"What You Need, Baby, I Got It": Transposable Elements as Suppliers of Cis-Operating Sequences in Drosophila
Transposable elements (TEs) are constitutive components of both eukaryotic and prokaryotic genomes. The role of TEs in the evolution of genes and genomes has been widely assessed over the past years in a variety of model and non-model organisms. is undoubtedly among the most powerful model organisms...
Saved in:
Published in: | Biology (Basel, Switzerland) Vol. 9; no. 2; p. 25 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Switzerland
MDPI
03-02-2020
MDPI AG |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Transposable elements (TEs) are constitutive components of both eukaryotic and prokaryotic genomes. The role of TEs in the evolution of genes and genomes has been widely assessed over the past years in a variety of model and non-model organisms.
is undoubtedly among the most powerful model organisms used for the purpose of studying the role of transposons and their effects on the stability and evolution of genes and genomes. Besides their most intuitive role as insertional mutagens, TEs can modify the transcriptional pattern of host genes by juxtaposing new
-regulatory sequences. A key element of TE biology is that they carry transcriptional control elements that fine-tune the transcription of their own genes, but that can also perturb the transcriptional activity of neighboring host genes. From this perspective, the transposition-mediated modulation of gene expression is an important issue for the short-term adaptation of physiological functions to the environmental changes, and for long-term evolutionary changes. Here, we review the current literature concerning the regulatory and structural elements operating in
provided by TEs in
. Furthermore, we highlight that, besides their influence on both TEs and host genes expression, they can affect the chromatin structure and epigenetic status as well as both the chromosome's structure and stability. It emerges that
is a good model organism to study the effect of TE-linked regulatory sequences, and it could help future studies on TE-host interactions in any complex eukaryotic genome. |
---|---|
AbstractList | Transposable elements (TEs) are constitutive components of both eukaryotic and prokaryotic genomes. The role of TEs in the evolution of genes and genomes has been widely assessed over the past years in a variety of model and non-model organisms.
is undoubtedly among the most powerful model organisms used for the purpose of studying the role of transposons and their effects on the stability and evolution of genes and genomes. Besides their most intuitive role as insertional mutagens, TEs can modify the transcriptional pattern of host genes by juxtaposing new
-regulatory sequences. A key element of TE biology is that they carry transcriptional control elements that fine-tune the transcription of their own genes, but that can also perturb the transcriptional activity of neighboring host genes. From this perspective, the transposition-mediated modulation of gene expression is an important issue for the short-term adaptation of physiological functions to the environmental changes, and for long-term evolutionary changes. Here, we review the current literature concerning the regulatory and structural elements operating in
provided by TEs in
. Furthermore, we highlight that, besides their influence on both TEs and host genes expression, they can affect the chromatin structure and epigenetic status as well as both the chromosome's structure and stability. It emerges that
is a good model organism to study the effect of TE-linked regulatory sequences, and it could help future studies on TE-host interactions in any complex eukaryotic genome. Transposable elements (TEs) are constitutive components of both eukaryotic and prokaryotic genomes. The role of TEs in the evolution of genes and genomes has been widely assessed over the past years in a variety of model and non-model organisms. Drosophila is undoubtedly among the most powerful model organisms used for the purpose of studying the role of transposons and their effects on the stability and evolution of genes and genomes. Besides their most intuitive role as insertional mutagens, TEs can modify the transcriptional pattern of host genes by juxtaposing new cis -regulatory sequences. A key element of TE biology is that they carry transcriptional control elements that fine-tune the transcription of their own genes, but that can also perturb the transcriptional activity of neighboring host genes. From this perspective, the transposition-mediated modulation of gene expression is an important issue for the short-term adaptation of physiological functions to the environmental changes, and for long-term evolutionary changes. Here, we review the current literature concerning the regulatory and structural elements operating in cis provided by TEs in Drosophila . Furthermore, we highlight that, besides their influence on both TEs and host genes expression, they can affect the chromatin structure and epigenetic status as well as both the chromosome’s structure and stability. It emerges that Drosophila is a good model organism to study the effect of TE-linked regulatory sequences, and it could help future studies on TE–host interactions in any complex eukaryotic genome. Transposable elements (TEs) are constitutive components of both eukaryotic and prokaryotic genomes. The role of TEs in the evolution of genes and genomes has been widely assessed over the past years in a variety of model and non-model organisms. Drosophila is undoubtedly among the most powerful model organisms used for the purpose of studying the role of transposons and their effects on the stability and evolution of genes and genomes. Besides their most intuitive role as insertional mutagens, TEs can modify the transcriptional pattern of host genes by juxtaposing new cis-regulatory sequences. A key element of TE biology is that they carry transcriptional control elements that fine-tune the transcription of their own genes, but that can also perturb the transcriptional activity of neighboring host genes. From this perspective, the transposition-mediated modulation of gene expression is an important issue for the short-term adaptation of physiological functions to the environmental changes, and for long-term