"What You Need, Baby, I Got It": Transposable Elements as Suppliers of Cis-Operating Sequences in Drosophila

Transposable elements (TEs) are constitutive components of both eukaryotic and prokaryotic genomes. The role of TEs in the evolution of genes and genomes has been widely assessed over the past years in a variety of model and non-model organisms. is undoubtedly among the most powerful model organisms...

Full description

Saved in:
Bibliographic Details
Published in:Biology (Basel, Switzerland) Vol. 9; no. 2; p. 25
Main Authors: Moschetti, Roberta, Palazzo, Antonio, Lorusso, Patrizio, Viggiano, Luigi, Marsano, René Massimiliano
Format: Journal Article
Language:English
Published: Switzerland MDPI 03-02-2020
MDPI AG
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Transposable elements (TEs) are constitutive components of both eukaryotic and prokaryotic genomes. The role of TEs in the evolution of genes and genomes has been widely assessed over the past years in a variety of model and non-model organisms. is undoubtedly among the most powerful model organisms used for the purpose of studying the role of transposons and their effects on the stability and evolution of genes and genomes. Besides their most intuitive role as insertional mutagens, TEs can modify the transcriptional pattern of host genes by juxtaposing new -regulatory sequences. A key element of TE biology is that they carry transcriptional control elements that fine-tune the transcription of their own genes, but that can also perturb the transcriptional activity of neighboring host genes. From this perspective, the transposition-mediated modulation of gene expression is an important issue for the short-term adaptation of physiological functions to the environmental changes, and for long-term evolutionary changes. Here, we review the current literature concerning the regulatory and structural elements operating in provided by TEs in . Furthermore, we highlight that, besides their influence on both TEs and host genes expression, they can affect the chromatin structure and epigenetic status as well as both the chromosome's structure and stability. It emerges that is a good model organism to study the effect of TE-linked regulatory sequences, and it could help future studies on TE-host interactions in any complex eukaryotic genome.
AbstractList Transposable elements (TEs) are constitutive components of both eukaryotic and prokaryotic genomes. The role of TEs in the evolution of genes and genomes has been widely assessed over the past years in a variety of model and non-model organisms. is undoubtedly among the most powerful model organisms used for the purpose of studying the role of transposons and their effects on the stability and evolution of genes and genomes. Besides their most intuitive role as insertional mutagens, TEs can modify the transcriptional pattern of host genes by juxtaposing new -regulatory sequences. A key element of TE biology is that they carry transcriptional control elements that fine-tune the transcription of their own genes, but that can also perturb the transcriptional activity of neighboring host genes. From this perspective, the transposition-mediated modulation of gene expression is an important issue for the short-term adaptation of physiological functions to the environmental changes, and for long-term evolutionary changes. Here, we review the current literature concerning the regulatory and structural elements operating in provided by TEs in . Furthermore, we highlight that, besides their influence on both TEs and host genes expression, they can affect the chromatin structure and epigenetic status as well as both the chromosome's structure and stability. It emerges that is a good model organism to study the effect of TE-linked regulatory sequences, and it could help future studies on TE-host interactions in any complex eukaryotic genome.
Transposable elements (TEs) are constitutive components of both eukaryotic and prokaryotic genomes. The role of TEs in the evolution of genes and genomes has been widely assessed over the past years in a variety of model and non-model organisms. Drosophila is undoubtedly among the most powerful model organisms used for the purpose of studying the role of transposons and their effects on the stability and evolution of genes and genomes. Besides their most intuitive role as insertional mutagens, TEs can modify the transcriptional pattern of host genes by juxtaposing new cis -regulatory sequences. A key element of TE biology is that they carry transcriptional control elements that fine-tune the transcription of their own genes, but that can also perturb the transcriptional activity of neighboring host genes. From this perspective, the transposition-mediated modulation of gene expression is an important issue for the short-term adaptation of physiological functions to the environmental changes, and for long-term evolutionary changes. Here, we review the current literature concerning the regulatory and structural elements operating in cis provided by TEs in Drosophila . Furthermore, we highlight that, besides their influence on both TEs and host genes expression, they can affect the chromatin structure and epigenetic status as well as both the chromosome’s structure and stability. It emerges that Drosophila is a good model organism to study the effect of TE-linked regulatory sequences, and it could help future studies on TE–host interactions in any complex eukaryotic genome.
Transposable elements (TEs) are constitutive components of both eukaryotic and prokaryotic genomes. The role of TEs in the evolution of genes and genomes has been widely assessed over the past years in a variety of model and non-model organisms. Drosophila is undoubtedly among the most powerful model organisms used for the purpose of studying the role of transposons and their effects on the stability and evolution of genes and genomes. Besides their most intuitive role as insertional mutagens, TEs can modify the transcriptional pattern of host genes by juxtaposing new cis-regulatory sequences. A key element of TE biology is that they carry transcriptional control elements that fine-tune the transcription of their own genes, but that can also perturb the transcriptional activity of neighboring host genes. From this perspective, the transposition-mediated modulation of gene expression is an important issue for the short-term adaptation of physiological functions to the environmental changes, and for long-term evolutionary changes. Here, we review the current literature concerning the regulatory and structural elements operating in cis provided by TEs in Drosophila. Furthermore, we highlight that, besides their influence on both TEs and host genes expression, they can affect the chromatin structure and epigenetic status as well as both the chromosome’s structure and stability. It emerges that Drosophila is a good model organism to study the effect of TE-linked regulatory sequences, and it could help future studies on TE–host interactions in any complex eukaryotic genome.
Transposable elements (TEs) are constitutive components of both eukaryotic and prokaryotic genomes. The role of TEs in the evolution of genes and genomes has been widely assessed over the past years in a variety of model and non-model organisms. Drosophila is undoubtedly among the most powerful model organisms used for the purpose of studying the role of transposons and their effects on the stability and evolution of genes and genomes. Besides their most intuitive role as insertional mutagens, TEs can modify the transcriptional pattern of host genes by juxtaposing new cis-regulatory sequences. A key element of TE biology is that they carry transcriptional control elements that fine-tune the transcription of their own genes, but that can also perturb the transcriptional activity of neighboring host genes. From this perspective, the transposition-mediated modulation of gene expression is an important issue for the short-term adaptation of physiological functions to the environmental changes, and for long-term evolutionary changes. Here, we review the current literature concerning the regulatory and structural elements operating in cis provided by TEs in Drosophila. Furthermore, we highlight that, besides their influence on both TEs and host genes expression, they can affect the chromatin structure and epigenetic status as well as both the chromosome's structure and stability. It emerges that Drosophila is a good model organism to study the effect of TE-linked regulatory sequences, and it could help future studies on TE−host interactions in any complex eukaryotic genome.
Author Palazzo, Antonio
Moschetti, Roberta
Viggiano, Luigi
Lorusso, Patrizio
Marsano, René Massimiliano
AuthorAffiliation 2 Laboratory of Translational Nanotechnology, “Istituto Tumori Giovanni Paolo II” I.R.C.C.S, Viale Orazio Flacco 65, 70125 Bari, Italy; a.palazzo@oncologico.bari.it
1 Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; roberta.moschetti@uniba.it (R.M.); lorusso.patrizio@libero.it (P.L.); luigi.viggiano@uniba.it (L.V.)
AuthorAffiliation_xml – name: 2 Laboratory of Translational Nanotechnology, “Istituto Tumori Giovanni Paolo II” I.R.C.C.S, Viale Orazio Flacco 65, 70125 Bari, Italy; a.palazzo@oncologico.bari.it
– name: 1 Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; roberta.moschetti@uniba.it (R.M.); lorusso.patrizio@libero.it (P.L.); luigi.viggiano@uniba.it (L.V.)
