Metabolite profiling of CHO cells: Molecular reflections of bioprocessing effectiveness
Whilst development of medium and feeds has provided major advances in recombinant protein production in CHO cells, the fundamental understanding is limited. We have applied metabolite profiling with established robust (GC‐MS) analytics to define the molecular loci by which two yield‐enhancing feeds...
Saved in:
Published in: | Biotechnology journal Vol. 10; no. 9; pp. 1434 - 1445 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Weinheim
WILEY-VCH Verlag
01-09-2015
WILEY‐VCH Verlag |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | Whilst development of medium and feeds has provided major advances in recombinant protein production in CHO cells, the fundamental understanding is limited. We have applied metabolite profiling with established robust (GC‐MS) analytics to define the molecular loci by which two yield‐enhancing feeds improve recombinant antibody yields from a model GS‐CHO cell line. With data across core metabolic pathways, that report on metabolism within several cellular compartments, these data identify key metabolites and events associated with increased cell survival and specific productivity of cells. Of particular importance, increased process efficiency was linked to the functional activity of the mitochondria, with the amount and time course of use/production of intermediates of the citric acid cycle, for uses such as lipid biosynthesis, precursor generation and energy production, providing direct indicators of cellular status with respect to productivity. The data provide clear association between specific cellular metabolic indicators and cell process efficiency, extending from prior indications of the relevance of lactate metabolic balance to other redox sinks (glycerol, sorbitol and threitol). The information, and its interpretation, identifies targets for engineering cell culture efficiency, either from genetic or environmental perspectives, and greater understanding of the significance of specific medium components towards overall CHO cell bioprocessing.
Chinese hamster ovary cells in culture can use medium components and nutrients to support growth (biomass) and/or production of desirable recombinant proteins. Understanding the metabolic events within the cell will allow for the design of nutrient feeding strategies to provide selective enhancement of recombinant protein production. This paper describes the pattern of metabolic changes associated with enhanced growth and recombinant protein production and provides a metabolic visualisation of key regulatory events that may be modified or engineered to improve production. |
---|---|
AbstractList | Whilst development of medium and feeds has provided major advances in recombinant protein production in CHO cells, the fundamental understanding is limited. We have applied metabolite profiling with established robust (GC-MS) analytics to define the molecular loci by which two yield-enhancing feeds improve recombinant antibody yields from a model GS-CHO cell line. With data across core metabolic pathways, that report on metabolism within several cellular compartments, these data identify key metabolites and events associated with increased cell survival and specific productivity of cells. Of particular importance, increased process efficiency was linked to the functional activity of the mitochondria, with the amount and time course of use/production of intermediates of the citric acid cycle, for uses such as lipid biosynthesis, precursor generation and energy production, providing direct indicators of cellular status with respect to productivity. The data provide clear association between specific cellular metabolic indicators and cell process efficiency, extending from prior indications of the relevance of lactate metabolic balance to other redox sinks (glycerol, sorbitol and threitol). The information, and its interpretation, identifies targets for engineering cell culture efficiency, either from genetic or environmental perspectives, and greater understanding of the significance of specific medium components towards overall CHO cell bioprocessing. Whilst development of medium and feeds has provided major advances in recombinant protein production in CHO cells, the fundamental understanding is limited. We have applied metabolite profiling with established robust (GC‐MS) analytics to define the molecular loci by which two yield‐enhancing feeds improve recombinant antibody yields from a model GS‐CHO cell line. With data across core metabolic pathways, that report on metabolism within several cellular compartments, these data identify key metabolites and events associated with increased cell