Metabolite profiling of CHO cells: Molecular reflections of bioprocessing effectiveness

Whilst development of medium and feeds has provided major advances in recombinant protein production in CHO cells, the fundamental understanding is limited. We have applied metabolite profiling with established robust (GC‐MS) analytics to define the molecular loci by which two yield‐enhancing feeds...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology journal Vol. 10; no. 9; pp. 1434 - 1445
Main Authors: Sellick, Christopher A., Croxford, Alexandra S., Maqsood, Arfa R., Stephens, Gill M., Westerhoff, Hans V., Goodacre, Royston, Dickson, Alan J.
Format: Journal Article
Language:English
Published: Weinheim WILEY-VCH Verlag 01-09-2015
WILEY‐VCH Verlag
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Whilst development of medium and feeds has provided major advances in recombinant protein production in CHO cells, the fundamental understanding is limited. We have applied metabolite profiling with established robust (GC‐MS) analytics to define the molecular loci by which two yield‐enhancing feeds improve recombinant antibody yields from a model GS‐CHO cell line. With data across core metabolic pathways, that report on metabolism within several cellular compartments, these data identify key metabolites and events associated with increased cell survival and specific productivity of cells. Of particular importance, increased process efficiency was linked to the functional activity of the mitochondria, with the amount and time course of use/production of intermediates of the citric acid cycle, for uses such as lipid biosynthesis, precursor generation and energy production, providing direct indicators of cellular status with respect to productivity. The data provide clear association between specific cellular metabolic indicators and cell process efficiency, extending from prior indications of the relevance of lactate metabolic balance to other redox sinks (glycerol, sorbitol and threitol). The information, and its interpretation, identifies targets for engineering cell culture efficiency, either from genetic or environmental perspectives, and greater understanding of the significance of specific medium components towards overall CHO cell bioprocessing. Chinese hamster ovary cells in culture can use medium components and nutrients to support growth (biomass) and/or production of desirable recombinant proteins. Understanding the metabolic events within the cell will allow for the design of nutrient feeding strategies to provide selective enhancement of recombinant protein production. This paper describes the pattern of metabolic changes associated with enhanced growth and recombinant protein production and provides a metabolic visualisation of key regulatory events that may be modified or engineered to improve production.
AbstractList Whilst development of medium and feeds has provided major advances in recombinant protein production in CHO cells, the fundamental understanding is limited. We have applied metabolite profiling with established robust (GC-MS) analytics to define the molecular loci by which two yield-enhancing feeds improve recombinant antibody yields from a model GS-CHO cell line. With data across core metabolic pathways, that report on metabolism within several cellular compartments, these data identify key metabolites and events associated with increased cell survival and specific productivity of cells. Of particular importance, increased process efficiency was linked to the functional activity of the mitochondria, with the amount and time course of use/production of intermediates of the citric acid cycle, for uses such as lipid biosynthesis, precursor generation and energy production, providing direct indicators of cellular status with respect to productivity. The data provide clear association between specific cellular metabolic indicators and cell process efficiency, extending from prior indications of the relevance of lactate metabolic balance to other redox sinks (glycerol, sorbitol and threitol). The information, and its interpretation, identifies targets for engineering cell culture efficiency, either from genetic or environmental perspectives, and greater understanding of the significance of specific medium components towards overall CHO cell bioprocessing.
Whilst development of medium and feeds has provided major advances in recombinant protein production in CHO cells, the fundamental understanding is limited. We have applied metabolite profiling with established robust (GC‐MS) analytics to define the molecular loci by which two yield‐enhancing feeds improve recombinant antibody yields from a model GS‐CHO cell line. With data across core metabolic pathways, that report on metabolism within several cellular compartments, these data identify key metabolites and events associated with increased cell survival and specific productivity of cells. Of particular importance, increased process efficiency was linked to the functional activity of the mitochondria, with the amount and time course of use/production of intermediates of the citric acid cycle, for uses such as lipid biosynthesis, precursor generation and energy production, providing direct indicators of cellular status with respect to productivity. The data provide clear association between specific cellular metabolic indicators and cell process efficiency, extending from prior indications of the relevance of lactate metabolic balance to other redox sinks (glycerol, sorbitol and threitol). The information, and its interpretation, identifies targets for engineering cell culture efficiency, either from genetic or environmental perspectives, and greater understanding of the significance of specific medium components towards overall CHO cell bioprocessing. Chinese hamster ovary cells in culture can use medium components and nutrients to support growth (biomass) and/or production of desirable recombinant proteins. Understanding the metabolic events within the cell will allow for the design of nutrient feeding strategies to provide selective enhancement of recombinant protein production. This paper describes the pattern of metabolic changes associated with enhanced growth and recombinant protein production and provides a metabolic visualisation of key regulatory events that may be modified or engineered to improve production.
Abstract Whilst development of medium and feeds has provided major advances in recombinant protein production in CHO cells, the fundamental understanding is limited. We have applied metabolite profiling with established robust (GC‐MS) analytics to define the molecular loci by which two yield‐enhancing feeds improve recombinant antibody yields from a model GS‐CHO cell line. With data across core metabolic pathways, that report on metabolism within several cellular compartments, these data identify key metabolites and events associated with increased cell survival and specific productivity of cells. Of particular importance, increased process efficiency was linked to the functional activity of the mitochondria, with the amount and time course of use/production of intermediates of the citric acid cycle, for uses such as lipid biosynthesis, precursor generation and energy production, providing direct indicators of cellular status with respect to productivity. The data provide clear association between specific cellular metabolic indicators and cell process efficiency, extending from prior indications of the relevance of lactate metabolic balance to other redox sinks (glycerol, sorbitol and threitol). The information, and its interpretation, identifies targets for engineering cell culture efficiency, either from genetic or environmental perspectives, and greater understanding of the significance of specific medium components towards overall CHO cell bioprocessing.