Author_xml – sequence: 1
  givenname: Roberta
  surname: Moschetti
  fullname: Moschetti, Roberta
  organization: Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro". Via Orabona 4, 70125 Bari, Italy
– sequence: 2
  givenname: Antonio
  surname: Palazzo
  fullname: Palazzo, Antonio
  organization: Laboratory of Translational Nanotechnology, "Istituto Tumori Giovanni Paolo II" I.R.C.C.S. Viale Orazio Flacco 65, 70125 Bari, Italy
– sequence: 3
  givenname: Patrizio
  surname: Lorusso
  fullname: Lorusso, Patrizio
  organization: Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro". Via Orabona 4, 70125 Bari, Italy
– sequence: 4
  givenname: Luigi
  surname: Viggiano
  fullname: Viggiano, Luigi
  organization: Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro". Via Orabona 4, 70125 Bari, Italy
– sequence: 5
  givenname: René Massimiliano
  surname: Marsano
  fullname: Marsano, René Massimiliano
  organization: Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro". Via Orabona 4, 70125 Bari, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32028630$$D View this record in MEDLINE/PubMed
BookMark eNpVkU1P3DAQhq0KVChw7bGyOBNwPIkd91Cp3fKxEoIDoKony44nu0beOLWzlfbfN2VbxM5lRvPxjGbeD2Svjz0S8rFk5wCKXVgfQ1xsFOOM8fodOeRMqkJKkHtv4gNykvMzm0wyLkC8JwfAGW8EsEMSTn8szUh_xjW9Q3Rn9JuxmzM6p9dxpPPx9DN9TKbPQ8zGBqSXAVfYj5maTB_WwxA8pkxjR2c-F_cDJjP6fkEf8Nca-xYz9T39nmKOw9IHc0z2OxMynvzzR-Tp6vJxdlPc3l_PZ19vi7aqxVjwSjoLqoFKIViQDceyxpJ3zrbGdqpWoqlqA7xpWoC2UtDY0jnLUXVMOgVHZL7lumie9ZD8yqSNjsbrl0RMC23S6NuAuuYMRO3AOiYrdJ0yTrhSolXWVlJWE-vLljWs7QpdO12fTNiB7lZ6v9SL-FvLUjSlYBPgfAtopz_khN3rbMn0Xxn1rozTwKe3G1_b_4sGfwBVtZvq
CitedBy_id crossref_primary_10_3390_ijms221910887
crossref_primary_10_3390_ijms22168465
crossref_primary_10_3390_genes12060918
crossref_primary_10_3390_genes14040794
crossref_primary_10_3390_cells11030583
crossref_primary_10_1080_07388551_2021_1888067
crossref_primary_10_3390_biom13071027
crossref_primary_10_1111_jeb_13762
crossref_primary_10_3390_cells10112809
crossref_primary_10_3390_ijms22042212
crossref_primary_10_3390_cells10051125
crossref_primary_10_3390_life13122272
crossref_primary_10_1134_S0026893324010096
crossref_primary_10_3390_ijms24076332
crossref_primary_10_1016_j_biosystems_2022_104669
crossref_primary_10_3390_genes13122374
crossref_primary_10_1093_nar_gkac1195
crossref_primary_10_3390_ijms222111387
crossref_primary_10_3390_ijms24043170
crossref_primary_10_1038_s42003_023_05234_x
crossref_primary_10_3390_cells11050761
crossref_primary_10_3390_genes13020305
crossref_primary_10_3390_ijms23168947
crossref_primary_10_3389_fevo_2022_836066
crossref_primary_10_3389_fgene_2022_793734
crossref_primary_10_3390_biology12081127
crossref_primary_10_1186_s13059_021_02471_3
crossref_primary_10_3390_ijms22020602
crossref_primary_10_1038_s41598_021_95843_5
crossref_primary_10_3389_fgene_2023_1290146
crossref_primary_10_3390_biom11121857
crossref_primary_10_3390_genes12121997
Cites_doi 10.1101/SQB.1978.042.01.097
10.1016/0092-8674(93)90078-5
10.1016/0092-8674(86)90480-0
10.1186/gb-2002-3-12-research0085
10.1126/science.287.5461.2185
10.1002/j.1460-2075.1991.tb07962.x
10.1016/j.gene.2005.06.005
10.1101/gr.185579.114
10.1186/s13100-019-0155-6
10.1126/science.6289436
10.1093/emboj/16.7.1732
10.1016/j.gene.2012.04.031
10.1073/pnas.0609601104
10.1186/s13100-017-0090-3
10.1371/journal.pbio.0060251
10.1016/j.gene.2009.08.012
10.1126/science.6289435
10.1073/pnas.0303793101
10.1128/MCB.22.6.1767-1777.2002
10.1101/537357
10.1016/j.tig.2019.06.002
10.1016/j.jprot.2014.03.016
10.1534/genetics.106.067108
10.1073/pnas.1207036109
10.1073/pnas.0503424102
10.1073/pnas.36.6.344
10.1093/genetics/153.2.787
10.1101/636076
10.1093/molbev/msl192
10.1038/284604a0
10.1534/g3.113.006791
10.1016/0092-8674(86)90265-5
10.1074/jbc.273.4.2473
10.1016/S0378-1119(98)00048-1
10.1186/1759-8753-5-21
10.4161/fly.22353
10.1073/pnas.76.8.4011
10.1073/pnas.1313677110
10.1016/0092-8674(84)90422-7
10.1126/science.1231965
10.1111/mec.12711
10.1007/BF01439581
10.1093/nar/17.11.4025
10.1038/284601a0
10.7554/eLife.28297
10.1093/gbe/evx122
10.1093/molbev/msi063
10.1534/genetics.115.177196
10.1242/jeb.204.11.1869
10.1371/journal.pgen.1006249
10.1186/gb-2002-3-12-research0084
10.1101/gad.2.11.1414
10.1016/0092-8674(82)90463-9
10.1016/j.gene.2006.12.028
10.1007/s00438-010-0529-4
10.1038/85871
10.1016/j.cell.2015.03.026
10.1007/s00438-003-0947-7
10.1073/pnas.89.16.7591
10.1590/1678-4685-gmb-2017-0068
10.1673/031.013.11101
10.1038/nature06341
10.1093/oxfordjournals.molbev.a026038
10.1101/gr.139618.112
10.1038/nature10531
10.1371/journal.pone.0156014
10.1080/19336934.2016.1165372
10.1101/gad.281503
10.1016/0092-8674(79)90168-5
10.1016/0092-8674(82)90462-7
10.1038/nature24282
10.1016/0092-8674(88)90550-8
10.1002/dvg.1020100309
10.1093/nar/gkl997
10.1038/nrg751
10.1017/S0016672300032833
10.1242/dev.121.11.3573
10.1038/nature19093
10.1038/s41598-018-30491-w
10.1073/pnas.1015926107
10.1016/0092-8674(79)90169-7
10.1093/molbev/msh180
10.1101/gr.071886.107
10.1016/S0960-9822(02)01181-8
10.1016/0020-1790(88)90087-X
10.1534/genetics.115.183392
10.1371/journal.pone.0079385
10.1186/gb-2007-8-s1-s2
10.1093/gbe/evs038
10.1534/genetics.106.066597
10.1007/BF00272664
10.7717/peerj.226
10.1101/gad.327312.119
10.1038/459927a
10.1016/0092-8674(94)90439-1
10.1371/journal.pgen.1004560
10.1126/science.1074170