survival and specific productivity of cells. Of particular importance, increased process efficiency was linked to the functional activity of the mitochondria, with the amount and time course of use/production of intermediates of the citric acid cycle, for uses such as lipid biosynthesis, precursor generation and energy production, providing direct indicators of cellular status with respect to productivity. The data provide clear association between specific cellular metabolic indicators and cell process efficiency, extending from prior indications of the relevance of lactate metabolic balance to other redox sinks (glycerol, sorbitol and threitol). The information, and its interpretation, identifies targets for engineering cell culture efficiency, either from genetic or environmental perspectives, and greater understanding of the significance of specific medium components towards overall CHO cell bioprocessing. Chinese hamster ovary cells in culture can use medium components and nutrients to support growth (biomass) and/or production of desirable recombinant proteins. Understanding the metabolic events within the cell will allow for the design of nutrient feeding strategies to provide selective enhancement of recombinant protein production. This paper describes the pattern of metabolic changes associated with enhanced growth and recombinant protein production and provides a metabolic visualisation of key regulatory events that may be modified or engineered to improve production. Abstract Whilst development of medium and feeds has provided major advances in recombinant protein production in CHO cells, the fundamental understanding is limited. We have applied metabolite profiling with established robust (GC‐MS) analytics to define the molecular loci by which two yield‐enhancing feeds improve recombinant antibody yields from a model GS‐CHO cell line. With data across core metabolic pathways, that report on metabolism within several cellular compartments, these data identify key metabolites and events associated with increased cell survival and specific productivity of cells. Of particular importance, increased process efficiency was linked to the functional activity of the mitochondria, with the amount and time course of use/production of intermediates of the citric acid cycle, for uses such as lipid biosynthesis, precursor generation and energy production, providing direct indicators of cellular status with respect to productivity. The data provide clear association between specific cellular metabolic indicators and cell process efficiency, extending from prior indications of the relevance of lactate metabolic balance to other redox sinks (glycerol, sorbitol and threitol). The information, and its interpretation, identifies targets for engineering cell culture efficiency, either from genetic or environmental perspectives, and greater understanding of the significance of specific medium components towards overall CHO cell bioprocessing. Whilst development of medium and feeds has provided major advances in recombinant protein production in CHO cells, the fundamental understanding is limited. We have applied metabolite profiling with established robust (GC-MS) analytics to define the molecular loci by which two yield-enhancing feeds improve recombinant antibody yields from a model GS-CHO cell line. With data across core metabolic pathways, that report on metabolism within several cellular compartments, these data identify key metabolites and events associated with increased cell survival and specific productivity of cells. Of particular importance, increased process efficiency was linked to the functional activity of the mitochondria, with the amount and time course of use/production of intermediates of the citric acid cycle, for uses such as lipid biosynthesis, precursor generation and energy production, providing direct indicators of cellular status with respect to productivity. The data provide clear association between specific cellular metabolic indicators and cell process efficiency, extending from prior indications of the relevance of lactate metabolic balance to other redox sinks (glycerol, sorbitol and threitol). The information, and its interpretation, identifies targets for engineering cell culture efficiency, either from genetic or environmental perspectives, and greater understanding of the significance of specific medium components towards overall CHO cell bioprocessing. Chinese hamster ovary cells in culture can use medium components and nutrients to support growth (biomass) and/or production of desirable recombinant proteins. Understanding the metabolic events within the cell will allow for the design of nutrient feeding strategies to provide selective enhancement of recombinant protein production. This paper describes the pattern of metabolic changes associated with enhanced growth and recombinant protein production and provides a metabolic visualisation of key regulatory events that may be modified or engineered to improve production. |