evolutionary changes. Here, we review the current literature concerning the regulatory and structural elements operating in cis provided by TEs in Drosophila. Furthermore, we highlight that, besides their influence on both TEs and host genes expression, they can affect the chromatin structure and epigenetic status as well as both the chromosome’s structure and stability. It emerges that Drosophila is a good model organism to study the effect of TE-linked regulatory sequences, and it could help future studies on TE–host interactions in any complex eukaryotic genome. Transposable elements (TEs) are constitutive components of both eukaryotic and prokaryotic genomes. The role of TEs in the evolution of genes and genomes has been widely assessed over the past years in a variety of model and non-model organisms. Drosophila is undoubtedly among the most powerful model organisms used for the purpose of studying the role of transposons and their effects on the stability and evolution of genes and genomes. Besides their most intuitive role as insertional mutagens, TEs can modify the transcriptional pattern of host genes by juxtaposing new cis-regulatory sequences. A key element of TE biology is that they carry transcriptional control elements that fine-tune the transcription of their own genes, but that can also perturb the transcriptional activity of neighboring host genes. From this perspective, the transposition-mediated modulation of gene expression is an important issue for the short-term adaptation of physiological functions to the environmental changes, and for long-term evolutionary changes. Here, we review the current literature concerning the regulatory and structural elements operating in cis provided by TEs in Drosophila. Furthermore, we highlight that, besides their influence on both TEs and host genes expression, they can affect the chromatin structure and epigenetic status as well as both the chromosome's structure and stability. It emerges that Drosophila is a good model organism to study the effect of TE-linked regulatory sequences, and it could help future studies on TE−host interactions in any complex eukaryotic genome. |
Author | Palazzo, Antonio Moschetti, Roberta Viggiano, Luigi Lorusso, Patrizio Marsano, René Massimiliano |
AuthorAffiliation | 2 Laboratory of Translational Nanotechnology, “Istituto Tumori Giovanni Paolo II” I.R.C.C.S, Viale Orazio Flacco 65, 70125 Bari, Italy; a.palazzo@oncologico.bari.it 1 Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; roberta.moschetti@uniba.it (R.M.); lorusso.patrizio@libero.it (P.L.); luigi.viggiano@uniba.it (L.V.) |
AuthorAffiliation_xml | – name: 2 Laboratory of Translational Nanotechnology, “Istituto Tumori Giovanni Paolo II” I.R.C.C.S, Viale Orazio Flacco 65, 70125 Bari, Italy; a.palazzo@oncologico.bari.it – name: 1 Dipartimento di Biologia, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy; roberta.moschetti@uniba.it (R.M.); lorusso.patrizio@libero.it (P.L.); luigi.viggiano@uniba.it (L.V.) |
Author_xml | – sequence: 1 givenname: Roberta surname: Moschetti fullname: Moschetti, Roberta organization: Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro". Via Orabona 4, 70125 Bari, Italy – sequence: 2 givenname: Antonio surname: Palazzo fullname: Palazzo, Antonio organization: Laboratory of Translational Nanotechnology, "Istituto Tumori Giovanni Paolo II" I.R.C.C.S. Viale Orazio Flacco 65, 70125 Bari, Italy – sequence: 3 givenname: Patrizio surname: Lorusso fullname: Lorusso, Patrizio organization: Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro". Via Orabona 4, 70125 Bari, Italy – sequence: 4 givenname: Luigi surname: Viggiano fullname: Viggiano, Luigi organization: Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro". Via Orabona 4, 70125 Bari, Italy – sequence: 5 givenname: René Massimiliano surname: Marsano fullname: Marsano, René Massimiliano organization: Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro". Via Orabona 4, 70125 Bari, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32028630$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkU1P3DAQhq0KVChw7bGyOBNwPIkd91Cp3fKxEoIDoKony44nu0beOLWzlfbfN2VbxM5lRvPxjGbeD2Svjz0S8rFk5wCKXVgfQ1xsFOOM8fodOeRMqkJKkHtv4gNykvMzm0wyLkC8JwfAGW8EsEMSTn8szUh_xjW9Q3Rn9JuxmzM6p9dxpPPx9DN9TKbPQ8zGBqSXAVfYj5maTB_WwxA8pkxjR2c-F_cDJjP6fkEf8Nca-xYz9T39nmKOw9IHc0z2OxMynvzzR-Tp6vJxdlPc3l_PZ19vi7aqxVjwSjoLqoFKIViQDceyxpJ3zrbGdqpWoqlqA7xpWoC2UtDY0jnLUXVMOgVHZL7lumie9ZD8yqSNjsbrl0RMC23S6NuAuuYMRO3AOiYrdJ0yTrhSolXWVlJWE-vLljWs7QpdO12fTNiB7lZ6v9SL-FvLUjSlYBPgfAtopz_khN3rbMn0Xxn1rozTwKe3G1_b_4sGfwBVtZvq |
CitedBy_id | crossref_primary_10_3390_ijms221910887 crossref_primary_10_3390_ijms22168465 crossref_primary_10_3390_genes12060918 crossref_primary_10_3390_genes14040794 crossref_primary_10_3390_cells11030583 crossref_primary_10_1080_07388551_2021_1888067 crossref_primary_10_3390_biom13071027 crossref_primary_10_1111_jeb_13762 crossref_primary_10_3390_cells10112809 crossref_primary_10_3390_ijms22042212 crossref_primary_10_3390_cells10051125 crossref_primary_10_3390_life13122272 crossref_primary_10_1134_S0026893324010096 crossref_primary_10_3390_ijms24076332 crossref_primary_10_1016_j_biosystems_2022_104669 crossref_primary_10_3390_genes13122374 crossref_primary_10_1093_nar_gkac1195 crossref_primary_10_3390_ijms222111387 crossref_primary_10_3390_ijms24043170 crossref_primary_10_1038_s42003_023_05234_x crossref_primary_10_3390_cells11050761 crossref_primary_10_3390_genes13020305 crossref_primary_10_3390_ijms23168947 crossref_primary_10_3389_fevo_2022_836066 crossref_primary_10_3389_fgene_2022_793734 crossref_primary_10_3390_biology12081127 crossref_primary_10_1186_s13059_021_02471_3 crossref_primary_10_3390_ijms22020602 crossref_primary_10_1038_s41598_021_95843_5 crossref_primary_10_3389_fgene_2023_1290146 crossref_primary_10_3390_biom11121857 crossref_primary_10_3390_genes12121997 |
