Mitogenomic relationships of placental mammals and molecular estimates of their divergences

Molecular analyses of the relationships of placental mammals have shown a progressive congruence between mitogenomic and nuclear phylogenies. Some inconsistencies have nevertheless persisted, notably with respect to basal divergences. The current study has aimed to extend the representation of group...

Full description

Saved in:
Bibliographic Details
Published in:Gene Vol. 421; no. 1; pp. 37 - 51
Main Authors: Arnason, Ulfur, Adegoke, Joseph A., Gullberg, Anette, Harley, Eric H., Janke, Axel, Kullberg, Morgan
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 15-09-2008
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Molecular analyses of the relationships of placental mammals have shown a progressive congruence between mitogenomic and nuclear phylogenies. Some inconsistencies have nevertheless persisted, notably with respect to basal divergences. The current study has aimed to extend the representation of groups, whose position in the placental tree has been difficult to establish in mitogenomic studies. Both ML (maximum likelihood) and Bayesian analyses identified four basal monophyletic groups, Afroplacentalia (= Afrotheria: Hyracoidea, Proboscidea, Sirenia, Tenrecidea, Tubulidentata, Macroscelidea, Chrysochloridea), Xenarthra, Archontoglires (Primates, Dermoptera, Scandentia, Lagomorpha, Rodentia) and Laurasiaplacentalia (Lipotyphla, Chiroptera, Pholidota, Carnivora, Perissodactyla, Artiodactyla, Cetacea). All analyses joined Archontoglires and Laurasiaplacentalia on a common branch (Boreoplacentalia), but the relationship between Afroplacentalia, Xenarthra and Boreoplacentalia was not conclusively resolved. The phylogenomic hypothesis with a sister group relationship between Notoplacentalia (Afroplacentalia/Xenarthra) and Boreoplacentalia served as the basis for estimating the times of placental divergences using paleontologically well-supported mammalian calibration points. These estimates placed the basal placental divergence between Boreoplacentalia and Notoplacentalia at ≈ 102 MYA (million years ago). The current estimates of ordinal placental divergences are congruent with recent estimates based on nuclear data, but inconsistent with paleontological notions that have placed the origin of essentially all placental orders within an interval of 5–10 MY in the early Tertiary. Among less deep divergences the estimates placed the split between Gorilla and Pan/ Homo at ≈ 11.5 MYA and that between Pan and Homo at ≈ 8 MYA. As a consequence of these estimates, which are in accord with recent progress in primate paleontology, the earliest divergences among recent humans become placed ≈ 270,000 years ago, i.e. ≈ 100,000 years earlier than the traditional age of “Mitochondrial Eve”. Comparison between the two new mt genomes of Hylomys suillus (short-tailed gymnure) patently demonstrates the inconsistency that may exist between taxonomic designations and molecular difference, as the distance between these two supposedly conspecific genomes exceeds that of the three elephantid genera Elephas, Mammuthus and Loxodonta. In accordance with the progressive use of the term Placentalia for extant orders and extinct taxa falling within this group we forward new proposals for the names of some superordinal clades of placental mammals.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0378-1119
1879-0038
1879-0038
DOI:10.1016/j.gene.2008.05.024