Whilst development of medium and feeds has provided major advances in recombinant protein production in CHO cells, the fundamental understanding is limited. We have applied metabolite profiling with established robust (GC-MS) analytics to define the molecular loci by which two yield-enhancing feeds improve recombinant antibody yields from a model GS-CHO cell line. With data across core metabolic pathways, that report on metabolism within several cellular compartments, these data identify key metabolites and events associated with increased cell survival and specific productivity of cells. Of particular importance, increased process efficiency was linked to the functional activity of the mitochondria, with the amount and time course of use/production of intermediates of the citric acid cycle, for uses such as lipid biosynthesis, precursor generation and energy production, providing direct indicators of cellular status with respect to productivity. The data provide clear association between specific cellular metabolic indicators and cell process efficiency, extending from prior indications of the relevance of lactate metabolic balance to other redox sinks (glycerol, sorbitol and threitol). The information, and its interpretation, identifies targets for engineering cell culture efficiency, either from genetic or environmental perspectives, and greater understanding of the significance of specific medium components towards overall CHO cell bioprocessing. Chinese hamster ovary cells in culture can use medium components and nutrients to support growth (biomass) and/or production of desirable recombinant proteins. Understanding the metabolic events within the cell will allow for the design of nutrient feeding strategies to provide selective enhancement of recombinant protein production. This paper describes the pattern of metabolic changes associated with enhanced growth and recombinant protein production and provides a metabolic visualisation of key regulatory events that may be modified or engineered to improve production.
Author Sellick, Christopher A.
Westerhoff, Hans V.
Stephens, Gill M.
Croxford, Alexandra S.
Maqsood, Arfa R.
Goodacre, Royston
Dickson, Alan J.
Author_xml – sequence: 1
  givenname: Christopher A.
  surname: Sellick
  fullname: Sellick, Christopher A.
  organization: Faculty of Life Sciences, The University of Manchester, Manchester, UK
– sequence: 2
  givenname: Alexandra S.
  surname: Croxford
  fullname: Croxford, Alexandra S.
  organization: Faculty of Life Sciences, The University of Manchester, Manchester, UK
– sequence: 3
  givenname: Arfa R.
  surname: Maqsood
  fullname: Maqsood, Arfa R.
  organization: Faculty of Life Sciences, The University of Manchester, Manchester, UK
– sequence: 4
  givenname: Gill M.
  surname: Stephens
  fullname: Stephens, Gill M.
  organization: The School of Chemical Engineering and Analytical Sciences, Manchester Institute of Biotechnology, The University of -Manchester, Manchester, UK
– sequence: 5
  givenname: Hans V.
  surname: Westerhoff
  fullname: Westerhoff, Hans V.
  organization: The Manchester Centre for Integrative Systems Biology, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
– sequence: 6
  givenname: Royston
  surname: Goodacre
  fullname: Goodacre, Royston
  organization: The Manchester Centre for Integrative Systems Biology, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
– sequence: 7
  givenname: Alan J.
  surname: Dickson
  fullname: Dickson, Alan J.
  email: alan.dickson@manchester.ac.uk
  organization: Faculty of Life Sciences, The University of Manchester, Manchester, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26198903$$D View this record in MEDLINE/PubMed
BookMark eNqNkEtP3DAUha2KilfZskRZdpPhOn6GXTsqDBUwqjRAd5aTXFcumZjGGR7_HkczHXVXLEu-sr9z7vU5IDtd6JCQYwoTClCcVj4MkwIoB5CSfyD7VEvIFaN8Z1NLJfUeOYjxNwAXDPgu2SskLXUJbJ_cX-Ngq9D6AbPHPjjf-u5XFlw2nc2zGts2nmXXocV61do-69GlcvChiyOTmidNjTGOInRufHvCLl18Ih-dbSMebc5Dcnv-bTGd5Vfzi8vpl6u85kLyvBFJI8pGFmipY9bWshFVWlCJstIOGdWNkEXJGlVIqxzUTte6UtxpzQVlh-Tz2jcN8meFcTBLH8e5bYdhFQ1VVAkAEOodKJRpa8USOlmjdR9iTL82j71f2v7VUDBj7mbM3WxzT4KTjfeqWmKzxf8GnYByDTz7Fl__Y2e-Xs4X_5rna62PA75stbZ_MFIxJcz9zYX58X22ADr9ae7YGyqWoUM
CitedBy_id crossref_primary_10_1016_j_bej_2023_109184
crossref_primary_10_1016_j_copbio_2017_11_015
crossref_primary_10_1002_bit_28104
crossref_primary_10_3390_metabo11120823
crossref_primary_10_1002_bit_28000
crossref_primary_10_1016_j_ymeth_2018_05_013
crossref_primary_10_1007_s10616_022_00561_z
crossref_primary_10_1074_jbc_RA120_012673
crossref_primary_10_1002_bit_26603
crossref_primary_10_1016_j_ymben_2021_07_004
crossref_primary_10_1002_btpr_3220
crossref_primary_10_1371_journal_pone_0194510
crossref_primary_10_1002_biot_201700400
crossref_primary_10_1002_bit_28403
crossref_primary_10_1002_jctb_5906
crossref_primary_10_1002_biot_202100098
crossref_primary_10_1002_elsc_201900124