Cites_doi | 10.1101/SQB.1978.042.01.097 10.1016/0092-8674(93)90078-5 10.1016/0092-8674(86)90480-0 10.1186/gb-2002-3-12-research0085 10.1126/science.287.5461.2185 10.1002/j.1460-2075.1991.tb07962.x 10.1016/j.gene.2005.06.005 10.1101/gr.185579.114 10.1186/s13100-019-0155-6 10.1126/science.6289436 10.1093/emboj/16.7.1732 10.1016/j.gene.2012.04.031 10.1073/pnas.0609601104 10.1186/s13100-017-0090-3 10.1371/journal.pbio.0060251 10.1016/j.gene.2009.08.012 10.1126/science.6289435 10.1073/pnas.0303793101 10.1128/MCB.22.6.1767-1777.2002 10.1101/537357 10.1016/j.tig.2019.06.002 10.1016/j.jprot.2014.03.016 10.1534/genetics.106.067108 10.1073/pnas.1207036109 10.1073/pnas.0503424102 10.1073/pnas.36.6.344 10.1093/genetics/153.2.787 10.1101/636076 10.1093/molbev/msl192 10.1038/284604a0 10.1534/g3.113.006791 10.1016/0092-8674(86)90265-5 10.1074/jbc.273.4.2473 10.1016/S0378-1119(98)00048-1 10.1186/1759-8753-5-21 10.4161/fly.22353 10.1073/pnas.76.8.4011 10.1073/pnas.1313677110 10.1016/0092-8674(84)90422-7 10.1126/science.1231965 10.1111/mec.12711 10.1007/BF01439581 10.1093/nar/17.11.4025 10.1038/284601a0 10.7554/eLife.28297 10.1093/gbe/evx122 10.1093/molbev/msi063 10.1534/genetics.115.177196 10.1242/jeb.204.11.1869 10.1371/journal.pgen.1006249 10.1186/gb-2002-3-12-research0084 10.1101/gad.2.11.1414 10.1016/0092-8674(82)90463-9 10.1016/j.gene.2006.12.028 10.1007/s00438-010-0529-4 10.1038/85871 10.1016/j.cell.2015.03.026 10.1007/s00438-003-0947-7 10.1073/pnas.89.16.7591 10.1590/1678-4685-gmb-2017-0068 10.1673/031.013.11101 10.1038/nature06341 10.1093/oxfordjournals.molbev.a026038 10.1101/gr.139618.112 10.1038/nature10531 10.1371/journal.pone.0156014 10.1080/19336934.2016.1165372 10.1101/gad.281503 10.1016/0092-8674(79)90168-5 10.1016/0092-8674(82)90462-7 10.1038/nature24282 10.1016/0092-8674(88)90550-8 10.1002/dvg.1020100309 10.1093/nar/gkl997 10.1038/nrg751 10.1017/S0016672300032833 10.1242/dev.121.11.3573 10.1038/nature19093 10.1038/s41598-018-30491-w 10.1073/pnas.1015926107 10.1016/0092-8674(79)90169-7 10.1093/molbev/msh180 10.1101/gr.071886.107 10.1016/S0960-9822(02)01181-8 10.1016/0020-1790(88)90087-X 10.1534/genetics.115.183392 10.1371/journal.pone.0079385 10.1186/gb-2007-8-s1-s2 10.1093/gbe/evs038 10.1534/genetics.106.066597 10.1007/BF00272664 10.7717/peerj.226 10.1101/gad.327312.119 10.1038/459927a 10.1016/0092-8674(94)90439-1 10.1371/journal.pgen.1004560 10.1126/science.1074170 10.1126/science.161.3841.529 10.1126/science.1239552 10.1159/000167823 10.1186/s13100-019-0157-4 10.1261/rna.682507 10.1002/embj.201386940 10.1101/838045 10.1093/nar/gky1003 10.1093/nar/gkz813 10.1016/j.cell.2007.01.043 10.1007/BF01443441 10.1371/journal.pgen.1008028 10.1093/genetics/154.3.1255 10.1371/journal.pgen.1005902 |
ContentType | Journal Article |
Copyright | 2020 by the authors. 2020 |
Copyright_xml | – notice: 2020 by the authors. 2020 |
DBID | NPM AAYXX CITATION 5PM DOA |
DOI | 10.3390/biology9020025 |
DatabaseName | PubMed CrossRef PubMed Central (Full Participant titles) Directory of Open Access Journals |
DatabaseTitle | PubMed CrossRef |
DatabaseTitleList | PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2079-7737 |
ExternalDocumentID | oai_doaj_org_article_520365d3bd074edf9ad6d17eb9bb4774 10_3390_biology9020025 32028630 |
Genre | Journal Article Review |
GroupedDBID | 2XV 53G 5VS 8FE 8FH AADQD AAFWJ AAHBH ADBBV AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU EBD GROUPED_DOAJ HCIFZ HYE IAO ITC KQ8 LK8 M48 M7P MODMG M~E NPM OK1 PGMZT PIMPY PROAC RIG RPM AAYXX CITATION 5PM AFPKN |
ID | FETCH-LOGICAL-c456t-247db398349e3b3782e15e12fdbcabf9596845a3288c33c4938b1ddb2e9f07d93 |
IEDL.DBID | RPM |
ISSN | 2079-7737 |
IngestDate | Tue Oct 22 15:04:18 EDT 2024 Tue Sep 17 21:04:03 EDT 2024 Fri Nov 22 03:40:46 EST 2024 Sat Nov 02 12:24:55 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | cis-regulatory elements enhancer genome evolution promoter transposable elements Drosophila melanogaster insulator heterochromatin |
Language | English |
License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c456t-247db398349e3b3782e15e12fdbcabf9596845a3288c33c4938b1ddb2e9f07d93 |
Notes | These authors contributed equally to this work. |
ORCID | 0000-0001-8450-1010 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7168160/ |
PMID | 32028630 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_520365d3bd074edf9ad6d17eb9bb4774 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7168160 crossref_primary_10_3390_biology9020025 pubmed_primary_32028630 |
PublicationCentury | 2000 |
PublicationDate | 20200203 |
PublicationDateYYYYMMDD | 2020-02-03 |
PublicationDate_xml | – month: 2 year: 2020 text: 20200203 day: 3 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Biology (Basel, Switzerland) |
PublicationTitleAlternate | Biology (Basel) |
PublicationYear | 2020 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Zanni (ref_30) 2013; 110 ref_93 Brennecke (ref_107) 2007; 128 Abad (ref_47) 2004; 21 Ilyin (ref_24) 1978; 42 Taubert (ref_63) 1995; 103 Potter (ref_18) 1979; 17 ref_99 ref_96 Gilbert (ref_14) 2007; 35 Schilbach (ref_80) 2017; 551 Perrat (ref_109) 2013; 340 Arkhipova (ref_6) 1986; 44 Pritham (ref_38) 2007; 104 Lerman (ref_54) 2005; 22 Laski (ref_97) 1986; 44 Rubin (ref_26) 1982; 218 Russo (ref_83) 2016; 202 Batut (ref_64) 2013; 23 Zatsepina (ref_53) 2001; 204 Kimbrell (ref_55) 1989; 10 Hoskins (ref_12) 2015; 25 Gruber (ref_57) 2007; 175 Chung (ref_42) 2007; 175 Dorer (ref_100) 1994; 77 Ding (ref_65) 2016; 536 ref_72 Ray (ref_40) 2007; 24 Baillie (ref_111) 2011; 479 Britten (ref_4) 1968; 161 Holdridge (ref_89) 1991; 11 Palazzo (ref_98) 2014; 5 Minervini (ref_50) 2007; 393 Gagnier (ref_37) 2019; 10 Horvath (ref_85) 2019; 47 Margis (ref_78) 2009; 448 Bargues (ref_35) 2017; 8 Cosby (ref_5) 2019; 33 Delrow (ref_75) 2001; 27 Celniker (ref_15) 2009; 459 Sneddon (ref_88) 1989; 17 Hales (ref_9) 2015; 201 Kimbrell (ref_56) 1988; 18 Seetharam (ref_33) 2013; 1 Frydrychova (ref_105) 2008; 122 Sentmanat (ref_77) 2012; 109 Li (ref_92) 2012; 502 Kaminker (ref_28) 2002; 3 Caggese (ref_49) 1994; 94 Agapite (ref_16) 2020; 48 Clemmons (ref_44) 2013; 3 McClintock (ref_1) 1950; 36 Tanda (ref_67) 1991; 10 Treiber (ref_110) 2017; 6 Ellison (ref_71) 2013; 342 Strobel (ref_19) 1979; 17 Conte (ref_48) 2002; 22 Zhang (ref_45) 2014; 33 Nabirochkin (ref_69) 1998; 273 Pavlopoulos (ref_27) 2007; 8 Marsano (ref_76) 2005; 357 ref_59 Sorek (ref_95) 2007; 13 Schlenke (ref_43) 2004; 101 Spradling (ref_25) 1982; 218 ref_66 Ray (ref_39) 2008; 18 Adams (ref_10) 2000; 287 Tartof (ref_101) 1984; 37 Desset (ref_31) 1999; 16 Rasmuson (ref_23) 1980; 177 Upton (ref_112) 2015; 161 Signor (ref_13) 2013; 7 ref_115 Maside (ref_79) 2002; 12 Wu (ref_113) 1988; 54 Doolittle (ref_3) 1980; 284 Pagan (ref_41) 2012; 4 ref_34 Guio (ref_74) 2018; 8 ref_32 Ding (ref_52) 1994; 64 Greil (ref_103) 2003; 17 Scott (ref_90) 1999; 153 Guio (ref_73) 2014; 23 Palazzo (ref_81) 2017; 9 Harrington (ref_84) 2016; 10 Bingham (ref_22) 1982; 29 Marsano (ref_29) 2004; 270 Cai (ref_62) 1997; 16 Luan (ref_7) 1993; 72 (ref_8) 2002; 3 Roseman (ref_61) 1995; 121 Orgel (ref_2) 1980; 284 Loreto (ref_36) 2018; 41 ref_106 ref_108 Hoskins (ref_11) 2002; 3 Palazzo (ref_82) 2019; 10 Wilson (ref_51) 1998; 209 Mamillapalli (ref_70) 2013; 13 Daborn (ref_91) 2002; 297 Thurmond (ref_17) 2018; 47 Long (ref_58) 2000; 154 Engels (ref_20) 1979; 76 George (ref_46) 2010; 107 Yasuhara (ref_87) 2005; 102 Cherkasova (ref_68) 1990; 26 Minervini (ref_94) 2010; 283 Marsano (ref_86) 2019; 35 Ryu (ref_102) 2014; 102 Rubin (ref_21) 1982; 29 Steinemann (ref_104) 1992; 89 Caggese (ref_114) 1995; 96 Spana (ref_60) 1988; 2 |
