Protonated Organic Diamines as Templates for Layered and Microporous Structures: Synthesis, Crystal Chemistry, and Structural Trends among the Compounds Formed in Aqueous Systems Transition Metal Halide or Nitrate–Diamine–Selenious Acid
Systematic studies of crystalline compounds formed in aqueous systems containing aliphatic diamines, divalent transition metal halides, and selenious acid resulted in the discovery of a large family of new complex species corresponding to several new structure types. With ethylenediamine (en), layer...
Saved in:
Published in: | International journal of molecular sciences Vol. 24; no. 18; p. 14202 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Basel
MDPI AG
01-09-2023
MDPI |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Systematic studies of crystalline compounds formed in aqueous systems containing aliphatic diamines, divalent transition metal halides, and selenious acid resulted in the discovery of a large family of new complex species corresponding to several new structure types. With ethylenediamine (en), layered (enH2)[M(HSeO3)2X2] compounds are the most commonly formed species which constitute a significant contribution to the family of layered hydrogen selenites containing neutral [M(HSeO3)2] (M = Mg, Mn, Co, Ni, Cu, Zn, Cd) 2D building blocks. In contrast to some previous suggestions, piperazine (pip), as well as its homologue N-methylpiperazine, mostly give rise to quite different, sometimes more complex, structures of varied dimensionality while the (pipH2)[M(HSeO3)2X2] compounds are formed only with M = Cu and Cd. In addition, metal-, halide-, or selenium-free by-product species are observed. The SeIV can be present in a multitude of forms, including H2SeO3, HSeO3−, SeO32−, and Se2O52−, reflecting amazing adaptability to the shape of the templating cations. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms241814202 |