crossref_primary_10_1002_bit_28399
crossref_primary_10_1002_btpr_2421
crossref_primary_10_1002_elsc_201700131
crossref_primary_10_1016_j_ymben_2018_09_009
crossref_primary_10_1002_biot_201600030
crossref_primary_10_1007_s00253_019_10048_1
crossref_primary_10_3389_fbioe_2024_1347138
crossref_primary_10_1002_btpr_3099
crossref_primary_10_1002_biot_201700499
crossref_primary_10_1016_j_biotechadv_2021_107761
crossref_primary_10_1002_biot_201900565
crossref_primary_10_1016_j_chroma_2021_462336
crossref_primary_10_1016_j_jsbmb_2016_03_029
crossref_primary_10_1007_s00253_022_12342_x
crossref_primary_10_1007_s00253_021_11755_4
crossref_primary_10_1002_biot_202200616
crossref_primary_10_1002_biot_202300495
crossref_primary_10_1002_biot_201800036
crossref_primary_10_1080_08927014_2021_1941908
crossref_primary_10_3390_cells11121929
Cites_doi 10.1002/bit.24826
10.1002/bit.24496
10.1007/s11306-010-0216-9
10.1016/j.ymben.2014.02.001
10.1042/bj3130991
10.1016/j.jbiotec.2010.12.010
10.1186/1471-2091-3-19
10.1016/j.ymben.2010.09.003
10.1038/nbt0910-917
10.1002/btpr.238
10.1016/j.jbiotec.2010.03.018
10.1002/bit.24858
10.1002/bit.24580
10.1002/btpr.443
10.3390/pr1030296
10.1002/bit.25266
10.1002/bit.24983
10.1021/ac8016899
10.1016/j.nbt.2012.05.021
10.1002/bit.24728
10.1002/bit.23031
10.1016/j.ymben.2012.10.001
10.1016/j.ymben.2011.12.006
10.1007/978-1-61779-921-1_15
10.1016/j.jbiotec.2013.01.025
10.1002/bit.23269
10.1002/btpr.442
10.1038/nbt1026
10.1002/bit.23291
10.1042/BST0351187
10.1371/journal.pone.0034512
10.1038/nprot.2011.366
10.1007/s10616-013-9648-1
10.1002/bit.24445
10.1007/s10529-011-0798-y
ContentType Journal Article
Copyright Copyright © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: Copyright © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7QO
8FD
FR3
P64
DOI 10.1002/biot.201400664
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList MEDLINE

CrossRef
Engineering Research Database
Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Agriculture
EISSN 1860-7314
EndPage 1445
ExternalDocumentID 10_1002_biot_201400664
26198903
BIOT201400664
ark_67375_WNG_QJHT01CX_V
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/E005985/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/G023581/2
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/F003536/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/G023581/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/C008219/1
– fundername: Biotechnology and Biological Sciences Research Council
  grantid: BB/I004688/1
GroupedDBID ---
05W
0R~
1L6
1OC
23N
31~
33P
3WU
4.4
53G
5GY
6P2
8-0
8-1
8UM
A00
AAESR
AAHHS
AAIHA
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
ASPBG
AUFTA
AVWKF
AZFZN
AZVAB
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BRXPI
BSCLL
CS3
DCZOG
DRFUL
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F5P
FEDTE
G-S
GODZA
HGLYW
HHZ
HVGLF
HZ~
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O66
O9-
OIG
P2P
P2W
P4E
QRW
ROL
RWI
RYL
SUPJJ
SV3
WBKPD
WIH
WIK
WNSPC
WOHZO
WXSBR
WYISQ
WYJ
XV2
ZZTAW
~S-
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
7QO
8FD
FR3
P64
ID FETCH-LOGICAL-c4564-d5fec59d62ea1f3aac6d5bbbb0b59b8fe318d56293d726a7f0cf8c8b74f884513
IEDL.DBID 33P
ISSN 1860-6768
IngestDate Wed Jul 24 12:43:18 EDT 2024
Fri Aug 16 00:57:48 EDT 2024
Fri Aug 23 00:59:59 EDT 2024
Sat Sep 28 08:23:19 EDT 2024
Sat Aug 24 01:00:07 EDT 2024
Wed Oct 30 09:55:45 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Metabolomics
Glutamine synthetase
Bioprocessing
Recombinant antibody
Gas chromatography-mass spectrometry (GC-MS)
Language English
License Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4564-d5fec59d62ea1f3aac6d5bbbb0b59b8fe318d56293d726a7f0cf8c8b74f884513
Notes ark:/67375/WNG-QJHT01CX-V
istex:0A4957A959E9CE32F0BDC1E888DA5B7624B768A3
ArticleID:BIOT201400664
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://pure.manchester.ac.uk/ws/files/23717840/POST-PEER-REVIEW-NON-PUBLISHERS.PDF
PMID 26198903
PQID 1709709873
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_1717500057
proquest_miscellaneous_1709709873
crossref_primary_10_1002_biot_201400664
pubmed_primary_26198903
wiley_primary_10_1002_biot_201400664_BIOT201400664
istex_primary_ark_67375_WNG_QJHT01CX_V
PublicationCentury 2000
PublicationDate 2015-09
September 2015
2015-Sep
2015-09-00
20150901
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09
PublicationDecade 2010
PublicationPlace Weinheim
PublicationPlace_xml – name: Weinheim
– name: Germany
PublicationTitle Biotechnology journal
PublicationTitleAlternate Biotechnology Journal
PublicationYear 2015
Publisher WILEY-VCH Verlag
WILEY‐VCH Verlag
Publisher_xml – name: WILEY-VCH Verlag
– name: WILEY‐VCH Verlag
References Zagari, F., Jordan, M., Stettler, M., Broly, H. et al., Lactate metabolism shift in CHO cell culture: The role of mitochondrial oxidative activity. New Biotech. 2013, 30, 238-245.
