Carbon and carbon composites for thermoelectric applications
The urgent need for consistent, reliable, ecofriendly, and stable power sources drives the development of new green energy materials. Thermoelectric (TE) materials receive increasing attention due to their unique capability of realizing the direct energy conversion between heat and electricity, show...
Saved in:
Published in: | Carbon energy Vol. 2; no. 3; pp. 408 - 436 |
---|---|
Main Authors: | , , |
Format: | Journal Article |
Language: | English |
Published: |
Beijing
John Wiley & Sons, Inc
01-09-2020
Wiley |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | The urgent need for consistent, reliable, ecofriendly, and stable power sources drives the development of new green energy materials. Thermoelectric (TE) materials receive increasing attention due to their unique capability of realizing the direct energy conversion between heat and electricity, showing diverse applications in harvesting waste heat and low‐grade heat. Carbon materials such as carbon nanotubes (CNTs) and graphene have experienced a rapid development as TE materials because of their intrinsic ultrahigh electrical conductivity and light weight. Besides, polymer‐based carbon composites are particularly fascinating as the combination of the merits of polymers and filler materials leads to high TE performance and superior flexibility. Herein, the recent TE advances are systematically summarized in the studied popularity of carbon materials (ie, CNTs and graphene) and the category of polymers. The conducting polymer‐based carbon materials are particularly highlighted. Finally, the remaining challenges and some tentative suggestions possibly guiding future developments are proposed, which may pave a way for a bright future of carbon and carbon composites in the energy market.
The urgent need for consistent, reliable, ecofriendly, and stable power sources drives the development of thermoelectric (TE) materials due to their unique capability to directly convert temperature gradient into electricity. Particularly, carbon and carbon composites have experienced rapid development as TE materials. This review summarized their recent advances, and proposed some the remaining challenges and some tentative suggestions possibly guiding future developments in this topic. |
---|---|
AbstractList | The urgent need for consistent, reliable, ecofriendly, and stable power sources drives the development of new green energy materials. Thermoelectric (TE) materials receive increasing attention due to their unique capability of realizing the direct energy conversion between heat and electricity, showing diverse applications in harvesting waste heat and low‐grade heat. Carbon materials such as carbon nanotubes (CNTs) and graphene have experienced a rapid development as TE materials because of their intrinsic ultrahigh electrical conductivity and light weight. Besides, polymer‐based carbon composites are particularly fascinating as the combination of the merits of polymers and filler materials leads to high TE performance and superior flexibility. Herein, the recent TE advances are systematically summarized in the studied popularity of carbon materials (ie, CNTs and graphene) and the category of polymers. The conducting polymer‐based carbon materials are particularly highlighted. Finally, the remaining challenges and some tentative suggestions possibly guiding future developments are proposed, which may pave a way for a bright future of carbon and carbon composites in the energy market.
