Site-resolved imaging of a fermionic Mott insulator
The complexity of quantum many-body systems originates from the interplay of strong interactions, quantum statistics, and the large number of quantum-mechanical degrees of freedom. Probing these systems on a microscopic level with single-site resolution offers important insights. Here we report site...
Saved in:
Published in: | Science (American Association for the Advancement of Science) Vol. 351; no. 6276; pp. 953 - 957 |
---|---|
Main Authors: | , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
American Association for the Advancement of Science
26-02-2016
The American Association for the Advancement of Science |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The complexity of quantum many-body systems originates from the interplay of strong interactions, quantum statistics, and the large number of quantum-mechanical degrees of freedom. Probing these systems on a microscopic level with single-site resolution offers important insights. Here we report site-resolved imaging of two-component fermionic Mott insulators, metals, and band insulators, using ultracold atoms in a square lattice. For strong repulsive interactions, we observed two-dimensional Mott insulators containing over 400 atoms. For intermediate interactions, we observed a coexistence of phases. From comparison to theory, we find trap-averaged entropies per particle of 1.0 times the Boltzmann constant (kB). In the band insulator, we find local entropies as low as 0.5 kB. Access to local observables will aid the understanding of fermionic many-body systems in regimes inaccessible by modern theoretical methods. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.aad9041 |