References_xml | – volume: 42 start-page: 959 year: 1978 ident: ref_24 article-title: Studies on the DNA fragments of mammals and Drosophila containing structural genes and adjacent sequences publication-title: Cold Spring Harb. Symp. Quant. Biol. doi: 10.1101/SQB.1978.042.01.097 contributor: fullname: Ilyin – volume: 72 start-page: 595 year: 1993 ident: ref_7 article-title: Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: A mechanism for non-LTR retrotransposition publication-title: Cell doi: 10.1016/0092-8674(93)90078-5 contributor: fullname: Luan – volume: 44 start-page: 7 year: 1986 ident: ref_97 article-title: Tissue specificity of Drosophila P element transposition is regulated at the level of mRNA splicing publication-title: Cell doi: 10.1016/0092-8674(86)90480-0 contributor: fullname: Laski – volume: 3 start-page: RESEARCH0085 year: 2002 ident: ref_11 article-title: Heterochromatic sequences in a Drosophila whole-genome shotgun assembly publication-title: Genome. Biol. doi: 10.1186/gb-2002-3-12-research0085 contributor: fullname: Hoskins – volume: 26 start-page: 1893 year: 1990 ident: ref_68 article-title: The leader region of the Drosophila transposon MDG1 contains transcription termination sites publication-title: Genetika contributor: fullname: Cherkasova – volume: 287 start-page: 2185 year: 2000 ident: ref_10 article-title: The genome sequence of Drosophila melanogaster publication-title: Science doi: 10.1126/science.287.5461.2185 contributor: fullname: Adams – volume: 10 start-page: 407 year: 1991 ident: ref_67 article-title: Retrotransposon-induced overexpression of a homeobox gene causes defects in eye morphogenesis in Drosophila publication-title: EMBO J. doi: 10.1002/j.1460-2075.1991.tb07962.x contributor: fullname: Tanda – volume: 357 start-page: 122 year: 2005 ident: ref_76 article-title: Evidence for a functional interaction between the Bari1 transposable element and the cytochrome P450 cyp12a4 gene in Drosophila melanogaster publication-title: Gene doi: 10.1016/j.gene.2005.06.005 contributor: fullname: Marsano – volume: 25 start-page: 455 year: 2015 ident: ref_12 article-title: The Release 6 reference sequence of the Drosophila melanogaster genome publication-title: Genome Res. doi: 10.1101/gr.185579.114 contributor: fullname: Hoskins – volume: 10 start-page: 13 year: 2019 ident: ref_82 article-title: Transcriptionally promiscuous “blurry” promoters in Tc1/mariner transposons allow transcription in distantly related genomes publication-title: Mob. DNA doi: 10.1186/s13100-019-0155-6 contributor: fullname: Palazzo – volume: 218 start-page: 348 year: 1982 ident: ref_26 article-title: Genetic transformation of Drosophila with transposable element vectors publication-title: Science doi: 10.1126/science.6289436 contributor: fullname: Rubin – volume: 16 start-page: 1732 year: 1997 ident: ref_62 article-title: The gypsy insulator can function as a promoter-specific silencer in the Drosophila embryo publication-title: EMBO J. doi: 10.1093/emboj/16.7.1732 contributor: fullname: Cai – volume: 502 start-page: 1 year: 2012 ident: ref_92 article-title: Accord insertion in the 5’ flanking region of CYP6G1 confers nicotine resistance in Drosophila melanogaster publication-title: Gene doi: 10.1016/j.gene.2012.04.031 contributor: fullname: Li – volume: 104 start-page: 1895 year: 2007 ident: ref_38 article-title: Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0609601104 contributor: fullname: Pritham – volume: 8 start-page: 7 year: 2017 ident: ref_35 article-title: Evolutionary history of LTR-retrotransposons among 20 Drosophila species publication-title: Mob. DNA doi: 10.1186/s13100-017-0090-3 contributor: fullname: Bargues – ident: ref_59 doi: 10.1371/journal.pbio.0060251 – volume: 448 start-page: 57 year: 2009 ident: ref_78 article-title: The hobo transposon and hobo-related elements are expressed as developmental genes in Drosophila publication-title: Gene doi: 10.1016/j.gene.2009.08.012 contributor: fullname: Margis – volume: 218 start-page: 341 year: 1982 ident: ref_25 article-title: Transposition of cloned P elements into Drosophila germ line chromosomes publication-title: Science doi: 10.1126/science.6289435 contributor: fullname: Spradling – volume: 101 start-page: 1626 year: 2004 ident: ref_43 article-title: Strong selective sweep associated with a transposon insertion in Drosophila simulans publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0303793101 contributor: fullname: Schlenke – volume: 22 start-page: 1767 year: 2002 ident: ref_48 article-title: Coupling of enhancer and insulator properties identified in two retrotransposons modulates their mutagenic impact on nearby genes publication-title: Mol. Cell Biol. doi: 10.1128/MCB.22.6.1767-1777.2002 contributor: fullname: Conte – ident: ref_106 doi: 10.1101/537357 – volume: 35 start-page: 615 year: 2019 ident: ref_86 article-title: A New Portrait of Constitutive Heterochromatin: Lessons from Drosophila melanogaster publication-title: Trends Genet. doi: 10.1016/j.tig.2019.06.002 contributor: fullname: Marsano – volume: 102 start-page: 137 year: 2014 ident: ref_102 article-title: Analysis of the heterochromatin protein 1 (HP1) interactome in Drosophila publication-title: J. Proteom. doi: 10.1016/j.jprot.2014.03.016 contributor: fullname: Ryu – volume: 103 start-page: 669 year: 1995 ident: ref_63 article-title: Mesoderm-specific B104 expression in the Drosophila embryo is mediated by internal cis-acting elements of the transposon publication-title: Chromosoma contributor: fullname: Taubert – volume: 11 start-page: 1894 year: 1991 ident: ref_89 article-title: Repression of hsp70 heat shock gene transcription by the suppressor of hairy-wing protein of Drosophila melanogaster publication-title: Mol Cell Biol. contributor: fullname: Holdridge – volume: 175 start-page: 1987 year: 2007 ident: ref_57 article-title: How repeatable are associations between polymorphisms in achaete-scute and bristle number variation in Drosophila? publication-title: Genetics doi: 10.1534/genetics.106.067108 contributor: fullname: Gruber – volume: 109 start-page: 14104 year: 2012 ident: ref_77 article-title: Ectopic assembly of heterochromatin in Drosophila melanogaster triggered by transposable elements publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1207036109 contributor: fullname: Sentmanat – volume: 102 start-page: 10958 year: 2005 ident: ref_87 article-title: Evolution of heterochromatic genes of Drosophila publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0503424102 contributor: fullname: Yasuhara – volume: 36 start-page: 344 year: 1950 ident: ref_1 article-title: The origin and behavior of mutable loci in maize publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.36.6.344 contributor: fullname: McClintock – volume: 153 start-page: 787 year: 1999 ident: ref_90 article-title: Enhancer blocking by the Drosophila gypsy insulator depends upon insulator anatomy and enhancer strength publication-title: Genetics doi: 10.1093/genetics/153.2.787 contributor: fullname: Scott – ident: ref_115 doi: 10.1101/636076 – volume: 24 start-page: 632 year: 2007 ident: ref_40 article-title: Bats with hATs: Evidence for recent DNA transposon activity in genus Myotis publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msl192 contributor: fullname: Ray – volume: 284 start-page: 604 year: 1980 ident: ref_2 article-title: Selfish DNA: The ultimate parasite publication-title: Nature doi: 10.1038/284604a0 contributor: fullname: Orgel – volume: 3 start-page: 1531 year: 2013 ident: ref_44 article-title: Combinatorial effects of transposable elements on gene expression and phenotypic robustness in Drosophila melanogaster development publication-title: G3 Genes Genomes Genet. doi: 10.1534/g3.113.006791 contributor: fullname: Clemmons – volume: 44 start-page: 555 year: 1986 ident: ref_6 article-title: The steps of reverse transcription of Drosophila mobile dispersed genetic elements and U3-R-U5 structure of their LTRs publication-title: Cell doi: 10.1016/0092-8674(86)90265-5 contributor: fullname: Arkhipova – volume: 273 start-page: 2473 year: 1998 ident: ref_69 article-title: A nuclear matrix/scaffold attachment region co-localizes with the gypsy retrotransposon insulator sequence publication-title: J. Biol. Chem. doi: 10.1074/jbc.273.4.2473 contributor: fullname: Nabirochkin – volume: 209 start-page: 239 year: 1998 ident: ref_51 article-title: An enhancer region within the copia untranslated leader contains binding sites for Drosophila regulatory proteins publication-title: Gene doi: 10.1016/S0378-1119(98)00048-1 contributor: fullname: Wilson – volume: 5 start-page: 21 year: 2014 ident: ref_98 article-title: The Drosophila mojavensis Bari3 transposon: Distribution and functional characterization publication-title: Mob. DNA doi: 10.1186/1759-8753-5-21 contributor: fullname: Palazzo – volume: 7 start-page: 47 year: 2013 ident: ref_13 article-title: Genomic resources for multiple species in the Drosophila ananassae species group publication-title: Fly doi: 10.4161/fly.22353 contributor: fullname: Signor – volume: 76 start-page: 4011 year: 1979 ident: ref_20 article-title: Extrachromosomal control of mutability in Drosophila melanogaster publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.76.8.4011 contributor: fullname: Engels – volume: 110 start-page: 19842 year: 2013 ident: ref_30 article-title: Distribution, evolution, and diversity of retrotransposons at the flamenco locus reflect the regulatory properties of piRNA clusters publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1313677110 contributor: fullname: Zanni – volume: 37 start-page: 869 year: 1984 ident: ref_101 article-title: A structural basis for variegating position effects publication-title: Cell doi: 10.1016/0092-8674(84)90422-7 contributor: fullname: Tartof – volume: 340 start-page: 91 year: 2013 ident: ref_109 article-title: Transposition-driven genomic heterogeneity in the Drosophila brain publication-title: Science doi: 10.1126/science.1231965 contributor: fullname: Perrat – volume: 23 start-page: 2020 year: 2014 ident: ref_73 article-title: The transposable element Bari-Jheh mediates oxidative stress response in Drosophila publication-title: Mol Ecol. doi: 10.1111/mec.12711 contributor: fullname: Guio – volume: 96 start-page: 269 year: 1995 ident: ref_114 article-title: The distribution of the transposable element Bari-1 in the Drosophila melanogaster and Drosophila simulans genomes publication-title: Genetica doi: 10.1007/BF01439581 contributor: fullname: Caggese – volume: 17 start-page: 4025 year: 1989 ident: ref_88 article-title: The transcriptional control regions of the copia retrotransposon publication-title: Nucleic Acids Res. doi: 10.1093/nar/17.11.4025 contributor: fullname: Sneddon – volume: 284 start-page: 601 year: 1980 ident: ref_3 article-title: Selfish genes, the phenotype paradigm and genome evolution publication-title: Nature doi: 10.1038/284601a0 contributor: fullname: Doolittle – volume: 6 start-page: e28297 year: 2017 ident: ref_110 article-title: Resolving the prevalence of somatic transposition in Drosophila publication-title: Elife doi: 10.7554/eLife.28297 contributor: fullname: Treiber – volume: 9 start-page: 1637 year: 2017 ident: ref_81 article-title: Does the Promoter Constitute a Barrier in the Horizontal Transposon Transfer Process? Insight from Bari Transposons publication-title: Genome Biol. Evol. doi: 10.1093/gbe/evx122 contributor: fullname: Palazzo – volume: 22 start-page: 776 year: 2005 ident: ref_54 article-title: Naturally occurring transposable elements disrupt hsp70 promoter function in Drosophila melanogaster publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msi063 contributor: fullname: Lerman – volume: 202 start-page: 107 year: 2016 ident: ref_83 article-title: Antisense Transcription of Retrotransposons in Drosophila: An Origin of Endogenous Small Interfering RNA Precursors publication-title: Genetics doi: 10.1534/genetics.115.177196 