Author | Sellick, Christopher A. Westerhoff, Hans V. Stephens, Gill M. Croxford, Alexandra S. Maqsood, Arfa R. Goodacre, Royston Dickson, Alan J. |
Author_xml | – sequence: 1 givenname: Christopher A. surname: Sellick fullname: Sellick, Christopher A. organization: Faculty of Life Sciences, The University of Manchester, Manchester, UK – sequence: 2 givenname: Alexandra S. surname: Croxford fullname: Croxford, Alexandra S. organization: Faculty of Life Sciences, The University of Manchester, Manchester, UK – sequence: 3 givenname: Arfa R. surname: Maqsood fullname: Maqsood, Arfa R. organization: Faculty of Life Sciences, The University of Manchester, Manchester, UK – sequence: 4 givenname: Gill M. surname: Stephens fullname: Stephens, Gill M. organization: The School of Chemical Engineering and Analytical Sciences, Manchester Institute of Biotechnology, The University of -Manchester, Manchester, UK – sequence: 5 givenname: Hans V. surname: Westerhoff fullname: Westerhoff, Hans V. organization: The Manchester Centre for Integrative Systems Biology, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK – sequence: 6 givenname: Royston surname: Goodacre fullname: Goodacre, Royston organization: The Manchester Centre for Integrative Systems Biology, Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK – sequence: 7 givenname: Alan J. surname: Dickson fullname: Dickson, Alan J. email: alan.dickson@manchester.ac.uk organization: Faculty of Life Sciences, The University of Manchester, Manchester, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26198903$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkEtP3DAUha2KilfZskRZdpPhOn6GXTsqDBUwqjRAd5aTXFcumZjGGR7_HkczHXVXLEu-sr9z7vU5IDtd6JCQYwoTClCcVj4MkwIoB5CSfyD7VEvIFaN8Z1NLJfUeOYjxNwAXDPgu2SskLXUJbJ_cX-Ngq9D6AbPHPjjf-u5XFlw2nc2zGts2nmXXocV61do-69GlcvChiyOTmidNjTGOInRufHvCLl18Ih-dbSMebc5Dcnv-bTGd5Vfzi8vpl6u85kLyvBFJI8pGFmipY9bWshFVWlCJstIOGdWNkEXJGlVIqxzUTte6UtxpzQVlh-Tz2jcN8meFcTBLH8e5bYdhFQ1VVAkAEOodKJRpa8USOlmjdR9iTL82j71f2v7VUDBj7mbM3WxzT4KTjfeqWmKzxf8GnYByDTz7Fl__Y2e-Xs4X_5rna62PA75stbZ_MFIxJcz9zYX58X22ADr9ae7YGyqWoUM |
CitedBy_id | crossref_primary_10_1016_j_bej_2023_109184 crossref_primary_10_1016_j_copbio_2017_11_015 crossref_primary_10_1002_bit_28104 crossref_primary_10_3390_metabo11120823 crossref_primary_10_1002_bit_28000 crossref_primary_10_1016_j_ymeth_2018_05_013 crossref_primary_10_1007_s10616_022_00561_z crossref_primary_10_1074_jbc_RA120_012673 crossref_primary_10_1002_bit_26603 crossref_primary_10_1016_j_ymben_2021_07_004 crossref_primary_10_1002_btpr_3220 crossref_primary_10_1371_journal_pone_0194510 crossref_primary_10_1002_biot_201700400 crossref_primary_10_1002_bit_28403 crossref_primary_10_1002_jctb_5906 crossref_primary_10_1002_biot_202100098 crossref_primary_10_1002_elsc_201900124 crossref_primary_10_1002_bit_28399 crossref_primary_10_1002_btpr_2421 crossref_primary_10_1002_elsc_201700131 crossref_primary_10_1016_j_ymben_2018_09_009 crossref_primary_10_1002_biot_201600030 crossref_primary_10_1007_s00253_019_10048_1 crossref_primary_10_3389_fbioe_2024_1347138 crossref_primary_10_1002_btpr_3099 crossref_primary_10_1002_biot_201700499 crossref_primary_10_1016_j_biotechadv_2021_107761 crossref_primary_10_1002_biot_201900565 crossref_primary_10_1016_j_chroma_2021_462336 crossref_primary_10_1016_j_jsbmb_2016_03_029 crossref_primary_10_1007_s00253_022_12342_x crossref_primary_10_1007_s00253_021_11755_4 crossref_primary_10_1002_biot_202200616 crossref_primary_10_1002_biot_202300495 crossref_primary_10_1002_biot_201800036 crossref_primary_10_1080_08927014_2021_1941908 crossref_primary_10_3390_cells11121929 |
Cites_doi | 10.1002/bit.24826 10.1002/bit.24496 10.1007/s11306-010-0216-9 10.1016/j.ymben.2014.02.001 10.1042/bj3130991 10.1016/j.jbiotec.2010.12.010 10.1186/1471-2091-3-19 10.1016/j.ymben.2010.09.003 10.1038/nbt0910-917 10.1002/btpr.238 10.1016/j.jbiotec.2010.03.018 10.1002/bit.24858 10.1002/bit.24580 10.1002/btpr.443 10.3390/pr1030296 10.1002/bit.25266 10.1002/bit.24983 10.1021/ac8016899 10.1016/j.nbt.2012.05.021 10.1002/bit.24728 10.1002/bit.23031 10.1016/j.ymben.2012.10.001 10.1016/j.ymben.2011.12.006 10.1007/978-1-61779-921-1_15 10.1016/j.jbiotec.2013.01.025 10.1002/bit.23269 10.1002/btpr.442 10.1038/nbt1026 10.1002/bit.23291 10.1042/BST0351187 10.1371/journal.pone.0034512 10.1038/nprot.2011.366 10.1007/s10616-013-9648-1 10.1002/bit.24445 10.1007/s10529-011-0798-y |
ContentType | Journal Article |