The urgent need for consistent, reliable, ecofriendly, and stable power sources drives the development of thermoelectric (TE) materials due to their unique capability to directly convert temperature gradient into electricity. Particularly, carbon and carbon composites have experienced rapid development as TE materials. This review summarized their recent advances, and proposed some the remaining challenges and some tentative suggestions possibly guiding future developments in this topic. Abstract The urgent need for consistent, reliable, ecofriendly, and stable power sources drives the development of new green energy materials. Thermoelectric (TE) materials receive increasing attention due to their unique capability of realizing the direct energy conversion between heat and electricity, showing diverse applications in harvesting waste heat and low‐grade heat. Carbon materials such as carbon nanotubes (CNTs) and graphene have experienced a rapid development as TE materials because of their intrinsic ultrahigh electrical conductivity and light weight. Besides, polymer‐based carbon composites are particularly fascinating as the combination of the merits of polymers and filler materials leads to high TE performance and superior flexibility. Herein, the recent TE advances are systematically summarized in the studied popularity of carbon materials (ie, CNTs and graphene) and the category of polymers. The conducting polymer‐based carbon materials are particularly highlighted. Finally, the remaining challenges and some tentative suggestions possibly guiding future developments are proposed, which may pave a way for a bright future of carbon and carbon composites in the energy market. Abstract The urgent need for consistent, reliable, ecofriendly, and stable power sources drives the development of new green energy materials. Thermoelectric (TE) materials receive increasing attention due to their unique capability of realizing the direct energy conversion between heat and electricity, showing diverse applications in harvesting waste heat and low‐grade heat. Carbon materials such as carbon nanotubes (CNTs) and graphene have experienced a rapid development as TE materials because of their intrinsic ultrahigh electrical conductivity and light weight. Besides, polymer‐based carbon composites are particularly fascinating as the combination of the merits of polymers and filler materials leads to high TE performance and superior flexibility. Herein, the recent TE advances are systematically summarized in the studied popularity of carbon materials (ie, CNTs and graphene) and the category of polymers. The conducting polymer‐based carbon materials are particularly highlighted. Finally, the remaining challenges and some tentative suggestions possibly guiding future developments are proposed, which may pave a way for a bright future of carbon and carbon composites in the energy market. The urgent need for consistent, reliable, ecofriendly, and stable power sources drives the development of new green energy materials. Thermoelectric (TE) materials receive increasing attention due to their unique capability of realizing the direct energy conversion between heat and electricity, showing diverse applications in harvesting waste heat and low‐grade heat. Carbon materials such as carbon nanotubes (CNTs) and graphene have experienced a rapid development as TE materials because of their intrinsic ultrahigh electrical conductivity and light weight. Besides, polymer‐based carbon composites are particularly fascinating as the combination of the merits of polymers and filler materials leads to high TE performance and superior flexibility. Herein, the recent TE advances are systematically summarized in the studied popularity of carbon materials (ie, CNTs and graphene) and the category of polymers. The conducting polymer‐based carbon materials are particularly highlighted. Finally, the remaining challenges and some tentative suggestions possibly guiding future developments are proposed, which may pave a way for a bright future of carbon and carbon composites in the energy market. |