contributor: fullname: Russo – volume: 204 start-page: 1869 year: 2001 ident: ref_53 article-title: A Drosophila Melanogaster Strain From Sub-Equatorial Africa Has Exceptional Thermotolerance But Decreased Hsp70 Expression publication-title: J. Exp. Biol. doi: 10.1242/jeb.204.11.1869 contributor: fullname: Zatsepina – ident: ref_66 doi: 10.1371/journal.pgen.1006249 – volume: 3 start-page: RESEARCH0084 year: 2002 ident: ref_28 article-title: The transposable elements of the Drosophila melanogaster euchromatin: A genomics perspective publication-title: Genome Biol. doi: 10.1186/gb-2002-3-12-research0084 contributor: fullname: Kaminker – volume: 2 start-page: 1414 year: 1988 ident: ref_60 article-title: The Drosophila melanogaster suppressor of Hairy-wing protein binds to specific sequences of the gypsy retrotransposon publication-title: Genes. Dev. doi: 10.1101/gad.2.11.1414 contributor: fullname: Spana – volume: 29 start-page: 995 year: 1982 ident: ref_22 article-title: The molecular basis of P-M hybrid dysgenesis: The role of the P element, a P-strain-specific transposon family publication-title: Cell doi: 10.1016/0092-8674(82)90463-9 contributor: fullname: Bingham – volume: 393 start-page: 1 year: 2007 ident: ref_50 article-title: Heterochromatin protein 1 interacts with 5’UTR of transposable element ZAM in a sequence-specific fashion publication-title: Gene doi: 10.1016/j.gene.2006.12.028 contributor: fullname: Minervini – volume: 283 start-page: 503 year: 2010 ident: ref_94 article-title: Evidences for insulator activity of the 5’UTR of the Drosophila melanogaster LTR-retrotransposon ZAM publication-title: Mol. Genet. Genom. doi: 10.1007/s00438-010-0529-4 contributor: fullname: Minervini – volume: 27 start-page: 304 year: 2001 ident: ref_75 article-title: Chromatin profiling using targeted DNA adenine methyltransferase publication-title: Nat. Genet. doi: 10.1038/85871 contributor: fullname: Delrow – volume: 161 start-page: 228 year: 2015 ident: ref_112 article-title: Ubiquitous L1 mosaicism in hippocampal neurons publication-title: Cell doi: 10.1016/j.cell.2015.03.026 contributor: fullname: Upton – volume: 270 start-page: 477 year: 2004 ident: ref_29 article-title: MAX, a novel retrotransposon of the BEL-Pao family, is nested within the Bari1 cluster at the heterochromatic h39 region of chromosome 2 in Drosophila melanogaster publication-title: Mol. Genet. Genomics doi: 10.1007/s00438-003-0947-7 contributor: fullname: Marsano – volume: 89 start-page: 7591 year: 1992 ident: ref_104 article-title: Degenerating Y chromosome of Drosophila miranda: A trap for retrotransposons publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.89.16.7591 contributor: fullname: Steinemann – volume: 41 start-page: 198 year: 2018 ident: ref_36 article-title: Drosophila relics hobo and hobo-MITEs transposons as raw material for new regulatory networks publication-title: Genet Mol. Biol. doi: 10.1590/1678-4685-gmb-2017-0068 contributor: fullname: Loreto – volume: 13 start-page: 111 year: 2013 ident: ref_70 article-title: Transposable element ‘roo’ attaches to nuclear matrix of the Drosophila melanogaster publication-title: J. Insect. Sci. doi: 10.1673/031.013.11101 contributor: fullname: Mamillapalli – ident: ref_32 doi: 10.1038/nature06341 – volume: 16 start-page: 54 year: 1999 ident: ref_31 article-title: Mobilization of two retroelements, ZAM and Idefix, in a novel unstable line of Drosophila melanogaster publication-title: Mol. Biol. Evol. doi: 10.1093/oxfordjournals.molbev.a026038 contributor: fullname: Desset – volume: 23 start-page: 169 year: 2013 ident: ref_64 article-title: High-fidelity promoter profiling reveals widespread alternative promoter usage and transposon-driven developmental gene expression publication-title: Genome Res. doi: 10.1101/gr.139618.112 contributor: fullname: Batut – volume: 479 start-page: 534 year: 2011 ident: ref_111 article-title: Somatic retrotransposition alters the genetic landscape of the human brain publication-title: Nature doi: 10.1038/nature10531 contributor: fullname: Baillie – ident: ref_34 doi: 10.1371/journal.pone.0156014 – volume: 10 start-page: 1 year: 2016 ident: ref_84 article-title: Bioinformatic analyses of sense and antisense expression from terminal inverted repeat transposons in Drosophila somatic cells publication-title: Fly doi: 10.1080/19336934.2016.1165372 contributor: fullname: Harrington – volume: 17 start-page: 2825 year: 2003 ident: ref_103 article-title: Distinct HP1 and Su(var)3-9 complexes bind to sets of developmentally coexpressed genes depending on chromosomal location publication-title: Genes Dev. doi: 10.1101/gad.281503 contributor: fullname: Greil – volume: 17 start-page: 415 year: 1979 ident: ref_18 article-title: Transposition of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila publication-title: Cell doi: 10.1016/0092-8674(79)90168-5 contributor: fullname: Potter – volume: 29 start-page: 987 year: 1982 ident: ref_21 article-title: The molecular basis of P-M hybrid dysgenesis: The nature of induced mutations publication-title: Cell doi: 10.1016/0092-8674(82)90462-7 contributor: fullname: Rubin – volume: 551 start-page: 204 year: 2017 ident: ref_80 article-title: Structures of transcription pre-initiation complex with TFIIH and Mediator publication-title: Nature doi: 10.1038/nature24282 contributor: fullname: Schilbach – volume: 54 start-page: 179 year: 1988 ident: ref_113 article-title: Association between a satellite DNA sequence and the Responder of Segregation Distorter in D. melanogaster publication-title: Cell doi: 10.1016/0092-8674(88)90550-8 contributor: fullname: Wu – volume: 10 start-page: 198 year: 1989 ident: ref_55 article-title: Regulation of larval cuticle protein gene expression in Drosophila melanogaster publication-title: Dev. Genet. doi: 10.1002/dvg.1020100309 contributor: fullname: Kimbrell – volume: 35 start-page: D480 year: 2007 ident: ref_14 article-title: DroSpeGe: Rapid access database for new Drosophila species genomes publication-title: Nucleic Acids. Res. doi: 10.1093/nar/gkl997 contributor: fullname: Gilbert – volume: 3 start-page: 176 year: 2002 ident: ref_8 article-title: The art and design of genetic screens: Drosophila melanogaster publication-title: Nat. Rev. Genet. doi: 10.1038/nrg751 – volume: 64 start-page: 167 year: 1994 ident: ref_52 article-title: Spatially