10.1126/science.161.3841.529
10.1126/science.1239552
10.1159/000167823
10.1186/s13100-019-0157-4
10.1261/rna.682507
10.1002/embj.201386940
10.1101/838045
10.1093/nar/gky1003
10.1093/nar/gkz813
10.1016/j.cell.2007.01.043
10.1007/BF01443441
10.1371/journal.pgen.1008028
10.1093/genetics/154.3.1255
10.1371/journal.pgen.1005902
ContentType Journal Article
Copyright 2020 by the authors. 2020
Copyright_xml – notice: 2020 by the authors. 2020
DBID NPM
AAYXX
CITATION
5PM
DOA
DOI 10.3390/biology9020025
DatabaseName PubMed
CrossRef
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle PubMed
CrossRef
DatabaseTitleList PubMed

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2079-7737
ExternalDocumentID oai_doaj_org_article_520365d3bd074edf9ad6d17eb9bb4774
10_3390_biology9020025
32028630
Genre Journal Article
Review
GroupedDBID 2XV
53G
5VS
8FE
8FH
AADQD
AAFWJ
AAHBH
ADBBV
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
EBD
GROUPED_DOAJ
HCIFZ
HYE
IAO
ITC
KQ8
LK8
M48
M7P
MODMG
M~E
NPM
OK1
PGMZT
PIMPY
PROAC
RIG
RPM
AAYXX
CITATION
5PM
AFPKN
ID FETCH-LOGICAL-c456t-247db398349e3b3782e15e12fdbcabf9596845a3288c33c4938b1ddb2e9f07d93
IEDL.DBID RPM
ISSN 2079-7737
IngestDate Tue Oct 22 15:04:18 EDT 2024
Tue Sep 17 21:04:03 EDT 2024
Fri Nov 22 03:40:46 EST 2024
Sat Nov 02 12:24:55 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords cis-regulatory elements
enhancer
genome evolution
promoter
transposable elements
Drosophila melanogaster
insulator
heterochromatin
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c456t-247db398349e3b3782e15e12fdbcabf9596845a3288c33c4938b1ddb2e9f07d93
Notes These authors contributed equally to this work.
ORCID 0000-0001-8450-1010
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7168160/
PMID 32028630
ParticipantIDs doaj_primary_oai_doaj_org_article_520365d3bd074edf9ad6d17eb9bb4774
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7168160
crossref_primary_10_3390_biology9020025
pubmed_primary_32028630
PublicationCentury 2000
PublicationDate 20200203
PublicationDateYYYYMMDD 2020-02-03
PublicationDate_xml – month: 2
  year: 2020
  text: 20200203
  day: 3
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Biology (Basel, Switzerland)
PublicationTitleAlternate Biology (Basel)
PublicationYear 2020
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Zanni (ref_30) 2013; 110
ref_93
Brennecke (ref_107) 2007; 128
Abad (ref_47) 2004; 21
Ilyin (ref_24) 1978; 42
Taubert (ref_63) 1995; 103
Potter (ref_18) 1979; 17
ref_99
ref_96
Gilbert (ref_14) 2007; 35
Schilbach (ref_80) 2017; 551
Perrat (ref_109) 2013; 340
Arkhipova (ref_6) 1986; 44
Pritham (ref_38) 2007; 104
Lerman (ref_54) 2005; 22
Laski (ref_97) 1986; 44
Rubin (ref_26) 1982; 218
Russo (ref_83) 2016; 202
Batut (ref_64) 2013; 23
Zatsepina (ref_53) 2001; 204
Kimbrell (ref_55) 1989; 10
Hoskins (ref_12) 2015; 25
Gruber (ref_57) 2007; 175
Chung (ref_42) 2007; 175
Dorer (ref_100) 1994; 77
Ding (ref_65) 2016; 536
ref_72
Ray (ref_40) 2007; 24
Baillie (ref_111) 2011; 479
Britten (ref_4) 1968; 161
Holdridge (ref_89) 1991; 11
Palazzo (ref_98) 2014; 5
Minervini (ref_50) 2007; 393
Gagnier (ref_37) 2019; 10
Horvath (ref_85) 2019; 47
Margis (ref_78) 2009; 448
Bargues (ref_35) 2017; 8
Cosby (ref_5) 2019; 33
Delrow (ref_75) 2001; 27
Celniker (ref_15) 2009; 459
Sneddon (ref_88) 1989; 17
Hales (ref_9) 2015; 201
Kimbrell (ref_56) 1988; 18
Seetharam (ref_33) 2013; 1
Frydrychova (ref_105) 2008; 122
Sentmanat (ref_77) 2012; 109
Li (ref_92) 2012; 502
Kaminker (ref_28) 2002; 3
Caggese (ref_49) 1994; 94
Agapite (ref_16) 2020; 48
Clemmons (ref_44) 2013; 3
McClintock (ref_1) 1950; 36
Tanda (ref_67) 1991; 10
Treiber (ref_110) 2017; 6
Ellison (ref_71) 2013; 342
Strobel (ref_19) 1979; 17
Conte (ref_48) 2002; 22
Zhang (ref_45) 2014; 33
Nabirochkin (ref_69) 1998; 273
Pavlopoulos (ref_27) 2007; 8
Marsano (ref_76) 2005; 357
ref_59
Sorek (ref_95) 2007; 13
Schlenke (ref_43) 2004; 101
Spradling (ref_25) 1982; 218
ref_66
Ray (ref_39) 2008; 18
Adams (ref_10) 2000; 287
Tartof (ref_101) 1984; 37
Desset (ref_31) 1999; 16
Rasmuson (ref_23) 1980; 177
Upton (ref_112) 2015; 161
Signor (ref_13) 2013; 7
ref_115
Maside (ref_79) 2002; 12
Wu (ref_113) 1988; 54
Doolittle (ref_3) 1980; 284
Pagan (ref_41) 2012; 4
ref_34
Guio (ref_74) 2018; 8
ref_32
Ding (ref_52) 1994; 64
Greil (ref_103) 2003; 17
Scott (ref_90) 1999; 153
Guio (ref_73) 2014; 23
Palazzo (ref_81) 2017; 9
Harrington (ref_84) 2016; 10
Bingham (ref_22) 1982; 29
Marsano (ref_29) 2004; 270
Cai (ref_62) 1997; 16
Luan (ref_7) 1993; 72
(ref_8) 2002; 3
Roseman (ref_61) 1995; 121
Orgel (ref_2) 1980; 284
Loreto (ref_36) 2018; 41
ref_106
ref_108
Hoskins (ref_11) 2002; 3
Palazzo (ref_82) 2019; 10
Wilson (ref_51) 1998; 209
Mamillapalli (ref_70) 2013; 13
Daborn (ref_91) 2002; 297
Thurmond (ref_17) 2018; 47
Long (ref_58) 2000; 154
Engels (ref_20) 1979; 76
George (ref_46) 2010; 107
Yasuhara (ref_87) 2005; 102
Cherkasova (ref_68) 1990; 26
Minervini (ref_94) 2010; 283
Marsano (ref_86) 2019; 35
Ryu (ref_102) 2014; 102
Rubin (ref_21) 1982; 29
Steinemann (ref_104) 1992; 89
Caggese (ref_114) 1995; 96
Spana (ref_60) 1988; 2
References_xml – volume: 42
  start-page: 959
  year: 1978
  ident: ref_24
  article-title: Studies on the DNA fragments of mammals and Drosophila containing structural genes and adjacent sequences
  publication-title: Cold Spring Harb. Symp. Quant. Biol.
