Aggregation/disaggregation of chlorophyll a in model phospholipid-detergent vesicles and micelles

The photosynthetic pigments of higher plants exist in complex oligomeric states, which are difficult to study in vivo. To investigate aggregation processes of chlorophyll a (Chl a), we used an in vitro reconstitution procedure, with this pigment incorporated into liposomes of 1,2-dimyristoyl-sn-glyc...

Full description

Saved in:
Bibliographic Details
Published in:Photochemical & photobiological sciences Vol. 13; no. 6; p. 907
Main Authors: Correia, Raquel F, Viseu, M Isabel, Andrade, Suzana M
Format: Journal Article
Language:English
Published: England 01-06-2014
Subjects:
Online Access:Get more information
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The photosynthetic pigments of higher plants exist in complex oligomeric states, which are difficult to study in vivo. To investigate aggregation processes of chlorophyll a (Chl a), we used an in vitro reconstitution procedure, with this pigment incorporated into liposomes of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), micelles and pre-micelle media of the detergent n-dodecyltrimethylammonium chloride (DTAC), and mixed, spontaneous, DMPC-DTAC vesicles and micelles. Chl a oligomers were characterized by UV-visible absorption, steady-state and time-resolved fluorescence, and fluorescence lifetime imaging microscopy. Equivalent diameters of the colloidal structures were obtained by fluorescence correlation spectroscopy. In DMPC liposomes and DMPC-DTAC vesicles and micelles, three fluorescence lifetimes indicated the coexistence of Chl a monomers (≈5 ns) and oligomers (≈1-2 to ≈0.1 ns). The increase in DTAC amount, in the mixed system, induces a progressive solubilization of DMPC liposomes (from vesicles to micelles) and simultaneous disruption of Chl a aggregates; in pure DTAC micelles, mostly monomers were found. The present work aims for a better understanding of chlorophyll-chlorophyll (Chl-Chl), Chl-lipid, and Chl-detergent interactions in spontaneous colloidal micro- and nanostructures.
ISSN:1474-9092
DOI:10.1039/c3pp50419k