Nolan, R. P., Lee, K., Dynamic model of CHO cell metabolism. Metab. Eng. 2011, 13, 108-124.
Selvarasu, S., Ho, Y. S., Chong, W. P. K., Wong, N. S. C. et al., Combined in silico modeling and metabolomics analysis to characterise fed-batch CHO cell culture. Biotechnol. Bioeng. 2012, 109, 1415-1429.
House, J. D., Hall, B. N., Brosnan, J. T., Threonine metabolism in isolated rat hepatocytes. Am. J. Physiol. 2001, 281, E1300-E1307.
Wurm, F. M., Production of recombinant protein therapeutics in cultivated mammalian cells. Nat. Biotechnol. 2004, 22, 1393-1398.
Behjousiar, A., Kontoravdi, C., Polizzi, K. M., In situ monitoring of intracellular glucose and glutamine in CHO cell culture. PLoS One 2012, 7, e34512.
Ahn, W. S., Antoniewicz, M. R., Parallel labeling experiments with [1,2-13C] glucose and [U-13C] glutamine provide new insights into CHO cell metabolism. Metab. Eng. 2013, 15, 34-47.
Chong, W. P. K., Reddy, S. G., Yusufi, F. N. K., Lee, D. Y. et al., Metabolomics-driven approach for the improvement of Chinese hamster ovary cell growth: Overexpression of malate dehydrogenase II. J. Biotechnol. 2010, 147, 116-121.
Sellick, C. A., Hansen, R., Maqsood, A. R., Dunn, W. B. et al., Effective quenching processes for physiologically valid metabolite profiling of suspension cultured mammalian cells. Analyt. Chem. 2009, 81, 174-183.
Sellick, C. A., Hansen, R., Stephens, G. M., Goodacre, R. et al., Metabolite extraction from suspension-cultured mammalian cells for global metabolite profiling. Nat. Protoc. 2011, 6, 1241-1249.
Luo, J., Vijayasankaran, N., Austen, J., Santury, R. et al., Comparative metabolite analysis to understand lactate metabolism shift in Chinese hamster ovary cell culture process. Biotechnol. Bioeng. 2012, 109, 146-156.
Porter, A. J., Dickson, A. J., Racher, A. J., Strategies for selecting recombinant CHO cell lines for cGMP manufacturing: Realising the potential in bioreactors. Biotechnol. Prog. 2010, 26, 1446-1454.
Chen, F., Ye, Z., Zhao, L., Liu, X. et al., Correlation of antibody production rate with glucose and lactate metabolism in Chinese hamster ovary cells. Biotechnol. Lett. 2012, 34, 425-432.
Wurm, F. M., CHO Quasispecies - implications for manufacturing processes. Processes 2013, 1, 296-311.
Chen, N., Bennett, M. H., Kontoravdi, C., Analysis of Chinese hamster ovary cell metabolism through a combined computational and experimental approach. Cytotechnology 2014, 66, 945-966.
Sellick, C. A., Croxford, A. S., Maqsood, A. R., Stephens, G. M. et al., Metabolite profiling of recombinant CHO cells: Designing tailored feeding regimes that enhance recombinant antibody production. Biotechnol. Bioeng. 2011, 108, 3025-3031.
Porter, A. J., Racher, A. J., Preziosi, R., Dickson, A. J., Strategies for selecting recombinant CHO cell lines for cGMP manufacturing: Improving the efficiency of cell line generation. Biotechnol. Prog. 2010, 26, 1455-1464.
Sheikholesami, Z., Jolicoeur, M., Henry, O., Probing the metabolism of an inducible mammalian expression system using extracellular isotopomer analysis. J. Biotechnol. 2013, 164, 469-478.
Proud, C. G., Amino acids and mTOR signaling. Biochem. Soc. Trans. 2007, 35, 1187-1190.
Carinhas, N., Duarte, T. M., Barreiro, L. C., Carrondo, M. J. T. et al., Metabolic signatures of GS-CHO cell clones associated with butyrate treatment and culture phase transition. Biotechnol. Bioeng. 2013, 110, 3244-3257.
Sellick, C. A., Knight, D., Croxford, A. S., Maqsood, A. R. et al., Evaluation of extraction processes for intracellular metabolite profiling of mammalian cells: Matching extraction processes to cell type and metabolite targets. Metabolomics 2010, 6, 427-438.
Templeton, N., Dean, J., Reddy, P., Young, J. D., Peak antibody production isassociated with increased oxidative metabolism in an industrially-relevant fed-batch CHO cell culture. Biotechnol. Bioeng. 2013, 110, 2013-2024.