  doi: 10.1101/SQB.1978.042.01.097
  contributor:
    fullname: Ilyin
– volume: 72
  start-page: 595
  year: 1993
  ident: ref_7
  article-title: Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: A mechanism for non-LTR retrotransposition
  publication-title: Cell
  doi: 10.1016/0092-8674(93)90078-5
  contributor:
    fullname: Luan
– volume: 44
  start-page: 7
  year: 1986
  ident: ref_97
  article-title: Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing
  publication-title: Cell
  doi: 10.1016/0092-8674(86)90480-0
  contributor:
    fullname: Laski
– volume: 3
  start-page: RESEARCH0085
  year: 2002
  ident: ref_11
  article-title: Heterochromatic sequences in a Drosophila whole-genome shotgun assembly
  publication-title: Genome. Biol.
  doi: 10.1186/gb-2002-3-12-research0085
  contributor:
    fullname: Hoskins
– volume: 26
  start-page: 1893
  year: 1990
  ident: ref_68
  article-title: The leader region of the Drosophila transposon MDG1 contains transcription termination sites
  publication-title: Genetika
  contributor:
    fullname: Cherkasova
– volume: 287
  start-page: 2185
  year: 2000
  ident: ref_10
  article-title: The genome sequence of Drosophila melanogaster
  publication-title: Science
  doi: 10.1126/science.287.5461.2185
  contributor:
    fullname: Adams
– volume: 10
  start-page: 407
  year: 1991
  ident: ref_67
  article-title: Retrotransposon-induced overexpression of a homeobox gene causes defects in eye morphogenesis in Drosophila
  publication-title: EMBO J.
  doi: 10.1002/j.1460-2075.1991.tb07962.x
  contributor:
    fullname: Tanda
– volume: 357
  start-page: 122
  year: 2005
  ident: ref_76
  article-title: Evidence for a functional interaction between the Bari1 transposable element and the cytochrome P450 cyp12a4 gene in Drosophila melanogaster
  publication-title: Gene
  doi: 10.1016/j.gene.2005.06.005
  contributor:
    fullname: Marsano
– volume: 25
  start-page: 455
  year: 2015
  ident: ref_12
  article-title: The Release 6 reference sequence of the Drosophila melanogaster genome
  publication-title: Genome Res.
  doi: 10.1101/gr.185579.114
  contributor:
    fullname: Hoskins
– volume: 10
  start-page: 13
  year: 2019
  ident: ref_82
  article-title: Transcriptionally promiscuous “blurry” promoters in Tc1/mariner transposons allow transcription in distantly related genomes
  publication-title: Mob. DNA
  doi: 10.1186/s13100-019-0155-6
  contributor:
    fullname: Palazzo
– volume: 218
  start-page: 348
  year: 1982
  ident: ref_26
  article-title: Genetic transformation of Drosophila with transposable element vectors
  publication-title: Science
  doi: 10.1126/science.6289436
  contributor:
    fullname: Rubin
– volume: 16
  start-page: 1732
  year: 1997
  ident: ref_62
  article-title: The gypsy insulator can function as a promoter-specific silencer in the Drosophila embryo
  publication-title: EMBO J.
  doi: 10.1093/emboj/16.7.1732
  contributor:
    fullname: Cai
– volume: 502
  start-page: 1
  year: 2012
  ident: ref_92
  article-title: Accord insertion in the 5’ flanking region of CYP6G1 confers nicotine resistance in Drosophila melanogaster
  publication-title: Gene
  doi: 10.1016/j.gene.2012.04.031
  contributor:
    fullname: Li
– volume: 104
  start-page: 1895
  year: 2007
  ident: ref_38
  article-title: Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0609601104
  contributor:
    fullname: Pritham
– volume: 8
  start-page: 7
  year: 2017
  ident: ref_35
  article-title: Evolutionary history of LTR-retrotransposons among 20 Drosophila species
  publication-title: Mob. DNA
  doi: 10.1186/s13100-017-0090-3
  contributor:
    fullname: Bargues
– ident: ref_59
  doi: 10.1371/journal.pbio.0060251
– volume: 448
  start-page: 57
  year: 2009
  ident: ref_78
  article-title: The hobo transposon and hobo-related elements are expressed as developmental genes in Drosophila
  publication-title: Gene
  doi: 10.1016/j.gene.2009.08.012
  contributor:
    fullname: Margis
– volume: 218
  start-page: 341
  year: 1982
  ident: ref_25
  article-title: Transposition of cloned P elements into Drosophila germ line chromosomes
  publication-title: Science
  doi: 10.1126/science.6289435
  contributor:
    fullname: Spradling
– volume: 101
  start-page: 1626
  year: 2004
  ident: ref_43
  article-title: Strong selective sweep associated with a transposon insertion in Drosophila simulans
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0303793101
  contributor:
    fullname: Schlenke
– volume: 22
  start-page: 1767
  year: 2002
  ident: ref_48
  article-title: Coupling of enhancer and insulator properties identified in two retrotransposons modulates their mutagenic impact on nearby genes
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.22.6.1767-1777.2002
  contributor:
    fullname: Conte
– ident: ref_106
  doi: 10.1101/537357
– volume: 35
  start-page: 615
  year: 2019
  ident: ref_86
  article-title: A New Portrait of Constitutive Heterochromatin: Lessons from Drosophila melanogaster
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2019.06.002
  contributor:
    fullname: Marsano
– volume: 102
  start-page: 137
  year: 2014
  ident: ref_102
  article-title: Analysis of the heterochromatin protein 1 (HP1) interactome in Drosophila
  publication-title: J. Proteom.
  doi: 10.1016/j.jprot.2014.03.016
  contributor:
    fullname: Ryu
– volume: 103
  start-page: 669
  year: 1995
  ident: ref_63
  article-title: Mesoderm-specific B104 expression in the Drosophila embryo is mediated by internal cis-acting elements of the transposon
  publication-title: Chromosoma
  contributor:
    fullname: Taubert
– volume: 11
  start-page: 1894
  year: 1991
  ident: ref_89
  article-title: Repression of hsp70 heat shock gene transcription by the suppressor of hairy-wing protein of Drosophila melanogaster
  publication-title: Mol Cell Biol.
  contributor:
    fullname: Holdridge
– volume: 175
  start-page: 1987
  year: 2007
  ident: ref_57
  article-title: How repeatable are associations between polymorphisms in achaete-scute and bristle number variation in Drosophila?