Copyright | Copyright © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: Copyright © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | BSCLL CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7QO 8FD FR3 P64 |
DOI | 10.1002/biot.201400664 |
DatabaseName | Istex Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | MEDLINE CrossRef Engineering Research Database |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Agriculture |
EISSN | 1860-7314 |
EndPage | 1445 |
ExternalDocumentID | 10_1002_biot_201400664 26198903 BIOT201400664 ark_67375_WNG_QJHT01CX_V |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/E005985/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/G023581/2 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/F003536/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/G023581/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/C008219/1 – fundername: Biotechnology and Biological Sciences Research Council grantid: BB/I004688/1 |
GroupedDBID | --- 05W 0R~ 1L6 1OC 23N 31~ 33P 3WU 4.4 53G 5GY 6P2 8-0 8-1 8UM A00 AAESR AAHHS AAIHA AANLZ AASGY AAXRX AAZKR ABCUV ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB ASPBG AUFTA AVWKF AZFZN AZVAB BDRZF BFHJK BHBCM BMNLL BMXJE BRXPI BSCLL CS3 DCZOG DRFUL DRSTM DU5 EBD EBS EJD EMOBN F5P FEDTE G-S GODZA HGLYW HHZ HVGLF HZ~ LATKE LAW LEEKS LH4 LITHE LOXES LUTES LW6 LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W P4E QRW ROL RWI RYL SUPJJ SV3 WBKPD WIH WIK WNSPC WOHZO WXSBR WYISQ WYJ XV2 ZZTAW ~S- CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 7QO 8FD FR3 P64 |
ID | FETCH-LOGICAL-c4564-d5fec59d62ea1f3aac6d5bbbb0b59b8fe318d56293d726a7f0cf8c8b74f884513 |
IEDL.DBID | 33P |
ISSN | 1860-6768 |
IngestDate | Wed Jul 24 12:43:18 EDT 2024 Fri Aug 16 00:57:48 EDT 2024 Fri Aug 23 00:59:59 EDT 2024 Sat Sep 28 08:23:19 EDT 2024 Sat Aug 24 01:00:07 EDT 2024 Wed Oct 30 09:55:45 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Metabolomics Glutamine synthetase Bioprocessing Recombinant antibody Gas chromatography-mass spectrometry (GC-MS) |
Language | English |
License | Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4564-d5fec59d62ea1f3aac6d5bbbb0b59b8fe318d56293d726a7f0cf8c8b74f884513 |
Notes | ark:/67375/WNG-QJHT01CX-V istex:0A4957A959E9CE32F0BDC1E888DA5B7624B768A3 ArticleID:BIOT201400664 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://pure.manchester.ac.uk/ws/files/23717840/POST-PEER-REVIEW-NON-PUBLISHERS.PDF |
PMID | 26198903 |
PQID | 1709709873 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1717500057 proquest_miscellaneous_1709709873 crossref_primary_10_1002_biot_201400664 pubmed_primary_26198903 wiley_primary_10_1002_biot_201400664_BIOT201400664 istex_primary_ark_67375_WNG_QJHT01CX_V |
PublicationCentury | 2000 |
PublicationDate | 2015-09 September 2015 2015-Sep 2015-09-00 20150901 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-09 |
PublicationDecade | 2010 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim – name: Germany |
PublicationTitle | Biotechnology journal |
PublicationTitleAlternate | Biotechnology Journal |
PublicationYear | 2015 |
Publisher | WILEY-VCH Verlag WILEY‐VCH Verlag |
Publisher_xml | – name: WILEY-VCH Verlag – name: WILEY‐VCH Verlag |
References | Zagari, F., Jordan, M., Stettler, M., Broly, H. et al., Lactate metabolism shift in CHO cell culture: The role of mitochondrial oxidative activity. New Biotech. 2013, 30, 238-245. Nolan, R. P., Lee, K., Dynamic model of CHO cell metabolism. Metab. Eng. 2011, 13, 108-124. Selvarasu, S., Ho, Y. S., Chong, W. P. K., Wong, N. S. C. et al., Combined in silico modeling and metabolomics analysis to characterise fed-batch CHO cell culture. Biotechnol. Bioeng. 2012, 109, 1415-1429. House, J. D., Hall, B. N., Brosnan, J. T., Threonine metabolism in isolated rat hepatocytes. Am. J. Physiol. 2001, 281, E1300-E1307. Wurm, F. M., Production of recombinant protein therapeutics in cultivated mammalian cells. Nat. Biotechnol. 2004, 22, 1393-1398. Behjousiar, A., Kontoravdi, C., Polizzi, K. M., In situ monitoring of intracellular glucose and glutamine in CHO cell culture. PLoS One 2012, 7, e34512. Ahn, W. S., Antoniewicz, M. R., Parallel labeling experiments with [1,2-13C] glucose and [U-13C] glutamine provide new insights into CHO cell metabolism. Metab. Eng. 2013, 15, 34-47. Chong, W. P. K., Reddy, S. G., Yusufi, F. N. K., Lee, D. Y. et al., Metabolomics-driven approach for the improvement of Chinese hamster ovary cell growth: Overexpression of malate dehydrogenase II. J. Biotechnol. 