Wahrheit, J., Niklas, J., Heinzle, E., Metabolic control at the cytosol-mitochondria interface in different growth phases of CHO cells, Metab. Eng. 2014, 23, 9-21.
Chong, W. P. K., Yusufi, F. N. K., Lee, D. Y., Reddy, S. G. et al., Metabolomics-based identification of apoptosis-inducing metabolites in recombinant fed-batch CHO culture media. J. Biotechnol. 2011, 151, 218-224.
Ma, N., Ellet, J., Okediadi, C., Hermes, P. et al., Single nutrient feed supports both chemically defined NS0 and CHO fed-batch processes: Improved productivity and lactate production. Biotechnol. Prog. 2009, 25, 1353-1363.
Jostock, T., Knopf, H.-P., Mammalian stable expression of biotherapeutics. Methods Mol. Biol. 2012, 899, 227-238.
Narkewicz, M. R., Sauls, S. D., Tjoa, S. S., Teng, C. et al., Evidence for intracellular partitioning of serine and glycne metabolism in Chinese hamster ovary cells. Biochem. J. 1996, 313, 991-998.
Edgar, A. J., Cloning and tissue distribution of mammalian L-threonine 3-dehydrogenases. BMC Biochem. 2002, 3, 19.
Martinez, V. S., Dietmair, S., Quek, L-E., Hodson, M. P. et al., Flux balance analysis of CHO cells before and after a metabolic switch from lactate production to consumption. Biotechnol. Bioeng. 2012, 110, 660-666.
Duarte, T. M., Carinhas, N., Barreiro, L. C., Carrondo, M. J. T. et al., Metabolic Responses of CHO cells to limitation of key amino acids. Biotechnol. Bioeng. 2014, 111, 2095-2106.
Dietmair, S., Hodson, M. P., Quek, L-E., Timmins, N. K. et al., Metabolite profiling of CHO cells with different growth characteristics. Biotechnol. Bioeng. 2012, 109, 1404-1414.
Yu, M., Hu, Z., Pacis, E., Vijayasankaran, N. et al., Understanding the intracellular effect of enhanced nutrient feeding: Toward high titer antibody production process. Biotechnol. Bioeng. 2011, 108, 10789-1088.
Dean, J., Reddy, P., Metabolic analysis of antibody producing CHO cellsin fed-batch production. Biotechnol. Bioeng. 2013, 110, 1735-1747.
Mulukutla, B. C., Gramer, M., Hu, W-S., On metabolic shift to lactate consumption in fed-batch culture of mammalian cells. Metab. Eng. 2012, 14, 138-149.
Chong, W. P. K., Thng, S. H., Hiu, A. P., Lee, D-Y. et al., LC-MS-based metabolic characterisation of high monoclonal antibody-producing Chinese hamster ovary cells. Biotechnol. Bioeng. 2012, 109, 3103-3111.
Walsh, G., Biopharmaceutical benchmarks 2010. Nat. Biotechnol. 2010, 28, 917-924.
2004; 22
2009; 25
2013; 1
2009; 81
2001; 281
2010; 147
2002; 3
2011; 13
2013; 164
2012; 14
2014; 111
2011; 151
2011; 6
2012; 34
2007; 35
2014; 23
2014; 66
2012; 109
2013; 15
2012; 110
2011; 108
2010; 26
2010; 28
2013; 30
2013; 110
1996; 313
2012; 7
2012; 899
2010; 6
e_1_2_7_5_2
e_1_2_7_4_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_19_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_13_2
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
e_1_2_7_26_2
e_1_2_7_27_2
e_1_2_7_28_2
House J. D. (e_1_2_7_29_2) 2001; 281
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_35_2
e_1_2_7_36_2
e_1_2_7_37_2
References_xml – volume: 899
  start-page: 227
  year: 2012
  end-page: 238
  article-title: Mammalian stable expression of biotherapeutics.
  publication-title: Methods Mol. Biol.
– volume: 110
  start-page: 2013
  year: 2013
  end-page: 2024
  article-title: Peak antibody production isassociated with increased oxidative metabolism in an industrially‐relevant fed‐batch CHO cell culture.
  publication-title: Biotechnol. Bioeng.
– volume: 1
  start-page: 296
  year: 2013
  end-page: 311
  article-title: CHO Quasispecies – implications for manufacturing processes.
  publication-title: Processes
– volume: 6
  start-page: 427
  year: 2010
  end-page: 438
  article-title: Evaluation of extraction processes for intracellular metabolite profiling of mammalian cells: Matching extraction processes to cell type and metabolite targets.
  publication-title: Metabolomics
– volume: 25
  start-page: 1353
  year: 2009
  end-page: 1363
  article-title: Single nutrient feed supports both chemically defined NS0 and CHO fed‐batch processes: Improved productivity and lactate production.
  publication-title: Biotechnol. Prog.
– volume: 108
  start-page: 10789
  year: 2011
  end-page: 1088
  article-title: Understanding the intracellular effect of enhanced nutrient feeding: Toward high titer antibody production process.
  publication-title: Biotechnol. Bioeng.
– volume: 109
  start-page: 1415
  year: 2012
  end-page: 1429
  article-title: Combined in silico modeling and metabolomics analysis to characterise fed‐batch CHO cell culture.
  publication-title: Biotechnol. Bioeng.
