Microwave emission and scattering of foam based on Monte Carlo simulations of dense media
The foam-covered ocean surface is treated as densely packed air bubbles coated with thin layers of seawater. We apply Monte Carlo simulations of solutions of Maxwell's equations to calculate the absorption, scattering, and extinction coefficients at 10.8 and 36.5 GHz. These quantities are then...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing Vol. 41; no. 4; pp. 782 - 790 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
New York, NY
IEEE
01-04-2003
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The foam-covered ocean surface is treated as densely packed air bubbles coated with thin layers of seawater. We apply Monte Carlo simulations of solutions of Maxwell's equations to calculate the absorption, scattering, and extinction coefficients at 10.8 and 36.5 GHz. These quantities are then used in dense-media radiative transfer theory to calculate the microwave emissivity. Numerical results of the model are illustrated as a function of foam parameters. Results of emissivities for both horizontal polarization and vertical polarizations at 10.8 and 36.5 GHz are compared with experimental measurements. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0196-2892 1558-0644 |
DOI: | 10.1109/TGRS.2003.810711 |