2010, 147, 116-121. Sellick, C. A., Hansen, R., Maqsood, A. R., Dunn, W. B. et al., Effective quenching processes for physiologically valid metabolite profiling of suspension cultured mammalian cells. Analyt. Chem. 2009, 81, 174-183. Sellick, C. A., Hansen, R., Stephens, G. M., Goodacre, R. et al., Metabolite extraction from suspension-cultured mammalian cells for global metabolite profiling. Nat. Protoc. 2011, 6, 1241-1249. Luo, J., Vijayasankaran, N., Austen, J., Santury, R. et al., Comparative metabolite analysis to understand lactate metabolism shift in Chinese hamster ovary cell culture process. Biotechnol. Bioeng. 2012, 109, 146-156. Porter, A. J., Dickson, A. J., Racher, A. J., Strategies for selecting recombinant CHO cell lines for cGMP manufacturing: Realising the potential in bioreactors. Biotechnol. Prog. 2010, 26, 1446-1454. Chen, F., Ye, Z., Zhao, L., Liu, X. et al., Correlation of antibody production rate with glucose and lactate metabolism in Chinese hamster ovary cells. Biotechnol. Lett. 2012, 34, 425-432. Wurm, F. M., CHO Quasispecies - implications for manufacturing processes. Processes 2013, 1, 296-311. Chen, N., Bennett, M. H., Kontoravdi, C., Analysis of Chinese hamster ovary cell metabolism through a combined computational and experimental approach. Cytotechnology 2014, 66, 945-966. Sellick, C. A., Croxford, A. S., Maqsood, A. R., Stephens, G. M. et al., Metabolite profiling of recombinant CHO cells: Designing tailored feeding regimes that enhance recombinant antibody production. Biotechnol. Bioeng. 2011, 108, 3025-3031. Porter, A. J., Racher, A. J., Preziosi, R., Dickson, A. J., Strategies for selecting recombinant CHO cell lines for cGMP manufacturing: Improving the efficiency of cell line generation. Biotechnol. Prog. 2010, 26, 1455-1464. Sheikholesami, Z., Jolicoeur, M., Henry, O., Probing the metabolism of an inducible mammalian expression system using extracellular isotopomer analysis. J. Biotechnol. 2013, 164, 469-478. Proud, C. G., Amino acids and mTOR signaling. Biochem. Soc. Trans. 2007, 35, 1187-1190. Carinhas, N., Duarte, T. M., Barreiro, L. C., Carrondo, M. J. T. et al., Metabolic signatures of GS-CHO cell clones associated with butyrate treatment and culture phase transition. Biotechnol. Bioeng. 2013, 110, 3244-3257. Sellick, C. A., Knight, D., Croxford, A. S., Maqsood, A. R. et al., Evaluation of extraction processes for intracellular metabolite profiling of mammalian cells: Matching extraction processes to cell type and metabolite targets. Metabolomics 2010, 6, 427-438. Templeton, N., Dean, J., Reddy, P., Young, J. D., Peak antibody production isassociated with increased oxidative metabolism in an industrially-relevant fed-batch CHO cell culture. Biotechnol. Bioeng. 2013, 110, 2013-2024. Wahrheit, J., Niklas, J., Heinzle, E., Metabolic control at the cytosol-mitochondria interface in different growth phases of CHO cells, Metab. Eng. 2014, 23, 9-21. Chong, W. P. K., Yusufi, F. N. K., Lee, D. Y., Reddy, S. G. et al., Metabolomics-based identification of apoptosis-inducing metabolites in recombinant fed-batch CHO culture media. J. Biotechnol. 2011, 151, 218-224. Ma, N., Ellet, J., Okediadi, C., Hermes, P. et al., Single nutrient feed supports both chemically defined NS0 and CHO fed-batch processes: Improved productivity and lactate production. Biotechnol. Prog. 2009, 25, 1353-1363. Jostock, T., Knopf, H.-P., Mammalian stable expression of biotherapeutics. Methods Mol. Biol. 2012, 899, 227-238. Narkewicz, M. R., Sauls, S. D., Tjoa, S. S., Teng, C. et al., Evidence for intracellular partitioning of serine and glycne metabolism in Chinese hamster ovary cells. Biochem. J. 1996, 313, 991-998. Edgar, A. J., Cloning and tissue distribution of mammalian L-threonine 3-dehydrogenases. BMC Biochem. 2002, 3, 19. Martinez, V. S., Dietmair, S., Quek, L-E., Hodson, M. P. et al., Flux balance analysis of CHO cells before and after a metabolic switch from lactate production to consumption. Biotechnol. Bioeng. 2012, 110, 660-666. Duarte, T. M., Carinhas, N., Barreiro, L. C., Carrondo, M. J. T. et al., Metabolic Responses of CHO cells to limitation of key amino acids. Biotechnol. Bioeng. 2014, 111, 2095-2106. Dietmair, S., Hodson, M. P., Quek, L-E., Timmins, N. K. et al., Metabolite profiling of CHO cells with different growth characteristics. Biotechnol. Bioeng. 2012, 109, 1404-1414. Yu, M., Hu, Z., Pacis, E., Vijayasankaran, N. et al., Understanding the intracellular effect of enhanced nutrient feeding: Toward high titer antibody production process. Biotechnol. Bioeng. 2011, 108, 10789-1088. Dean, J., Reddy, P., Metabolic analysis of antibody producing CHO cellsin fed-batch production. Biotechnol. Bioeng. 2013, 110, 1735-1747. Mulukutla, B. C., Gramer, M., Hu, W-S., On metabolic shift to lactate consumption in fed-batch culture of mammalian cells. Metab. Eng. 2012, 14, 138-149. Chong, W. P. K., Thng, S. H., Hiu, A. P., Lee, D-Y. et al., LC-MS-based metabolic characterisation of high monoclonal antibody-producing Chinese hamster ovary cells. Biotechnol. Bioeng. 