– volume: 111
  start-page: 2095
  year: 2014
  end-page: 2106
  article-title: Metabolic Responses of CHO cells to limitation of key amino acids.
  publication-title: Biotechnol. Bioeng.
– volume: 164
  start-page: 469
  year: 2013
  end-page: 478
  article-title: Probing the metabolism of an inducible mammalian expression system using extracellular isotopomer analysis.
  publication-title: J. Biotechnol.
– volume: 6
  start-page: 1241
  year: 2011
  end-page: 1249
  article-title: Metabolite extraction from suspension‐cultured mammalian cells for global metabolite profiling.
  publication-title: Nat. Protoc.
– volume: 22
  start-page: 1393
  year: 2004
  end-page: 1398
  article-title: Production of recombinant protein therapeutics in cultivated mammalian cells.
  publication-title: Nat. Biotechnol.
– volume: 66
  start-page: 945
  year: 2014
  end-page: 966
  article-title: Analysis of Chinese hamster ovary cell metabolism through a combined computational and experimental approach.
  publication-title: Cytotechnology
– volume: 81
  start-page: 174
  year: 2009
  end-page: 183
  article-title: Effective quenching processes for physiologically valid metabolite profiling of suspension cultured mammalian cells.
  publication-title: Analyt. Chem.
– volume: 34
  start-page: 425
  year: 2012
  end-page: 432
  article-title: Correlation of antibody production rate with glucose and lactate metabolism in Chinese hamster ovary cells.
  publication-title: Biotechnol. Lett.
– volume: 14
  start-page: 138
  year: 2012
  end-page: 149
  article-title: On metabolic shift to lactate consumption in fed‐batch culture of mammalian cells.
  publication-title: Metab. Eng.
– volume: 26
  start-page: 1455
  year: 2010
  end-page: 1464
  article-title: Strategies for selecting recombinant CHO cell lines for cGMP manufacturing: Improving the efficiency of cell line generation.
  publication-title: Biotechnol. Prog.
– volume: 110
  start-page: 1735
  year: 2013
  end-page: 1747
  article-title: Metabolic analysis of antibody producing CHO cellsin fed‐batch production.
  publication-title: Biotechnol. Bioeng.
– volume: 35
  start-page: 1187
  year: 2007
  end-page: 1190
  article-title: Amino acids and mTOR signaling.
  publication-title: Biochem. Soc. Trans.
– volume: 108
  start-page: 3025
  year: 2011
  end-page: 3031
  article-title: Metabolite profiling of recombinant CHO cells: Designing tailored feeding regimes that enhance recombinant antibody production.
  publication-title: Biotechnol. Bioeng.
– volume: 13
  start-page: 108
  year: 2011
  end-page: 124
  article-title: Dynamic model of CHO cell metabolism.
  publication-title: Metab. Eng.
– volume: 147
  start-page: 116
  year: 2010
  end-page: 121
  article-title: Metabolomics‐driven approach for the improvement of Chinese hamster ovary cell growth: Overexpression of malate dehydrogenase II.
  publication-title: J. Biotechnol.
– volume: 23
  start-page: 9
  year: 2014
  end-page: 21
  article-title: Metabolic control at the cytosol‐mitochondria interface in different growth phases of CHO cells
  publication-title: Metab. Eng.
– volume: 3
  start-page: 19
  year: 2002
  article-title: Cloning and tissue distribution of mammalian L‐threonine 3‐dehydrogenases
  publication-title: BMC Biochem.
– volume: 28
  start-page: 917
  year: 2010
  end-page: 924
  article-title: Biopharmaceutical benchmarks 2010.
  publication-title: Nat. Biotechnol.
– volume: 151
  start-page: 218
  year: 2011
  end-page: 224
  article-title: Metabolomics‐based identification of apoptosis‐inducing metabolites in recombinant fed‐batch CHO culture media.
  publication-title: J. Biotechnol.
– volume: 110
  start-page: 3244
  year: 2013
  end-page: 3257
  article-title: Metabolic signatures of GS‐CHO cell clones associated with butyrate treatment and culture phase transition.
  publication-title: Biotechnol. Bioeng.
– volume: 15
  start-page: 34
  year: 2013
  end-page: 47
  article-title: Parallel labeling experiments with [1,2‐ C] glucose and [U‐ C] glutamine provide new insights into CHO cell metabolism.
  publication-title: Metab. Eng.
– volume: 313
  start-page: 991
  year: 1996
  end-page: 998
  article-title: Evidence for intracellular partitioning of serine and glycne metabolism in Chinese hamster ovary cells.
  publication-title: Biochem. J.
– volume: 109
  start-page: 1404
  year: 2012
  end-page: 1414
  article-title: Metabolite profiling of CHO cells with different growth characteristics.
  publication-title: Biotechnol. Bioeng.
– volume: 109
  start-page: 146
  year: 2012
  end-page: 156
  article-title: Comparative metabolite analysis to understand lactate metabolism shift in Chinese hamster ovary cell culture process.
  publication-title: Biotechnol. Bioeng.
– volume: 30
  start-page: 238
  year: 2013
  end-page: 245
  article-title: Lactate metabolism shift in CHO cell culture: The role of mitochondrial oxidative activity.
  publication-title: New Biotech.
– volume: 109
  start-page: 3103
  year: 2012
  end-page: 3111
  article-title: LC‐MS‐based metabolic characterisation of high monoclonal antibody‐producing Chinese hamster ovary cells.
  publication-title: Biotechnol. Bioeng.