regulated expression of retrovirus-like transposons during Drosophila melanogaster embryogenesis publication-title: Genet. Res. doi: 10.1017/S0016672300032833 contributor: fullname: Ding – volume: 121 start-page: 3573 year: 1995 ident: ref_61 article-title: A Drosophila insulator protein facilitates dosage compensation of the X chromosome min-white gene located at autosomal insertion sites publication-title: Development doi: 10.1242/dev.121.11.3573 contributor: fullname: Roseman – volume: 536 start-page: 329 year: 2016 ident: ref_65 article-title: Natural courtship song variation caused by an intronic retroelement in an ion channel gene publication-title: Nature doi: 10.1038/nature19093 contributor: fullname: Ding – volume: 8 start-page: 12197 year: 2018 ident: ref_74 article-title: Stress affects the epigenetic marks added by natural transposable element insertions in Drosophila melanogaster publication-title: Sci. Rep. doi: 10.1038/s41598-018-30491-w contributor: fullname: Guio – volume: 107 start-page: 21052 year: 2010 ident: ref_46 article-title: Evolution of diverse mechanisms for protecting chromosome ends by Drosophila TART telomere retrotransposons publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1015926107 contributor: fullname: George – volume: 17 start-page: 429 year: 1979 ident: ref_19 article-title: Polymorphisms in the chromosomal locations of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila publication-title: Cell doi: 10.1016/0092-8674(79)90169-7 contributor: fullname: Strobel – volume: 21 start-page: 1620 year: 2004 ident: ref_47 article-title: TAHRE, a novel telomeric retrotransposon from Drosophila melanogaster, reveals the origin of Drosophila telomeres publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msh180 contributor: fullname: Abad – volume: 18 start-page: 717 year: 2008 ident: ref_39 article-title: Multiple waves of recent DNA transposon activity in the bat, Myotis lucifugus publication-title: Genome Res. doi: 10.1101/gr.071886.107 contributor: fullname: Ray – volume: 12 start-page: 1686 year: 2002 ident: ref_79 article-title: S-element insertions are associated with the evolution of the Hsp70 genes in Drosophila melanogaster publication-title: Curr. Biol. doi: 10.1016/S0960-9822(02)01181-8 contributor: fullname: Maside – volume: 18 start-page: 229 year: 1988 ident: ref_56 article-title: Cuticle protein gene expression during the third instar of Drosophila melanogaster publication-title: Insect Biochem. doi: 10.1016/0020-1790(88)90087-X contributor: fullname: Kimbrell – volume: 201 start-page: 815 year: 2015 ident: ref_9 article-title: Genetics on the Fly: A Primer on the Drosophila Model System publication-title: Genetics doi: 10.1534/genetics.115.183392 contributor: fullname: Hales – ident: ref_99 doi: 10.1371/journal.pone.0079385 – volume: 8 start-page: S2 year: 2007 ident: ref_27 article-title: The DNA transposon Minos as a tool for transgenesis and functional genomic analysis in vertebrates and invertebrates publication-title: Genome Biol. doi: 10.1186/gb-2007-8-s1-s2 contributor: fullname: Pavlopoulos – volume: 4 start-page: 575 year: 2012 ident: ref_41 article-title: Survey sequencing reveals elevated DNA transposon activity, novel elements, and variation in repetitive landscapes among vesper bats publication-title: Genome Biol. Evol. doi: 10.1093/gbe/evs038 contributor: fullname: Pagan – volume: 175 start-page: 1071 year: 2007 ident: ref_42 article-title: Cis-regulatory elements in the Accord retrotransposon result in tissue-specific expression of the Drosophila melanogaster insecticide resistance gene Cyp6g1 publication-title: Genetics doi: 10.1534/genetics.106.066597 contributor: fullname: Chung – volume: 177 start-page: 567 year: 1980 ident: ref_23 article-title: Genetic instability in Drosophila melanogaster: Evidence for regulation, excision and transposition at the white locus publication-title: Mol. Gen. Genet. doi: 10.1007/BF00272664 contributor: fullname: Rasmuson – volume: 1 start-page: e226 year: 2013 ident: ref_33 article-title: Whole genome phylogeny for 21 Drosophila species using predicted 2b-RAD fragments publication-title: PeerJ doi: 10.7717/peerj.226 contributor: fullname: Seetharam – volume: 47 start-page: 6842 year: 2019 ident: ref_85 article-title: Diverse families of transposable elements affect the transcriptional regulation of stress-response genes in Drosophila melanogaster publication-title: Nucleic Acids. Res. contributor: fullname: Horvath – volume: 33 start-page: 1098 year: 2019 ident: ref_5 article-title: Host-transposon interactions: Conflict, cooperation, and cooption publication-title: Genes. Dev. doi: 10.1101/gad.327312.119 contributor: fullname: Cosby – volume: 459 start-page: 927 year: 2009 ident: ref_15 article-title: Unlocking the secrets of the genome publication-title: Nature doi: 10.1038/459927a contributor: fullname: Celniker – volume: 77 start-page: 993 year: 1994 ident: ref_100 article-title: Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila publication-title: Cell doi: 10.1016/0092-8674(94)90439-1 contributor: fullname: Dorer – ident: ref_72 doi: 10.1371/journal.pgen.1004560 – volume: 297 start-page: 2253 year: 2002 ident: ref_91 article-title: A single p450 allele associated with insecticide resistance in Drosophila publication-title: Science doi: 10.1126/science.1074170 contributor: fullname: Daborn – volume: 161 start-page: 529 year: 1968 ident: ref_4 article-title: Repeated sequences in DNA. Hundreds of thousands of copies of DNA sequences have been incorporated into the genomes of higher organisms publication-title: Science doi: 10.1126/science.161.3841.529 contributor: fullname: Britten – volume: 342 start-page: 846 year: 2013 ident: ref_71 article-title: Dosage compensation via transposable element mediated rewiring of a regulatory network publication-title: Science doi: 10.1126/science.1239552 contributor: fullname: Ellison – volume: 122 start-page: 356 year: 2008 ident: ref_105 article-title: Regulation of telomere length in Drosophila publication-title: Cytogenet. Genome Res. doi: 10.1159/000167823 contributor: fullname: Frydrychova – volume: 10 start-page: 15 year: 2019 ident: ref_37 article-title: Mouse germ line mutations due to retrotransposon insertions publication-title: Mob. DNA doi: 10.1186/s13100-019-0157-4 contributor: fullname: Gagnier – volume: 13 