2012, 109, 3103-3111. Walsh, G., Biopharmaceutical benchmarks 2010. Nat. Biotechnol. 2010, 28, 917-924. 2004; 22 2009; 25 2013; 1 2009; 81 2001; 281 2010; 147 2002; 3 2011; 13 2013; 164 2012; 14 2014; 111 2011; 151 2011; 6 2012; 34 2007; 35 2014; 23 2014; 66 2012; 109 2013; 15 2012; 110 2011; 108 2010; 26 2010; 28 2013; 30 2013; 110 1996; 313 2012; 7 2012; 899 2010; 6 e_1_2_7_5_2 e_1_2_7_4_2 e_1_2_7_3_2 e_1_2_7_2_2 e_1_2_7_9_2 e_1_2_7_8_2 e_1_2_7_7_2 e_1_2_7_6_2 e_1_2_7_19_2 e_1_2_7_18_2 e_1_2_7_17_2 e_1_2_7_16_2 e_1_2_7_15_2 e_1_2_7_14_2 e_1_2_7_13_2 e_1_2_7_12_2 e_1_2_7_11_2 e_1_2_7_10_2 e_1_2_7_26_2 e_1_2_7_27_2 e_1_2_7_28_2 House J. D. (e_1_2_7_29_2) 2001; 281 e_1_2_7_25_2 e_1_2_7_24_2 e_1_2_7_30_2 e_1_2_7_23_2 e_1_2_7_31_2 e_1_2_7_22_2 e_1_2_7_32_2 e_1_2_7_21_2 e_1_2_7_33_2 e_1_2_7_20_2 e_1_2_7_34_2 e_1_2_7_35_2 e_1_2_7_36_2 e_1_2_7_37_2 |
References_xml | – volume: 899 start-page: 227 year: 2012 end-page: 238 article-title: Mammalian stable expression of biotherapeutics. publication-title: Methods Mol. Biol. – volume: 110 start-page: 2013 year: 2013 end-page: 2024 article-title: Peak antibody production isassociated with increased oxidative metabolism in an industrially‐relevant fed‐batch CHO cell culture. publication-title: Biotechnol. Bioeng. – volume: 1 start-page: 296 year: 2013 end-page: 311 article-title: CHO Quasispecies – implications for manufacturing processes. publication-title: Processes – volume: 6 start-page: 427 year: 2010 end-page: 438 article-title: Evaluation of extraction processes for intracellular metabolite profiling of mammalian cells: Matching extraction processes to cell type and metabolite targets. publication-title: Metabolomics – volume: 25 start-page: 1353 year: 2009 end-page: 1363 article-title: Single nutrient feed supports both chemically defined NS0 and CHO fed‐batch processes: Improved productivity and lactate production. publication-title: Biotechnol. Prog. – volume: 108 start-page: 10789 year: 2011 end-page: 1088 article-title: Understanding the intracellular effect of enhanced nutrient feeding: Toward high titer antibody production process. publication-title: Biotechnol. Bioeng. – volume: 109 start-page: 1415 year: 2012 end-page: 1429 article-title: Combined in silico modeling and metabolomics analysis to characterise fed‐batch CHO cell culture. publication-title: Biotechnol. Bioeng. – volume: 111 start-page: 2095 year: 2014 end-page: 2106 article-title: Metabolic Responses of CHO cells to limitation of key amino acids. publication-title: Biotechnol. Bioeng. – volume: 164 start-page: 469 year: 2013 end-page: 478 article-title: Probing the metabolism of an inducible mammalian expression system using extracellular isotopomer analysis. publication-title: J. Biotechnol. – volume: 6 start-page: 1241 year: 2011 end-page: 1249 article-title: Metabolite extraction from suspension‐cultured mammalian cells for global metabolite profiling. publication-title: Nat. Protoc. – volume: 22 start-page: 1393 year: 2004 end-page: 1398 article-title: Production of recombinant protein therapeutics in cultivated mammalian cells. publication-title: Nat. Biotechnol. – volume: 66 start-page: 945 year: 2014 end-page: 966 article-title: Analysis of Chinese hamster ovary cell metabolism through a combined computational and experimental approach. publication-title: Cytotechnology – volume: 81 start-page: 174 year: 2009 end-page: 183 article-title: Effective quenching processes for physiologically valid metabolite profiling of suspension cultured mammalian cells. publication-title: Analyt. Chem. – volume: 34 start-page: 425 year: 2012 end-page: 432 article-title: Correlation of antibody production rate with glucose and lactate metabolism in Chinese hamster ovary cells. publication-title: Biotechnol. Lett. – volume: 14 start-page: 138 year: 2012 end-page: 149 article-title: On metabolic shift to lactate consumption in fed‐batch culture of mammalian cells. publication-title: Metab. Eng. – volume: 26 start-page: 1455 year: 2010 end-page: 1464 article-title: Strategies for selecting recombinant CHO cell lines for cGMP manufacturing: Improving the efficiency of cell line generation. publication-title: Biotechnol. Prog. – volume: 110 start-page: 1735 year: 2013 end-page: 1747 article-title: Metabolic analysis of antibody producing CHO cellsin fed‐batch production. publication-title: Biotechnol. Bioeng. – volume: 35 start-page: 1187 year: 2007 end-page: 1190 article-title: Amino acids and mTOR signaling. publication-title: Biochem. Soc. Trans. – volume: 108 start-page: 3025 year: 2011 end-page: 3031 article-title: