igO12hhO-T_OcrOOgpTu29KhQdXa6qXP9fP6wAU9Xl4-Npls2VHAV8qQPV1mGo4gK4w5nOmA0jJEPSCKsKJnmyISo5XMSrdzXWgbUF0pKLgNjMK7hkm1CLc1Ssw0OQZrHFQ872vCAaBKrkEgdE5IQGnMu6nBS_eNoUOhmRMV9N4sKNKISjTocVRBEuLXtfUWcmmz0HlHBkb4KfOqwVUAyeZfVnbPNPesgpsCaTLCy2dMjiFEun11isvPvlYew0Hxs30a3N3etXVikNsslP5TZg9rHcGT2YfZdjw7yTfkFcMnpcg
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58oHjx_VifFQRPtc2DJD2Kuio-EFT0VtokxZXddnF3Bf-9k7a7unrTQ0-ZlNIvw3yTTL4BODAUM7SIR35owszngnE_ZdT6lBmhaCqlJO5y8sW9vH1Wp2dOJmfU6qss2tdp6yhvd47y1ktZW9nt6GBYJxbc3ZxEGBYxUAZdkwWTMI0-G_JvifpreZ6G-TlnI5lGFqStIjHvwXuauJU6HoZ-ccufJZLfYk5z4R9fuwjzNdH0jiuTJZiw-TLMVK0nP1bg6qZ4s159Rwrtho1S0OHb7Q8ccF3P0OBrV88rMg893nNXkCp1Z6-Ve-dPx_er8Ng8ezi58OvGCr5GvtT3tWM6mugoyQQznNEoQV6giHTiZEYgI6KO1yn09tAYxWkotVJCcWsxvxGKrcFUXuR2AzyCdE9oEWXGCk4MSXRElEkISQlNhJANOBz-57hb6WfE1bk3iytE4hqRBuwPYYhxibtziyS3xaAXUymQxkp8GrBewTJ6l9Ofc00-GyDHABsZOPns8RHEqZTRrnHZ_PPMPZi9O23G15e3V1swR12xS7k3sw1T_beB3YHJnhnsluvyE8_C6_I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=More+practical+differentially+private+publication+of+key+statistics+in+GWAS&rft.jtitle=Bioinformatics+advances&rft.au=Yamamoto%2C+Akito&rft.au=Shibuya%2C+Tetsuo&rft.date=2021&rft.eissn=2635-0041&rft.volume=1&rft.issue=1&rft.spage=vbab004&rft.epage=vbab004&rft_id=info:doi/10.1093%2Fbioadv%2Fvbab004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2635-0041&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2635-0041&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2635-0041&client=summon