  publication-title: Genetics
  doi: 10.1534/genetics.106.067108
  contributor:
    fullname: Gruber
– volume: 109
  start-page: 14104
  year: 2012
  ident: ref_77
  article-title: Ectopic assembly of heterochromatin in Drosophila melanogaster triggered by transposable elements
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1207036109
  contributor:
    fullname: Sentmanat
– volume: 102
  start-page: 10958
  year: 2005
  ident: ref_87
  article-title: Evolution of heterochromatic genes of Drosophila
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0503424102
  contributor:
    fullname: Yasuhara
– volume: 36
  start-page: 344
  year: 1950
  ident: ref_1
  article-title: The origin and behavior of mutable loci in maize
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.36.6.344
  contributor:
    fullname: McClintock
– volume: 153
  start-page: 787
  year: 1999
  ident: ref_90
  article-title: Enhancer blocking by the Drosophila gypsy insulator depends upon insulator anatomy and enhancer strength
  publication-title: Genetics
  doi: 10.1093/genetics/153.2.787
  contributor:
    fullname: Scott
– ident: ref_115
  doi: 10.1101/636076
– volume: 24
  start-page: 632
  year: 2007
  ident: ref_40
  article-title: Bats with hATs: Evidence for recent DNA transposon activity in genus Myotis
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msl192
  contributor:
    fullname: Ray
– volume: 284
  start-page: 604
  year: 1980
  ident: ref_2
  article-title: Selfish DNA: The ultimate parasite
  publication-title: Nature
  doi: 10.1038/284604a0
  contributor:
    fullname: Orgel
– volume: 3
  start-page: 1531
  year: 2013
  ident: ref_44
  article-title: Combinatorial effects of transposable elements on gene expression and phenotypic robustness in Drosophila melanogaster development
  publication-title: G3 Genes Genomes Genet.
  doi: 10.1534/g3.113.006791
  contributor:
    fullname: Clemmons
– volume: 44
  start-page: 555
  year: 1986
  ident: ref_6
  article-title: The steps of reverse transcription of Drosophila mobile dispersed genetic elements and U3-R-U5 structure of their LTRs
  publication-title: Cell
  doi: 10.1016/0092-8674(86)90265-5
  contributor:
    fullname: Arkhipova
– volume: 273
  start-page: 2473
  year: 1998
  ident: ref_69
  article-title: A nuclear matrix/scaffold attachment region co-localizes with the gypsy retrotransposon insulator sequence
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.273.4.2473
  contributor:
    fullname: Nabirochkin
– volume: 209
  start-page: 239
  year: 1998
  ident: ref_51
  article-title: An enhancer region within the copia untranslated leader contains binding sites for Drosophila regulatory proteins
  publication-title: Gene
  doi: 10.1016/S0378-1119(98)00048-1
  contributor:
    fullname: Wilson
– volume: 5
  start-page: 21
  year: 2014
  ident: ref_98
  article-title: The Drosophila mojavensis Bari3 transposon: Distribution and functional characterization
  publication-title: Mob. DNA
  doi: 10.1186/1759-8753-5-21
  contributor:
    fullname: Palazzo
– volume: 7
  start-page: 47
  year: 2013
  ident: ref_13
  article-title: Genomic resources for multiple species in the Drosophila ananassae species group
  publication-title: Fly
  doi: 10.4161/fly.22353
  contributor:
    fullname: Signor
– volume: 76
  start-page: 4011
  year: 1979
  ident: ref_20
  article-title: Extrachromosomal control of mutability in Drosophila melanogaster
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.76.8.4011
  contributor:
    fullname: Engels
– volume: 110
  start-page: 19842
  year: 2013
  ident: ref_30
  article-title: Distribution, evolution, and diversity of retrotransposons at the flamenco locus reflect the regulatory properties of piRNA clusters
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1313677110
  contributor:
    fullname: Zanni
– volume: 37
  start-page: 869
  year: 1984
  ident: ref_101
  article-title: A structural basis for variegating position effects
  publication-title: Cell
  doi: 10.1016/0092-8674(84)90422-7
  contributor:
    fullname: Tartof
– volume: 340
  start-page: 91
  year: 2013
  ident: ref_109
  article-title: Transposition-driven genomic heterogeneity in the Drosophila brain
  publication-title: Science
  doi: 10.1126/science.1231965
  contributor:
    fullname: Perrat
– volume: 23
  start-page: 2020
  year: 2014
  ident: ref_73
  article-title: The transposable element Bari-Jheh mediates oxidative stress response in Drosophila
  publication-title: Mol Ecol.
  doi: 10.1111/mec.12711
  contributor:
    fullname: Guio
– volume: 96
  start-page: 269
  year: 1995
  ident: ref_114
  article-title: The distribution of the transposable element Bari-1 in the Drosophila melanogaster and Drosophila simulans genomes
  publication-title: Genetica
  doi: 10.1007/BF01439581
  contributor:
    fullname: Caggese
– volume: 17
  start-page: 4025
  year: 1989
  ident: ref_88
  article-title: The transcriptional control regions of the copia retrotransposon
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/17.11.4025
  contributor:
    fullname: Sneddon
– volume: 284
  start-page: 601
  year: 1980
  ident: ref_3
  article-title: Selfish genes, the phenotype paradigm and genome evolution
  publication-title: Nature
  doi: 10.1038/284601a0
  contributor:
    fullname: Doolittle
– volume: 6
  start-page: e28297
  year: 2017
  ident: ref_110
  article-title: Resolving the prevalence of somatic transposition in Drosophila
  publication-title: Elife
  doi: 10.7554/eLife.28297
  contributor:
    fullname: Treiber
– volume: 9
  start-page: 1637
  year: 2017
  ident: ref_81
  article-title: Does the Promoter Constitute a Barrier in the Horizontal Transposon Transfer Process? Insight from Bari Transposons
  publication-title: Genome Biol. Evol.
  doi: 10.1093/gbe/evx122
  contributor:
    fullname: Palazzo
– volume: 22
  start-page: 776
  year: 2005
  ident: ref_54
  article-title: Naturally occurring transposable elements disrupt hsp70 promoter function in Drosophila melanogaster
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msi063
  contributor:
    fullname: Lerman
– volume: 202
  start-page: 107
  year: 2016
  ident: ref_83
  article-title: Antisense Transcription of Retrotransposons in Drosophila: An Origin of Endogenous Small Interfering RNA Precursors
  publication-title: Genetics
  doi: 10.1534/genetics.115.177196
  contributor:
    fullname: Russo
– volume: 204
  start-page: 1869
  year: 2001
  ident: ref_53
  article-title: A Drosophila Melanogaster Strain From Sub-Equatorial Africa Has Exceptional Thermotolerance But Decreased Hsp70 Expression
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.204.11.1869
  contributor:
    fullname: Zatsepina
– ident: ref_66
  doi: 10.1371/journal.pgen.1006249
– volume: 3
  start-page: RESEARCH0084
  year: 2002
  ident: ref_28
  article-title: The transposable elements of the Drosophila melanogaster euchromatin: A genomics perspective
  publication-title: Genome Biol.
  doi: 10.1186/gb-2002-3-12-research0084
  contributor:
    fullname: Kaminker
– volume: 2
  start-page: 1414
  year: 1988
  ident: ref_60
  article-title: The Drosophila melanogaster suppressor of Hairy-wing protein binds to specific sequences of the gypsy retrotransposon
  publication-title: Genes. Dev.
  doi: 10.1101/gad.2.11.1414
  contributor:
    fullname: Spana
– volume: 29
  start-page: 995
  year: 1982
  ident: ref_22
  article-title: The molecular basis of P-M hybrid dysgenesis: The role of the P element, a P-strain-specific transposon family
  publication-title: Cell
  doi: 10.1016/0092-8674(82)90463-9
  contributor:
    fullname: Bingham
– volume: 393
  start-page: 1
  year: 2007
  ident: ref_50
  article-title: Heterochromatin protein 1 interacts with 5’UTR of transposable element ZAM in a sequence-specific fashion
  publication-title: Gene
  doi: 10.1016/j.gene.2006.12.028
  contributor:
    fullname: Minervini
– volume: 283
  start-page: 503
  year: 2010
  ident: ref_94
  article-title: Evidences for insulator activity of the 5’UTR of the Drosophila melanogaster LTR-retrotransposon ZAM
  publication-title: Mol. Genet. Genom.