– volume: 7
  start-page: e34512
  year: 2012
  article-title: In situ monitoring of intracellular glucose and glutamine in CHO cell culture.
  publication-title: PLoS One
– volume: 281
  start-page: E1300
  year: 2001
  end-page: E1307
  article-title: Threonine metabolism in isolated rat hepatocytes.
  publication-title: Am. J. Physiol.
– volume: 110
  start-page: 660
  year: 2012
  end-page: 666
  article-title: Flux balance analysis of CHO cells before and after a metabolic switch from lactate production to consumption.
  publication-title: Biotechnol. Bioeng.
– volume: 26
  start-page: 1446
  year: 2010
  end-page: 1454
  article-title: Strategies for selecting recombinant CHO cell lines for cGMP manufacturing: Realising the potential in bioreactors.
  publication-title: Biotechnol. Prog.
– ident: e_1_2_7_18_2
  doi: 10.1002/bit.24826
– ident: e_1_2_7_13_2
  doi: 10.1002/bit.24496
– ident: e_1_2_7_22_2
  doi: 10.1007/s11306-010-0216-9
– ident: e_1_2_7_34_2
  doi: 10.1016/j.ymben.2014.02.001
– ident: e_1_2_7_31_2
  doi: 10.1042/bj3130991
– ident: e_1_2_7_12_2
  doi: 10.1016/j.jbiotec.2010.12.010
– ident: e_1_2_7_30_2
  doi: 10.1186/1471-2091-3-19
– ident: e_1_2_7_35_2
  doi: 10.1016/j.ymben.2010.09.003
– ident: e_1_2_7_3_2
  doi: 10.1038/nbt0910-917
– ident: e_1_2_7_8_2
  doi: 10.1002/btpr.238
– ident: e_1_2_7_19_2
  doi: 10.1016/j.jbiotec.2010.03.018
– ident: e_1_2_7_16_2
  doi: 10.1002/bit.24858
– ident: e_1_2_7_17_2
  doi: 10.1002/bit.24580
– ident: e_1_2_7_25_2
  doi: 10.1002/btpr.443
– ident: e_1_2_7_4_2
  doi: 10.3390/pr1030296
– ident: e_1_2_7_11_2
  doi: 10.1002/bit.25266
– ident: e_1_2_7_14_2
  doi: 10.1002/bit.24983
– ident: e_1_2_7_23_2
  doi: 10.1021/ac8016899
– ident: e_1_2_7_33_2
  doi: 10.1016/j.nbt.2012.05.021
– ident: e_1_2_7_36_2
  doi: 10.1002/bit.24728
– ident: e_1_2_7_6_2
  doi: 10.1002/bit.23031
– ident: e_1_2_7_21_2
  doi: 10.1016/j.ymben.2012.10.001
– ident: e_1_2_7_28_2
  doi: 10.1016/j.ymben.2011.12.006
– ident: e_1_2_7_5_2
  doi: 10.1007/978-1-61779-921-1_15
– ident: e_1_2_7_15_2
  doi: 10.1016/j.jbiotec.2013.01.025
– ident: e_1_2_7_7_2
  doi: 10.1002/bit.23269
– ident: e_1_2_7_9_2
  doi: 10.1002/btpr.442
– ident: e_1_2_7_2_2
  doi: 10.1038/nbt1026
– volume: 281
  start-page: E1300
  year: 2001
  ident: e_1_2_7_29_2
  article-title: Threonine metabolism in isolated rat hepatocytes.
  publication-title: Am. J. Physiol.
  contributor:
    fullname: House J. D.
– ident: e_1_2_7_26_2
  doi: 10.1002/bit.23291
– ident: e_1_2_7_32_2
  doi: 10.1042/BST0351187
– ident: e_1_2_7_10_2
  doi: 10.1371/journal.pone.0034512
– ident: e_1_2_7_24_2
  doi: 10.1038/nprot.2011.366
– ident: e_1_2_7_37_2
  doi: 10.1007/s10616-013-9648-1
– ident: e_1_2_7_20_2
  doi: 10.1002/bit.24445
– ident: e_1_2_7_27_2
  doi: 10.1007/s10529-011-0798-y
SSID ssj0045304
Score 2.3323398
Snippet Whilst development of medium and feeds has provided major advances in recombinant protein production in CHO cells, the fundamental understanding is limited. We...