Author | Chen, Guangming Zhang, Yichuan Zhang, Qichun |
Author_xml | – sequence: 1 givenname: Yichuan orcidid: 0000-0001-9260-161X surname: Zhang fullname: Zhang, Yichuan organization: Shenzhen University – sequence: 2 givenname: Qichun orcidid: 0000-0003-1854-8659 surname: Zhang fullname: Zhang, Qichun email: qczhang@ntu.edu.sg organization: City University of Hong Kong – sequence: 3 givenname: Guangming orcidid: 0000-0002-9848-9101 surname: Chen fullname: Chen, Guangming email: chengm@szu.edu.cn organization: Shenzhen University |
BookMark | eNp1kEtLAzEUhYNUsNbiXxhw4UJak0wyMwE3MtQHFNzowlXI40ZTppMxmSL9904dETeu7uHy3XMP5xRN2tACQucELwnG9NrAni6L6ghNaZGXC5EX1eSPPkHzlDZ4IElJMBVTdFOrqEObqdZmZpQmbLuQfA8pcyFm_TvEbYAGTB-9yVTXNd6o3oc2naFjp5oE8585Qy93q-f6YbF-un-sb9cLwzirFspobipCsMPWakG0sLnBmloHIDAhlmGhbF4KyjnjhKjKgKJOO0GwGG7yGXocfW1QG9lFv1VxL4Py8nsR4ptUsfemAWkEy60qqSsqwUpHK-CagSus5QyXTA9eF6NXF8PHDlIvN2EX2yG-pJwxgQWn-UBdjpSJIaUI7vcrwfLQtDw0LYtqIK9G8tM3sP8Pk_XqlQ70FwTmf8g |
CitedBy_id | crossref_primary_10_1002_adma_202305416 crossref_primary_10_1039_D1MA00871D crossref_primary_10_1088_2515_7639_acc550 crossref_primary_10_3390_app12147169 crossref_primary_10_3390_jcs8020053 crossref_primary_10_1039_D3LF00239J crossref_primary_10_3390_ma14195604 crossref_primary_10_1016_j_cej_2021_131137 crossref_primary_10_1002_vjch_202200118 crossref_primary_10_1016_j_coco_2021_100888 crossref_primary_10_1016_j_enbuild_2021_111617 crossref_primary_10_1021_acsami_2c20489 crossref_primary_10_1002_flm2_26 crossref_primary_10_1016_j_nanoen_2020_105448 crossref_primary_10_1021_acsami_0c22123 crossref_primary_10_1038_s41528_020_00089_2 crossref_primary_10_1002_cey2_113 crossref_primary_10_1021_acsaem_1c02135 crossref_primary_10_1088_2516_1083_abd082 crossref_primary_10_1016_j_sna_2022_113938 crossref_primary_10_3390_nano11051146 crossref_primary_10_1016_j_mtchem_2023_101774 crossref_primary_10_1002_adfm_202111435 crossref_primary_10_3390_molecules27206932 crossref_primary_10_1016_j_coco_2022_101103 crossref_primary_10_1016_j_apsadv_2023_100379 crossref_primary_10_1016_j_nanoen_2021_106260 crossref_primary_10_1039_D2MA00086E crossref_primary_10_1016_j_carbon_2021_06_068 crossref_primary_10_1007_s10853_023_08334_5 crossref_primary_10_1088_1674_1056_ac6493 crossref_primary_10_3390_cryst11010047 crossref_primary_10_1021_acsmaterialslett_3c00315 crossref_primary_10_1002_admi_202201193 crossref_primary_10_1016_j_compscitech_2021_108759 crossref_primary_10_1039_D4TC01307G crossref_primary_10_1088_1361_6528_ac17c3 crossref_primary_10_1002_admt_202201544 crossref_primary_10_1039_D2YA00226D crossref_primary_10_1038_s41467_024_47417_y crossref_primary_10_1016_j_apsusc_2024_160359 crossref_primary_10_1016_j_coco_2021_100701 crossref_primary_10_1016_j_jpcs_2023_111726 crossref_primary_10_1016_j_pmatsci_2022_101003 crossref_primary_10_1016_j_scib_2023_08_057 crossref_primary_10_1021_acsami_1c23206 crossref_primary_10_1002_pc_28522 crossref_primary_10_1016_j_mtchem_2024_102129 crossref_primary_10_1002_admi_202200555 crossref_primary_10_1080_1536383X_2021_2024167 crossref_primary_10_3390_coatings14010126 crossref_primary_10_1039_D2SE01295B crossref_primary_10_1039_D4TA02267J crossref_primary_10_3390_polym16121752 crossref_primary_10_1021_acsaelm_1c01256 crossref_primary_10_1016_j_compscitech_2022_109291 crossref_primary_10_1021_acsami_1c07644 crossref_primary_10_1021_acssuschemeng_2c03575 crossref_primary_10_1016_j_compscitech_2023_110163 crossref_primary_10_1021_acsami_3c04596 crossref_primary_10_1016_j_compscitech_2023_110043 crossref_primary_10_1007_s42114_022_00595_z crossref_primary_10_1016_j_ref_2023_02_005 crossref_primary_10_1039_D3YA00085K crossref_primary_10_1016_j_susmat_2021_e00382 