Metabolite profiling of recombinant CHO cells: Designing tailored feeding regimes that enhance recombinant antibody production. publication-title: Biotechnol. Bioeng. – volume: 13 start-page: 108 year: 2011 end-page: 124 article-title: Dynamic model of CHO cell metabolism. publication-title: Metab. Eng. – volume: 147 start-page: 116 year: 2010 end-page: 121 article-title: Metabolomics‐driven approach for the improvement of Chinese hamster ovary cell growth: Overexpression of malate dehydrogenase II. publication-title: J. Biotechnol. – volume: 23 start-page: 9 year: 2014 end-page: 21 article-title: Metabolic control at the cytosol‐mitochondria interface in different growth phases of CHO cells publication-title: Metab. Eng. – volume: 3 start-page: 19 year: 2002 article-title: Cloning and tissue distribution of mammalian L‐threonine 3‐dehydrogenases publication-title: BMC Biochem. – volume: 28 start-page: 917 year: 2010 end-page: 924 article-title: Biopharmaceutical benchmarks 2010. publication-title: Nat. Biotechnol. – volume: 151 start-page: 218 year: 2011 end-page: 224 article-title: Metabolomics‐based identification of apoptosis‐inducing metabolites in recombinant fed‐batch CHO culture media. publication-title: J. Biotechnol. – volume: 110 start-page: 3244 year: 2013 end-page: 3257 article-title: Metabolic signatures of GS‐CHO cell clones associated with butyrate treatment and culture phase transition. publication-title: Biotechnol. Bioeng. – volume: 15 start-page: 34 year: 2013 end-page: 47 article-title: Parallel labeling experiments with [1,2‐ C] glucose and [U‐ C] glutamine provide new insights into CHO cell metabolism. publication-title: Metab. Eng. – volume: 313 start-page: 991 year: 1996 end-page: 998 article-title: Evidence for intracellular partitioning of serine and glycne metabolism in Chinese hamster ovary cells. publication-title: Biochem. J. – volume: 109 start-page: 1404 year: 2012 end-page: 1414 article-title: Metabolite profiling of CHO cells with different growth characteristics. publication-title: Biotechnol. Bioeng. – volume: 109 start-page: 146 year: 2012 end-page: 156 article-title: Comparative metabolite analysis to understand lactate metabolism shift in Chinese hamster ovary cell culture process. publication-title: Biotechnol. Bioeng. – volume: 30 start-page: 238 year: 2013 end-page: 245 article-title: Lactate metabolism shift in CHO cell culture: The role of mitochondrial oxidative activity. publication-title: New Biotech. – volume: 109 start-page: 3103 year: 2012 end-page: 3111 article-title: LC‐MS‐based metabolic characterisation of high monoclonal antibody‐producing Chinese hamster ovary cells. publication-title: Biotechnol. Bioeng. – volume: 7 start-page: e34512 year: 2012 article-title: In situ monitoring of intracellular glucose and glutamine in CHO cell culture. publication-title: PLoS One – volume: 281 start-page: E1300 year: 2001 end-page: E1307 article-title: Threonine metabolism in isolated rat hepatocytes. publication-title: Am. J. Physiol. – volume: 110 start-page: 660 year: 2012 end-page: 666 article-title: Flux balance analysis of CHO cells before and after a metabolic switch from lactate production to consumption. publication-title: Biotechnol. Bioeng. – volume: 26 start-page: 1446 year: 2010 end-page: 1454 article-title: Strategies for selecting recombinant CHO cell lines for cGMP manufacturing: Realising the potential in bioreactors. publication-title: Biotechnol. Prog. – ident: e_1_2_7_18_2 doi: 10.1002/bit.24826 – ident: e_1_2_7_13_2 doi: 10.1002/bit.24496 – ident: e_1_2_7_22_2 doi: 10.1007/s11306-010-0216-9 – ident: e_1_2_7_34_2 doi: 10.1016/j.ymben.2014.02.001 – ident: e_1_2_7_31_2 doi: 10.1042/bj3130991 – ident: e_1_2_7_12_2 doi: 10.1016/j.jbiotec.2010.12.010 – ident: e_1_2_7_30_2 doi: 10.1186/1471-2091-3-19 – ident: e_1_2_7_35_2 doi: 10.1016/j.ymben.2010.09.003 – ident: e_1_2_7_3_2 doi: 10.1038/nbt0910-917 – ident: e_1_2_7_8_2 doi: 10.1002/btpr.238 – ident: e_1_2_7_19_2 doi: 10.1016/j.jbiotec.2010.03.018 – ident: e_1_2_7_16_2 doi: 10.1002/bit.24858 – ident: e_1_2_7_17_2 doi: 10.1002/bit.24580 – ident: e_1_2_7_25_2 doi: 10.1002/btpr.443 – ident: e_1_2_7_4_2 doi: 10.3390/pr1030296 – ident: e_1_2_7_11_2 doi: 10.1002/bit.25266 – ident: e_1_2_7_14_2 doi: 10.1002/bit.24983 – ident: e_1_2_7_23_2 doi: 10.1021/ac8016899 – ident: e_1_2_7_33_2 doi: 10.1016/j.nbt.2012.05.021 – ident: e_1_2_7_36_2 doi: 10.1002/bit.24728 – ident: e_1_2_7_6_2 doi: 10.1002/bit.23031 – ident: e_1_2_7_21_2 doi: 10.1016/j.ymben.2012.10.001 – ident: e_1_2_7_28_2 doi: 10.1016/j.ymben.2011.12.006 – ident: e_1_2_7_5_2 doi: 10.1007/978-1-61779-921-1_15 – ident: e_1_2_7_15_2 doi: 10.1016/j.jbiotec.2013.01.025 – ident: e_1_2_7_7_2 doi: 10.1002/bit.23269 – ident: e_1_2_7_9_2 doi: 10.1002/btpr.442 – ident: e_1_2_7_2_2 doi: 10.1038/nbt1026 – volume: 281 start-page: E1300 year: 2001 ident: e_1_2_7_29_2 article-title: Threonine metabolism in isolated rat hepatocytes. publication-title: Am. J. Physiol. contributor: fullname: House J. D. – ident: e_1_2_7_26_2 doi: 10.1002/bit.23291 – ident: e_1_2_7_32_2 doi: 10.1042/BST0351187 – ident: e_1_2_7_10_2 doi: 10.1371/journal.pone.0034512 – ident: e_1_2_7_24_2 doi: 10.1038/nprot.2011.366 – ident: e_1_2_7_37_2 doi: 10.1007/s10616-013-9648-1 – ident: e_1_2_7_20_2 doi: 10.1002/bit.24445 – ident: e_1_2_7_27_2 doi: 10.1007/s10529-011-0798-y |