start-page: 1603 year: 2007 ident: ref_95 article-title: The birth of new exons: Mechanisms and evolutionary consequences publication-title: RNA doi: 10.1261/rna.682507 contributor: fullname: Sorek – volume: 33 start-page: 1148 year: 2014 ident: ref_45 article-title: Coordination of transposon expression with DNA replication in the targeting of telomeric retrotransposons in Drosophila publication-title: EMBO J. doi: 10.1002/embj.201386940 contributor: fullname: Zhang – ident: ref_96 doi: 10.1101/838045 – volume: 47 start-page: D759 year: 2018 ident: ref_17 article-title: FlyBase 2.0: The next generation publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky1003 contributor: fullname: Thurmond – volume: 48 start-page: D650 year: 2020 ident: ref_16 article-title: Alliance of Genome Resources C. Alliance of Genome Resources Portal: Unified model organism research platform publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkz813 contributor: fullname: Agapite – volume: 128 start-page: 1089 year: 2007 ident: ref_107 article-title: Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila publication-title: Cell doi: 10.1016/j.cell.2007.01.043 contributor: fullname: Brennecke – volume: 94 start-page: 275 year: 1994 ident: ref_49 article-title: Genetic, molecular and developmental analysis of the glutamine synthetase isozymes of Drosophila melanogaster publication-title: Genetica doi: 10.1007/BF01443441 contributor: fullname: Caggese – ident: ref_108 doi: 10.1371/journal.pgen.1008028 – volume: 154 start-page: 1255 year: 2000 ident: ref_58 article-title: Both naturally occurring insertions of transposable elements and intermediate frequency polymorphisms at the achaete-scute complex are associated with variation in bristle number in Drosophila melanogaster publication-title: Genetics doi: 10.1093/genetics/154.3.1255 contributor: fullname: Long – ident: ref_93 doi: 10.1371/journal.pgen.1005902 |
SSID | ssj0000702636 |
Score | 2.3876626 |
SecondaryResourceType | review_article |
Snippet | Transposable elements (TEs) are constitutive components of both eukaryotic and prokaryotic genomes. The role of TEs in the evolution of genes and genomes has... |
SourceID | doaj pubmedcentral crossref pubmed |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 25 |
SubjectTerms | cis-regulatory elements drosophila melanogaster enhancer genome evolution heterochromatin insulator promoter Review transposable elements |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV25TsQwELUACYkGcbNcmgKJhojEjuOYjmM5GigAiS7K2I5YCWVXm6Wg40Pg5_gSPElYbSoa2iRKrHmx30w8eY-xQ83T1BgRBTrRRRBbP-fQ837AMSlyE6EWhr533Dyou-f0sk8yOVOrL-oJa-SBm8CdSNopk1ag9WTnbKFzm9hIOdSIsc9d6tU3TGaKqXoNVr62oH1JUmkUvq4_aTWNdEhdCbLDQrVY_wwDdbsjZ-jmaoUtt3kinDXjW2Vzrlxji41z5Ps6G31_fJLqNvjZCneegY7hPMf3Y7iF6-EEbiffH1-n0CqXV_R7FPSbRvEK8gpqL08ywYZhAReDKrgfkbiypzF4-O2thkEJl-Pa5mDwmm-wp6v-48VN0JonBMbnRJOAx8qi0KmItRMofCLgIukiXlg0ORZa6iSNZS4IKyFMrEWKkbXInS5CZbXYZAvlsHTbDBIpFVqHRnEXO4-htNxnesoYbTHkpseOfoOZjRqNjMzXFhT2rBv2HjunWE-vIm3r-oBHPGsRz_5CvMe2GoCmtyEP-DQRYY-pDnSd53TPlIOXWkvbl4tplIQ7_zGwXbbEqRqnnm6xxxYm4ze3z-Yr-3ZQv50_TTTuAQ priority: 102 providerName: Directory of Open Access Journals |
Title | "What You Need, Baby, I Got It": Transposable Elements as Suppliers of Cis-Operating Sequences in Drosophila |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32028630 https://pubmed.ncbi.nlm.nih.gov/PMC7168160 https://doaj.org/article/520365d3bd074edf9ad6d17eb9bb4774 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFLU6SJW6qfrutBTdBVI3hJnYcRyzK8PwWJRWopW6i3Jth0aCzGgyLNjxIfBzfEl9nQRNtt3mLR8791z7-FzGdjXPMmNEHOlUl1Fi_ZhDH_cjjmlZmBi1MDTfcXqhzv9kR3OyyZH9Xpgg2jdY7ddX1_t19TdoK5fXZtLrxCY_v888x8_idDoZsZHnhhspevj9Kp9W0JIkGTQKn9JPOjsjPSVBApWqoZrhWUrC541YFCz7N-LQUCO5EXSOX7GXHVuEb-1XvWbPXP2GPW_rR96-ZcvHu3vy3gY_ZuHcx6E9OCzwdg_O4GSxhrP1493DAXT-5Q1tkoJ5KxdvoGggVPSkUtiwKGFWNdGPJVks-2AGF73CGqoajlah2EF1Vbxjv4_nv2anUVdCITKeGa0jniiLQmci0U6g8HTAxdLFvLRoCiy11GmWyEIQYkKYRIsMY2uRO11OldXiPduqF7X7yCCVUqF1aBR3ifNISss931PGaItTbsbsa9-Y-bJ1ysh9hkEI5EMExuyQ2vrpKnK4DgcWq8u8wzmXtEIqrUDrSY6zpS5samPlUCMmnrOO2YcWoKfH9KiOmRpAN3jP8IzvYMFRu-tQn_77zs_sBadEnOTcYpttrVc37gsbNfZmJ2T5O6GP_gPD6u7k |
link.rule.ids | 230,315,729,782,786,866,887,2106,27933,27934,53800,53802 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LTtwwFL0qVFXZtPTJtKX1olI3hEnsOI67K8PQGRWmlaBSd1H8SBsJMqPJsGDHh8DP8SX1dRI02bKN81KOnXuvfXwOwGdJ01RrFgUykUUQGzfmlIv7AVVJketISaZxvmNyKmZ_0sMxyuTwbi-MJ-1rVe5X5xf7VfnPcysXF3rY8cSGv05GLsdPoyQcbsBjN17DcK1I9z9g4QoLXJREiUbmivphK2gkQ6QkoFkNuoanCVKf16KRF-1fi0R9luRa2Dl6_sAX3oZnbZ5JvjXNL-CRrV7Ck8Z58uoVLO6ub1C1m7jRTmYugu2Rg1xd7ZEp-T5fkenq7vr2K2mVz2vcXkXGDdG8JnlNvBcommiTeUFGZR38XKA4swuD5LTjZpOyIodLb5NQnuev4ffR-Gw0CVrzhUC7nGoV0FgYxWTKYmmZYi6RsBG3ES2M0rkqJJdJGvOcIdaM6ViyVEXGKGplEQoj2RvYrOaV3QGScC6UsUoLamPr-gA31GWKQmtpVEj1AL50IGSLRmMjc7UJIpf1kRvAAWJ0fxZqY_sD8-XfrP3gGce1VW6YMi49sqaQuUlMJKySSsUu2x3A2wbY-9t0vWEAogd57zn9Foe01-JukX334Cs_wdPJ2clxdjyd_XgPWxTLeSSFsw-wuVpe2l3YqM3lR9_D_wNQoAOD |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JbpxAEC3FjhLlkn2ZrH2IlIsx0A00nVs8SzxKMrHkRMoNUd1NgmQzaBgffPOHJD_nL0kXMKPhmlyhWcSrpqrox3sAbxVPU61F6KlEFV5k3JxDl_c9jkmR6xCV0PS94_hULn6kkynJ5GytvlrSvsbysDo7P6zKXy23sj7X_oYn5p98GbsaPw2TwK9N4e_BTTdnA77TqLcvYemaC1qYJJlG4Rp7vxc1UgHREsiwhpzD04TozzsZqRXu38lGQ6bkTuqZ3fuPm74Pd_t6k33ohjyAG7Z6CLc6B8rLR1BfX_0m9W7mZj1buEx2wI5yvDxgc_ZxuWbz9fXVn_esV0Bv6DcrNu0I5w3LG9Z6gpKZNlsWbFw23teaRJpdOmSnG442Kys2WbV2CeVZ_hi-z6bfxsdeb8LgaVdbrT0eSYNCpSJSVqBwBYUNYxvywqDOsVCxStIozgVhLoSOlEgxNAa5VUUgjRJPYL9aVvYZsCSOJRqLWnIbWRcLseGuYpRaK4MB1yN4twEiqzutjcz1KIReNkRvBEeE03YUaWS3G5arn1n_0LOY1lhjI9C4MsmaQuUmMaG0qBAjV_WO4GkH7vY0m4gYgRzAPrjOcI9Du9Xk7tF9_s9HvoHbJ5NZ9nm--PQC7nDq6okbLl7C_np1YV_BXmMuXrdB_hdmbQYD |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E2%80%9CWhat+You+Need%2C+Baby%2C+I+Got+It%E2%80%9D%3A+Transposable+Elements+as+Suppliers+of+Cis-Operating+Sequences+in+Drosophila&rft.jtitle=Biology+%28Basel%2C+Switzerland%29&rft.au=Moschetti%2C+Roberta&rft.au=Palazzo%2C+Antonio&rft.au=Lorusso%2C+Patrizio&rft.au=Viggiano%2C+Luigi&rft.date=2020-02-03&rft.pub=MDPI&rft.eissn=2079-7737&rft.volume=9&rft.issue=2&rft_id=info:doi/10.3390%2Fbiology9020025&rft_id=info%3Apmid%2F32028630&rft.externalDBID=PMC7168160 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-7737&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-7737&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-7737&client=summon |