  doi: 10.1007/s00438-010-0529-4
  contributor:
    fullname: Minervini
– volume: 27
  start-page: 304
  year: 2001
  ident: ref_75
  article-title: Chromatin profiling using targeted DNA adenine methyltransferase
  publication-title: Nat. Genet.
  doi: 10.1038/85871
  contributor:
    fullname: Delrow
– volume: 161
  start-page: 228
  year: 2015
  ident: ref_112
  article-title: Ubiquitous L1 mosaicism in hippocampal neurons
  publication-title: Cell
  doi: 10.1016/j.cell.2015.03.026
  contributor:
    fullname: Upton
– volume: 270
  start-page: 477
  year: 2004
  ident: ref_29
  article-title: MAX, a novel retrotransposon of the BEL-Pao family, is nested within the Bari1 cluster at the heterochromatic h39 region of chromosome 2 in Drosophila melanogaster
  publication-title: Mol. Genet. Genomics
  doi: 10.1007/s00438-003-0947-7
  contributor:
    fullname: Marsano
– volume: 89
  start-page: 7591
  year: 1992
  ident: ref_104
  article-title: Degenerating Y chromosome of Drosophila miranda: A trap for retrotransposons
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.89.16.7591
  contributor:
    fullname: Steinemann
– volume: 41
  start-page: 198
  year: 2018
  ident: ref_36
  article-title: Drosophila relics hobo and hobo-MITEs transposons as raw material for new regulatory networks
  publication-title: Genet Mol. Biol.
  doi: 10.1590/1678-4685-gmb-2017-0068
  contributor:
    fullname: Loreto
– volume: 13
  start-page: 111
  year: 2013
  ident: ref_70
  article-title: Transposable element ‘roo’ attaches to nuclear matrix of the Drosophila melanogaster
  publication-title: J. Insect. Sci.
  doi: 10.1673/031.013.11101
  contributor:
    fullname: Mamillapalli
– ident: ref_32
  doi: 10.1038/nature06341
– volume: 16
  start-page: 54
  year: 1999
  ident: ref_31
  article-title: Mobilization of two retroelements, ZAM and Idefix, in a novel unstable line of Drosophila melanogaster
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/oxfordjournals.molbev.a026038
  contributor:
    fullname: Desset
– volume: 23
  start-page: 169
  year: 2013
  ident: ref_64
  article-title: High-fidelity promoter profiling reveals widespread alternative promoter usage and transposon-driven developmental gene expression
  publication-title: Genome Res.
  doi: 10.1101/gr.139618.112
  contributor:
    fullname: Batut
– volume: 479
  start-page: 534
  year: 2011
  ident: ref_111
  article-title: Somatic retrotransposition alters the genetic landscape of the human brain
  publication-title: Nature
  doi: 10.1038/nature10531
  contributor:
    fullname: Baillie
– ident: ref_34
  doi: 10.1371/journal.pone.0156014
– volume: 10
  start-page: 1
  year: 2016
  ident: ref_84
  article-title: Bioinformatic analyses of sense and antisense expression from terminal inverted repeat transposons in Drosophila somatic cells
  publication-title: Fly
  doi: 10.1080/19336934.2016.1165372
  contributor:
    fullname: Harrington
– volume: 17
  start-page: 2825
  year: 2003
  ident: ref_103
  article-title: Distinct HP1 and Su(var)3-9 complexes bind to sets of developmentally coexpressed genes depending on chromosomal location
  publication-title: Genes Dev.
  doi: 10.1101/gad.281503
  contributor:
    fullname: Greil
– volume: 17
  start-page: 415
  year: 1979
  ident: ref_18
  article-title: Transposition of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila
  publication-title: Cell
  doi: 10.1016/0092-8674(79)90168-5
  contributor:
    fullname: Potter
– volume: 29
  start-page: 987
  year: 1982
  ident: ref_21
  article-title: The molecular basis of P-M hybrid dysgenesis: The nature of induced mutations
  publication-title: Cell
  doi: 10.1016/0092-8674(82)90462-7
  contributor:
    fullname: Rubin
– volume: 551
  start-page: 204
  year: 2017
  ident: ref_80
  article-title: Structures of transcription pre-initiation complex with TFIIH and Mediator
  publication-title: Nature
  doi: 10.1038/nature24282
  contributor:
    fullname: Schilbach
– volume: 54
  start-page: 179
  year: 1988
  ident: ref_113
  article-title: Association between a satellite DNA sequence and the Responder of Segregation Distorter in D. melanogaster
  publication-title: Cell
  doi: 10.1016/0092-8674(88)90550-8
  contributor:
    fullname: Wu
– volume: 10
  start-page: 198
  year: 1989
  ident: ref_55
  article-title: Regulation of larval cuticle protein gene expression in Drosophila melanogaster
  publication-title: Dev. Genet.
  doi: 10.1002/dvg.1020100309
  contributor:
    fullname: Kimbrell
– volume: 35
  start-page: D480
  year: 2007
  ident: ref_14
  article-title: DroSpeGe: Rapid access database for new Drosophila species genomes
  publication-title: Nucleic Acids. Res.
  doi: 10.1093/nar/gkl997
  contributor:
    fullname: Gilbert
– volume: 3
  start-page: 176
  year: 2002
  ident: ref_8
  article-title: The art and design of genetic screens: Drosophila melanogaster
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg751
– volume: 64
  start-page: 167
  year: 1994
  ident: ref_52
  article-title: Spatially regulated expression of retrovirus-like transposons during Drosophila melanogaster embryogenesis
  publication-title: Genet. Res.
  doi: 10.1017/S0016672300032833
  contributor:
    fullname: Ding
– volume: 121
  start-page: 3573
  year: 1995
  ident: ref_61
  article-title: A Drosophila insulator protein facilitates dosage compensation of the X chromosome min-white gene located at autosomal insertion sites
  publication-title: Development
  doi: 10.1242/dev.121.11.3573
  contributor:
    fullname: Roseman
– volume: 536
  start-page: 329
  year: 2016
  ident: ref_65
  article-title: Natural courtship song variation caused by an intronic retroelement in an ion channel gene
  publication-title: Nature
  doi: 10.1038/nature19093
  contributor:
    fullname: Ding
– volume: 8
  start-page: 12197
  year: 2018
  ident: ref_74
  article-title: Stress affects the epigenetic marks added by natural transposable element insertions in Drosophila melanogaster
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-30491-w
  contributor:
    fullname: Guio
– volume: 107
  start-page: 21052
  year: 2010
  ident: ref_46
  article-title: Evolution of diverse mechanisms for protecting chromosome ends by Drosophila TART telomere retrotransposons
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1015926107
  contributor:
    fullname: George
– volume: 17
  start-page: 429
  year: 1979
  ident: ref_19
  article-title: Polymorphisms in the chromosomal locations of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila
  publication-title: Cell
  doi: 10.1016/0092-8674(79)90169-7
  contributor:
    fullname: Strobel
– volume: 21
  start-page: 1620
  year: 2004
  ident: ref_47
  article-title: TAHRE, a novel telomeric retrotransposon from Drosophila melanogaster, reveals the origin of Drosophila telomeres
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msh180
  contributor:
    fullname: Abad
– volume: 18
  start-page: 717
  year: 2008
  ident: ref_39
  article-title: Multiple waves of recent DNA transposon activity in the bat, Myotis lucifugus
  publication-title: Genome Res.