SSID | ssj0045304 |
Score | 2.3323398 |
Snippet | Whilst development of medium and feeds has provided major advances in recombinant protein production in CHO cells, the fundamental understanding is limited. We... Abstract Whilst development of medium and feeds has provided major advances in recombinant protein production in CHO cells, the fundamental understanding is... |
SourceID | proquest crossref pubmed wiley istex |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1434 |
SubjectTerms | Animals Bioprocessing Biotechnology - methods CHO Cells Cricetinae Cricetulus Culture Media - metabolism Gas Chromatography-Mass Spectrometry Gas chromatography-mass spectrometry (GC-MS) Glutamine synthetase Intracellular Space - metabolism Metabolomics Metabolomics - methods Recombinant antibody Recombinant Proteins - metabolism |
Title | Metabolite profiling of CHO cells: Molecular reflections of bioprocessing effectiveness |
URI | https://api.istex.fr/ark:/67375/WNG-QJHT01CX-V/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fbiot.201400664 https://www.ncbi.nlm.nih.gov/pubmed/26198903 https://search.proquest.com/docview/1709709873 https://search.proquest.com/docview/1717500057 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dSxwxEA_VvuiDWlv1tC0riD4tZj-ySXyzp_YU_MKz-haSSyKi7MmtB_75ndncrj0oFuyyD8kyIdnMJPklzPxCyJYuAESnxscmZyLOGXJAUpvETGbGcW5B03im27viZ7fi4BBpctoo_sAP0R644cio52sc4NpUu6-koeZ-iL6QsEGAVRMJQSFVx3BkF81UnLOsvj8wEQX6uBeiYW2k6e508alV6SN28MvfIOc0gq2XoKPF_2_8ElmYwM9oP9jLJ_LBlctkfv9uNKHgcJD7g6LwM7k5dc9gJxipHIX7veFzNPRRt3ce4al_tRedNlfsRvBjj7VvV1mhDNT_FAIRsFBwHZnMrl_I9dFhv9uLJ5cxxANknIktAxkmbZE6nfhM60FhmYGHGiaN8HiWagFMyczytNDc04EXA2F47oXIWZKtkNlyWLo1ElmZeku5l0JawA9UGo80-1Ym3sm80B2y0yhDPQXODRXYlVOFHafajuuQ7VpXrZgePaCnGmfq5uynujzp9WnSvVW_OmSzUaaC8YPdo0s3HFcq4VTCK3j2lgyALES3vENWgyW0NeIOVEgKpdNa4f9osfpxfN5vc-vvKbRB5iDNgqPbVzL7PBq7b2SmsuPvtfX_BudPA5Y |
link.rule.ids | 315,782,786,1408,27935,27936,46066,46490 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-x7QF44PujfAYJwVM0J7Fjm7dSNjJYOxCF7c2Ka3uaQOnUrhJ_PndxE6iEQEJEeYl1Jzt3Pvt8Ov8O4HldohOd25BaLlTKBWFAMpelQhfWS-lQ0xTTrT7JyYl6s0cwOcPuLkzEh-gDbmQZ7XpNBk4B6d2fqKH2bE7JkHhCwG2Tb8EOL7mm6g1F8aFbjLko2gqCmSopy71UHW4jy3c3-Tf2pR0S8fffOZ2bPmy7Ce1f_w_DvwHX1h5oMoxT5iZc8s0tuDo8XaxRODx-_YJSeBuOx_4CpwpdVk5iiW9sTuYhGVVHCQX-l6-ScVdlN8E_-9amdzVLosH-z-NdBGKK2SPrBfYOfN7fm46qdF2PIZ0R6EzqBNII7crc11ko6npWOmHxYVZoqwKFUx36U7pwMi9rGdgsqJmykgeluMiKu7DdzBt_HxKn8-CYDFpphy4E0zYQ0r7TWfCal_UAXnbaMOcRdsNEgOXckOBML7gBvGiV1ZPVi6-UrCaFOZ68NR_fVVOWjU7MlwE867Rp0IRIPHXj56ulySTT-CpZ_IkG_SxycOUA7sWp0PdIh1ClGXLnrcb_MmLz-uBo2n89-Bemp3C5mo4PzeHB5P1DuILtIua9PYLti8XKP4atpVs9aU3hBzoQB7c |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED_tQ0LwAONjo4xBkBA8RXM-HNt7G91KB6wbomx7s-LaRmhTWrWrxJ_PXdyEVZqYBFFeYtmyc-ePn093vwN4WxYIolPjY5NzGeecOCCZTWKuMuOEsKhpsun2v4nBhTw4JJqcNoo_8EO0BjdaGfV-TQt8Yv3uH9JQ83NMvpB4QcBTM1-F9ZywOAVxZKfNXpzzrE4gmMiCnNwL2dA2snR3uf3SsbROEv51G-ZchrD1GdR79P-j34CHC_wZ7YcJ8xhWXPUEHuz_mC44OBx-3eAofArnx-4aJwqFKkchwTcWR2MfdfsnEZn9Z3vRcZNjN8Ifu6qdu6oZ1cH-JyESgRoF35HF9voMvvcOh91-vMjGEI-Icia2HOtwZYvUlYnPynJUWG7wYYYrIz0ZUy2iKZVZkRal8Gzk5UgakXspc55km7BWjSv3HCKrUm-Z8EoqiwCCKeOJZ9-qxDuVF2UH3jfK0JNAuqEDvXKqSXC6FVwH3tW6aquV00tyVRNcnw8-6q-f-kOWdC_0WQfeNMrUuIBIPGXlxvOZTgRT-EqR_a0OoiyCt6IDW2EmtD3SFVQqhq3TWuF3jFh_ODoZtl8v_qXRa7h3etDTX44Gn7fhPhbz4PT2Etaup3O3A6szO39VL4TfEuMGZg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Metabolite+profiling+of+CHO+cells%3A+Molecular+reflections+of+bioprocessing+effectiveness&rft.jtitle=Biotechnology+journal&rft.au=Sellick%2C+Christopher+A.&rft.au=Croxford%2C+Alexandra+S.&rft.au=Maqsood%2C+Arfa+R.&rft.au=Stephens%2C+Gill+M.&rft.date=2015-09-01&rft.pub=WILEY%E2%80%90VCH+Verlag&rft.issn=1860-6768&rft.eissn=1860-7314&rft.volume=10&rft.issue=9&rft.spage=1434&rft.epage=1445&rft_id=info:doi/10.1002%2Fbiot.201400664&rft.externalDBID=10.1002%252Fbiot.201400664&rft.externalDocID=BIOT201400664 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1860-6768&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1860-6768&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1860-6768&client=summon |