Abstract Whilst development of medium and feeds has provided major advances in recombinant protein production in CHO cells, the fundamental understanding is...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 1434
SubjectTerms Animals
Bioprocessing
Biotechnology - methods
CHO Cells
Cricetinae
Cricetulus
Culture Media - metabolism
Gas Chromatography-Mass Spectrometry
Gas chromatography-mass spectrometry (GC-MS)
Glutamine synthetase
Intracellular Space - metabolism
Metabolomics
Metabolomics - methods
Recombinant antibody
Recombinant Proteins - metabolism
Title Metabolite profiling of CHO cells: Molecular reflections of bioprocessing effectiveness
URI https://api.istex.fr/ark:/67375/WNG-QJHT01CX-V/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbiot.201400664
https://www.ncbi.nlm.nih.gov/pubmed/26198903
https://search.proquest.com/docview/1709709873
https://search.proquest.com/docview/1717500057
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEA_VvuiDWlv1tC0riD4tZj-ySXyzp_YU_MKz-haSSyKi7MmtB_75ndncrj0oFuyyD8kyIdnMJPklzPxCyJYuAESnxscmZyLOGXJAUpvETGbGcW5B03im27viZ7fi4BBpctoo_sAP0R644cio52sc4NpUu6-koeZ-iL6QsEGAVRMJQSFVx3BkF81UnLOsvj8wEQX6uBeiYW2k6e508alV6SN28MvfIOc0gq2XoKPF_2_8ElmYwM9oP9jLJ_LBlctkfv9uNKHgcJD7g6LwM7k5dc9gJxipHIX7veFzNPRRt3ce4al_tRedNlfsRvBjj7VvV1mhDNT_FAIRsFBwHZnMrl_I9dFhv9uLJ5cxxANknIktAxkmbZE6nfhM60FhmYGHGiaN8HiWagFMyczytNDc04EXA2F47oXIWZKtkNlyWLo1ElmZeku5l0JawA9UGo80-1Ym3sm80B2y0yhDPQXODRXYlVOFHafajuuQ7VpXrZgePaCnGmfq5uynujzp9WnSvVW_OmSzUaaC8YPdo0s3HFcq4VTCK3j2lgyALES3vENWgyW0NeIOVEgKpdNa4f9osfpxfN5vc-vvKbRB5iDNgqPbVzL7PBq7b2SmsuPvtfX_BudPA5Y
link.rule.ids 315,782,786,1408,27935,27936,46066,46490
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-x7QF44PujfAYJwVM0J7Fjm7dSNjJYOxCF7c2Ka3uaQOnUrhJ_PndxE6iEQEJEeYl1Jzt3Pvt8Ov8O4HldohOd25BaLlTKBWFAMpelQhfWS-lQ0xTTrT7JyYl6s0cwOcPuLkzEh-gDbmQZ7XpNBk4B6d2fqKH2bE7JkHhCwG2Tb8EOL7mm6g1F8aFbjLko2gqCmSopy71UHW4jy3c3-Tf2pR0S8fffOZ2bPmy7Ce1f_w_DvwHX1h5oMoxT5iZc8s0tuDo8XaxRODx-_YJSeBuOx_4CpwpdVk5iiW9sTuYhGVVHCQX-l6-ScVdlN8E_-9amdzVLosH-z-NdBGKK2SPrBfYOfN7fm46qdF2PIZ0R6EzqBNII7crc11ko6npWOmHxYVZoqwKFUx36U7pwMi9rGdgsqJmykgeluMiKu7DdzBt_HxKn8-CYDFpphy4E0zYQ0r7TWfCal_UAXnbaMOcRdsNEgOXckOBML7gBvGiV1ZPVi6-UrCaFOZ68NR_fVVOWjU7MlwE867Rp0IRIPHXj56ulySTT-CpZ_IkG_SxycOUA7sWp0PdIh1ClGXLnrcb_MmLz-uBo2n89-Bemp3C5mo4PzeHB5P1DuILtIua9PYLti8XKP4atpVs9aU3hBzoQB7c
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_tQ0LwAONjo4xBkBA8RXM-HNt7G91KB6wbomx7s-LaRmhTWrWrxJ_PXdyEVZqYBFFeYtmyc-ePn093vwN4WxYIolPjY5NzGeecOCCZTWKuMuOEsKhpsun2v4nBhTw4JJqcNoo_8EO0BjdaGfV-TQt8Yv3uH9JQ83NMvpB4QcBTM1-F9ZywOAVxZKfNXpzzrE4gmMiCnNwL2dA2snR3uf3SsbROEv51G-ZchrD1GdR79P-j34CHC_wZ7YcJ8xhWXPUEHuz_mC44OBx-3eAofArnx-4aJwqFKkchwTcWR2MfdfsnEZn9Z3vRcZNjN8Ifu6qdu6oZ1cH-JyESgRoF35HF9voMvvcOh91-vMjGEI-Icia2HOtwZYvUlYnPynJUWG7wYYYrIz0ZUy2iKZVZkRal8Gzk5UgakXspc55km7BWjSv3HCKrUm-Z8EoqiwCCKeOJZ9-qxDuVF2UH3jfK0JNAuqEDvXKqSXC6FVwH3tW6aquV00tyVRNcnw8-6q-f-kOWdC_0WQfeNMrUuIBIPGXlxvOZTgRT-EqR_a0OoiyCt6IDW2EmtD3SFVQqhq3TWuF3jFh_ODoZtl8v_qXRa7h3etDTX44Gn7fhPhbz4PT2Etaup3O3A6szO39VL4TfEuMGZg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolite+profiling+of+CHO+cells%3A+Molecular+reflections+of+bioprocessing+effectiveness&rft.jtitle=Biotechnology+journal&rft.au=Sellick%2C+Christopher+A.&rft.au=Croxford%2C+Alexandra+S.&rft.au=Maqsood%2C+Arfa+R.&rft.au=Stephens%2C+Gill+M.&rft.date=2015-09-01&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1860-6768&rft.eissn=1860-7314&rft.volume=10&rft.issue=9&rft.spage=1434&rft.epage=1445&rft_id=info:doi/10.1002%2Fbiot.201400664&rft.externalDBID=10.1002%252Fbiot.201400664&rft.externalDocID=BIOT201400664
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-6768&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-6768&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-6768&client=summon