  doi: 10.1101/gr.071886.107
  contributor:
    fullname: Ray
– volume: 12
  start-page: 1686
  year: 2002
  ident: ref_79
  article-title: S-element insertions are associated with the evolution of the Hsp70 genes in Drosophila melanogaster
  publication-title: Curr. Biol.
  doi: 10.1016/S0960-9822(02)01181-8
  contributor:
    fullname: Maside
– volume: 18
  start-page: 229
  year: 1988
  ident: ref_56
  article-title: Cuticle protein gene expression during the third instar of Drosophila melanogaster
  publication-title: Insect Biochem.
  doi: 10.1016/0020-1790(88)90087-X
  contributor:
    fullname: Kimbrell
– volume: 201
  start-page: 815
  year: 2015
  ident: ref_9
  article-title: Genetics on the Fly: A Primer on the Drosophila Model System
  publication-title: Genetics
  doi: 10.1534/genetics.115.183392
  contributor:
    fullname: Hales
– ident: ref_99
  doi: 10.1371/journal.pone.0079385
– volume: 8
  start-page: S2
  year: 2007
  ident: ref_27
  article-title: The DNA transposon Minos as a tool for transgenesis and functional genomic analysis in vertebrates and invertebrates
  publication-title: Genome Biol.
  doi: 10.1186/gb-2007-8-s1-s2
  contributor:
    fullname: Pavlopoulos
– volume: 4
  start-page: 575
  year: 2012
  ident: ref_41
  article-title: Survey sequencing reveals elevated DNA transposon activity, novel elements, and variation in repetitive landscapes among vesper bats
  publication-title: Genome Biol. Evol.
  doi: 10.1093/gbe/evs038
  contributor:
    fullname: Pagan
– volume: 175
  start-page: 1071
  year: 2007
  ident: ref_42
  article-title: Cis-regulatory elements in the Accord retrotransposon result in tissue-specific expression of the Drosophila melanogaster insecticide resistance gene Cyp6g1
  publication-title: Genetics
  doi: 10.1534/genetics.106.066597
  contributor:
    fullname: Chung
– volume: 177
  start-page: 567
  year: 1980
  ident: ref_23
  article-title: Genetic instability in Drosophila melanogaster: Evidence for regulation, excision and transposition at the white locus
  publication-title: Mol. Gen. Genet.
  doi: 10.1007/BF00272664
  contributor:
    fullname: Rasmuson
– volume: 1
  start-page: e226
  year: 2013
  ident: ref_33
  article-title: Whole genome phylogeny for 21 Drosophila species using predicted 2b-RAD fragments
  publication-title: PeerJ
  doi: 10.7717/peerj.226
  contributor:
    fullname: Seetharam
– volume: 47
  start-page: 6842
  year: 2019
  ident: ref_85
  article-title: Diverse families of transposable elements affect the transcriptional regulation of stress-response genes in Drosophila melanogaster
  publication-title: Nucleic Acids. Res.
  contributor:
    fullname: Horvath
– volume: 33
  start-page: 1098
  year: 2019
  ident: ref_5
  article-title: Host-transposon interactions: Conflict, cooperation, and cooption
  publication-title: Genes. Dev.
  doi: 10.1101/gad.327312.119
  contributor:
    fullname: Cosby
– volume: 459
  start-page: 927
  year: 2009
  ident: ref_15
  article-title: Unlocking the secrets of the genome
  publication-title: Nature
  doi: 10.1038/459927a
  contributor:
    fullname: Celniker
– volume: 77
  start-page: 993
  year: 1994
  ident: ref_100
  article-title: Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila
  publication-title: Cell
  doi: 10.1016/0092-8674(94)90439-1
  contributor:
    fullname: Dorer
– ident: ref_72
  doi: 10.1371/journal.pgen.1004560
– volume: 297
  start-page: 2253
  year: 2002
  ident: ref_91
  article-title: A single p450 allele associated with insecticide resistance in Drosophila
  publication-title: Science
  doi: 10.1126/science.1074170
  contributor:
    fullname: Daborn
– volume: 161
  start-page: 529
  year: 1968
  ident: ref_4
  article-title: Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms
  publication-title: Science
  doi: 10.1126/science.161.3841.529
  contributor:
    fullname: Britten
– volume: 342
  start-page: 846
  year: 2013
  ident: ref_71
  article-title: Dosage compensation via transposable element mediated rewiring of a regulatory network
  publication-title: Science
  doi: 10.1126/science.1239552
  contributor:
    fullname: Ellison
– volume: 122
  start-page: 356
  year: 2008
  ident: ref_105
  article-title: Regulation of telomere length in Drosophila
  publication-title: Cytogenet. Genome Res.
  doi: 10.1159/000167823
  contributor:
    fullname: Frydrychova
– volume: 10
  start-page: 15
  year: 2019
  ident: ref_37
  article-title: Mouse germ line mutations due to retrotransposon insertions
  publication-title: Mob. DNA
  doi: 10.1186/s13100-019-0157-4
  contributor:
    fullname: Gagnier
– volume: 13
  start-page: 1603
  year: 2007
  ident: ref_95
  article-title: The birth of new exons: Mechanisms and evolutionary consequences
  publication-title: RNA
  doi: 10.1261/rna.682507
  contributor:
    fullname: Sorek
– volume: 33
  start-page: 1148
  year: 2014
  ident: ref_45
  article-title: Coordination of transposon expression with DNA replication in the targeting of telomeric retrotransposons in Drosophila
  publication-title: EMBO J.
  doi: 10.1002/embj.201386940
  contributor:
    fullname: Zhang
– ident: ref_96
  doi: 10.1101/838045
– volume: 47
  start-page: D759
  year: 2018
  ident: ref_17
  article-title: FlyBase 2.0: The next generation
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky1003
  contributor:
    fullname: Thurmond
– volume: 48
  start-page: D650
  year: 2020
  ident: ref_16
  article-title: Alliance of Genome Resources C. Alliance of Genome Resources Portal: Unified model organism research platform
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkz813
  contributor:
    fullname: Agapite
– volume: 128
  start-page: 1089
  year: 2007
  ident: ref_107
  article-title: Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila
  publication-title: Cell
  doi: 10.1016/j.cell.2007.01.043
  contributor:
    fullname: Brennecke
– volume: 94
  start-page: 275
  year: 1994
  ident: ref_49
  article-title: Genetic, molecular and developmental analysis of the glutamine synthetase isozymes of Drosophila melanogaster
  publication-title: Genetica
  doi: 10.1007/BF01443441
  contributor:
    fullname: Caggese
– ident: ref_108
  doi: 10.1371/journal.pgen.1008028
– volume: 154
  start-page: 1255
  year: 2000
  ident: ref_58
  article-title: Both naturally occurring insertions of transposable elements and intermediate frequency polymorphisms at the achaete-scute complex are associated with variation in bristle number in Drosophila melanogaster
  publication-title: Genetics
  doi: 10.1093/genetics/154.3.1255
  contributor:
    fullname: Long
– ident: ref_93
  doi: 10.1371/journal.pgen.1005902
SSID ssj0000702636
Score 2.3876626
SecondaryResourceType review_article
Snippet Transposable elements (TEs) are constitutive components of both eukaryotic and prokaryotic genomes. The role of TEs in the evolution of genes and genomes has...
SourceID doaj
pubmedcentral
crossref
pubmed
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 25
SubjectTerms cis-regulatory elements
drosophila melanogaster
enhancer
genome evolution
heterochromatin
insulator
promoter
Review
transposable elements
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV25TsQwELUACYkGcbNcmgKJhojEjuOYjmM5GigAiS7K2I5YCWVXm6Wg40Pg5_gSPElYbSoa2iRKrHmx30w8eY-xQ83T1BgRBTrRRRBbP-fQ837AMSlyE6EWhr533Dyou-f0sk8yOVOrL-oJa-SBm8CdSNopk1ag9WTnbKFzm9hIOdSIsc9d6tU3TGaKqXoNVr62oH1JUmkUvq4_aTWNdEhdCbLDQrVY_wwDdbsjZ-jmaoUtt3kinDXjW2Vzrlxji41z5Ps6G31_fJLqNvjZCneegY7hPMf3Y7iF6-EEbiffH1-n0CqXV_R7FPSbRvEK8gpqL08ywYZhAReDKrgfkbiypzF4-O2thkEJl-Pa5mDwmm-wp6v-48VN0JonBMbnRJOAx8qi0KmItRMofCLgIukiXlg0ORZa6iSNZS4IKyFMrEWKkbXInS5CZbXYZAvlsHTbDBIpFVqHRnEXO4-htNxnesoYbTHkpseOfoOZjRqNjMzXFhT2rBv2HjunWE-vIm3r-oBHPGsRz_5CvMe2GoCmtyEP-DQRYY-pDnSd53TPlIOXWkvbl4tplIQ7_zGwXbbEqRqnnm6xxxYm4ze3z-Yr-3ZQv50_TTTuAQ
  priority: 102
  providerName: Directory of Open Access Journals
Title "What You Need, Baby, I Got It": Transposable Elements as Suppliers of Cis-Operating Sequences in Drosophila
URI https://www.ncbi.nlm.nih.gov/pubmed/32028630
https://pubmed.ncbi.nlm.nih.gov/PMC7168160
https://doaj.org/article/520365d3bd074edf9ad6d17eb9bb4774
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFLU6SJW6qfrutBTdBVI3hJnYcRyzK8PwWJRWopW6i3Jth0aCzGgyLNjxIfBzfEl9nQRNtt3mLR8791z7-FzGdjXPMmNEHOlUl1Fi_ZhDH_cjjmlZmBi1MDTfcXqhzv9kR3OyyZH9Xpgg2jdY7ddX1_t19TdoK5fXZtLrxCY_v888x8_idDoZsZHnhhspevj9Kp9W0JIkGTQKn9JPOjsjPSVBApWqoZrhWUrC541YFCz7N-LQUCO5EXSOX7GXHVuEb-1XvWbPXP2GPW_rR96-ZcvHu3vy3gY_ZuHcx6E9OCzwdg_O4GSxhrP1493DAXT-5Q1tkoJ5KxdvoGggVPSkUtiwKGFWNdGPJVks-2AGF73CGqoajlah2EF1Vbxjv4_nv2anUVdCITKeGa0jniiLQmci0U6g8HTAxdLFvLRoCiy11GmWyEIQYkKYRIsMY2uRO11OldXiPduqF7X7yCCVUqF1aBR3ifNISss931PGaItTbsbsa9-Y-bJ1ysh9hkEI5EMExuyQ2vrpKnK4DgcWq8u8wzmXtEIqrUDrSY6zpS5samPlUCMmnrOO2YcWoKfH9KiOmRpAN3jP8IzvYMFRu-tQn_77zs_sBadEnOTcYpttrVc37gsbNfZmJ2T5O6GP_gPD6u7k
link.rule.ids 230,315,729,782,786,866,887,2106,27933,27934,53800,53802
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFL0qVFXZtPTJtKX1olI3hEnsOI67K8PQGRWmlaBSd1H8SBsJMqPJsGDHh8DP8SX1dRI02bKN81KOnXuvfXwOwGdJ01RrFgUykUUQGzfmlIv7AVVJketISaZxvmNyKmZ_0sMxyuTwbi-MJ-1rVe5X5xf7VfnPcysXF3rY8cSGv05GLsdPoyQcbsBjN17DcK1I9z9g4QoLXJREiUbmivphK2gkQ6QkoFkNuoanCVKf16KRF-1fi0R9luRa2Dl6_sAX3oZnbZ5JvjXNL-CRrV7Ck8Z58uoVLO6ub1C1m7jRTmYugu2Rg1xd7ZEp-T5fkenq7vr2K2mVz2vcXkXGDdG8JnlNvBcommiTeUFGZR38XKA4swuD5LTjZpOyIodLb5NQnuev4ffR-Gw0CVrzhUC7nGoV0FgYxWTKYmmZYi6RsBG3ES2M0rkqJJdJGvOcIdaM6ViyVEXGKGplEQoj2RvYrOaV3QGScC6UsUoLamPr-gA31GWKQmtpVEj1AL50IGSLRmMjc7UJIpf1kRvAAWJ0fxZqY_sD8-XfrP3gGce1VW6YMi49sqaQuUlMJKySSsUu2x3A2wbY-9t0vWEAogd57zn9Foe01-JukX334Cs_wdPJ2clxdjyd_XgPWxTLeSSFsw-wuVpe2l3YqM3lR9_D_wNQoAOD
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbpxAEC3FjhLlkn2ZrH2IlIsx0A00nVs8SzxKMrHkRMoNUd1NgmQzaBgffPOHJD_nL0kXMKPhmlyhWcSrpqrox3sAbxVPU61F6KlEFV5k3JxDl_c9jkmR6xCV0PS94_hULn6kkynJ5GytvlrSvsbysDo7P6zKXy23sj7X_oYn5p98GbsaPw2TwK9N4e_BTTdnA77TqLcvYemaC1qYJJlG4Rp7vxc1UgHREsiwhpzD04TozzsZqRXu38lGQ6bkTuqZ3fuPm74Pd_t6k33ohjyAG7Z6CLc6B8rLR1BfX_0m9W7mZj1buEx2wI5yvDxgc_ZxuWbz9fXVn_esV0Bv6DcrNu0I5w3LG9Z6gpKZNlsWbFw23teaRJpdOmSnG442Kys2WbV2CeVZ_hi-z6bfxsdeb8LgaVdbrT0eSYNCpSJSVqBwBYUNYxvywqDOsVCxStIozgVhLoSOlEgxNAa5VUUgjRJPYL9aVvYZsCSOJRqLWnIbWRcLseGuYpRaK4MB1yN4twEiqzutjcz1KIReNkRvBEeE03YUaWS3G5arn1n_0LOY1lhjI9C4MsmaQuUmMaG0qBAjV_WO4GkH7vY0m4gYgRzAPrjOcI9Du9Xk7tF9_s9HvoHbJ5NZ9nm--PQC7nDq6okbLl7C_np1YV_BXmMuXrdB_hdmbQYD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E2%80%9CWhat+You+Need%2C+Baby%2C+I+Got+It%E2%80%9D%3A+Transposable+Elements+as+Suppliers+of+Cis-Operating+Sequences+in+Drosophila&rft.jtitle=Biology+%28Basel%2C+Switzerland%29&rft.au=Moschetti%2C+Roberta&rft.au=Palazzo%2C+Antonio&rft.au=Lorusso%2C+Patrizio&rft.au=Viggiano%2C+Luigi&rft.date=2020-02-03&rft.pub=MDPI&rft.eissn=2079-7737&rft.volume=9&rft.issue=2&rft_id=info:doi/10.3390%2Fbiology9020025&rft_id=info%3Apmid%2F32028630&rft.externalDBID=PMC7168160
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-7737&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-7737&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-7737&client=summon