crossref_primary_10_1016_j_nanoen_2021_106804 crossref_primary_10_1021_acsami_1c24649 crossref_primary_10_1002_adfm_202209806 crossref_primary_10_1016_j_carbon_2023_01_030 crossref_primary_10_3390_nano14121025 crossref_primary_10_1016_j_coco_2022_101240 crossref_primary_10_1002_adfm_202406165 crossref_primary_10_1021_acsami_4c00935 crossref_primary_10_1088_2043_6262_ad08a1 crossref_primary_10_1021_acsami_3c11792 crossref_primary_10_1039_D3TA01117H crossref_primary_10_1016_j_jallcom_2021_163433 crossref_primary_10_1021_acsaem_4c00271 crossref_primary_10_1002_asia_202100530 crossref_primary_10_1021_acsnano_3c00798 crossref_primary_10_1007_s42765_023_00267_7 crossref_primary_10_1002_adfm_202303861 crossref_primary_10_1016_j_cclet_2024_109804 crossref_primary_10_1016_j_cej_2022_135706 crossref_primary_10_1088_1674_1056_ac2802 crossref_primary_10_1002_app_54018 crossref_primary_10_1021_acsaem_3c03060 crossref_primary_10_1016_j_nanoen_2021_106577 crossref_primary_10_1039_D1TC01519B crossref_primary_10_3390_ma14216306 crossref_primary_10_1039_D2TC02448A crossref_primary_10_1021_acsaem_2c04160 crossref_primary_10_1039_D1MA00496D crossref_primary_10_3390_ma16237262 crossref_primary_10_1007_s10853_022_07846_w crossref_primary_10_1002_admt_202300309 crossref_primary_10_1016_j_cej_2024_149439 crossref_primary_10_1007_s40145_022_0657_4 crossref_primary_10_1007_s11426_023_1567_0 crossref_primary_10_1016_j_coco_2020_100612 crossref_primary_10_1002_adfm_202104836 crossref_primary_10_1002_admt_202101203 crossref_primary_10_1016_j_matchemphys_2021_124898 crossref_primary_10_1088_1361_665X_ac4120 crossref_primary_10_1021_acsami_3c09222 crossref_primary_10_1002_cey2_161 crossref_primary_10_1016_j_carbon_2022_11_057 crossref_primary_10_1002_cey2_285 crossref_primary_10_1016_j_jcis_2024_06_188 crossref_primary_10_1007_s10854_023_11430_6 crossref_primary_10_1021_acsaem_2c02498 crossref_primary_10_1088_1674_1056_ac3502 crossref_primary_10_1021_acs_nanolett_2c00696 crossref_primary_10_3390_polym14020269 crossref_primary_10_1021_acsnano_0c10662 crossref_primary_10_1016_j_carbon_2023_118654 crossref_primary_10_1002_smll_202100505 crossref_primary_10_1016_j_cej_2023_141366 crossref_primary_10_3390_molecules27062018 crossref_primary_10_1002_asia_202400211 crossref_primary_10_1016_j_coco_2024_101873 crossref_primary_10_1039_D1MA00299F crossref_primary_10_1002_eem2_12281 crossref_primary_10_1016_j_diamond_2023_110719 crossref_primary_10_1142_S0218625X23300083 crossref_primary_10_1007_s42765_023_00305_4 crossref_primary_10_1016_j_synthmet_2021_116874 crossref_primary_10_1021_acsami_1c01059 crossref_primary_10_1007_s12274_023_6169_x crossref_primary_10_1021_acsaem_2c00142 crossref_primary_10_1002_adma_202102990 crossref_primary_10_1016_j_mtener_2024_101643 crossref_primary_10_1177_09544089241230874 crossref_primary_10_1016_j_synthmet_2022_117196 crossref_primary_10_1039_D0TC04175K crossref_primary_10_1016_j_compscitech_2022_109373 crossref_primary_10_1016_j_compscitech_2023_110245 crossref_primary_10_1080_09593330_2021_1983025 crossref_primary_10_1080_14786435_2022_2102264 crossref_primary_10_1016_j_coco_2022_101166 crossref_primary_10_1016_j_carbon_2022_05_043 crossref_primary_10_1021_acsmaterialslett_2c00026 crossref_primary_10_3389_fchem_2021_677821 crossref_primary_10_1039_D1TA00820J crossref_primary_10_1109_TCPMT_2021_3095048 crossref_primary_10_1021_acsami_2c17343 crossref_primary_10_3390_ma15238672 crossref_primary_10_1080_10408436_2022_2049697 crossref_primary_10_1080_1536383X_2023_2237142 crossref_primary_10_1016_j_apmt_2021_100959 crossref_primary_10_1021_acsami_2c17349 crossref_primary_10_1088_2752_5724_ad0ca9 |
Cites_doi | 10.1002/adma.200902221 10.1039/C8NR10537E 10.1002/aelm.201800465 10.1103/PhysRevB.47.12727 10.1002/smll.201703453 10.1002/admt.201700256 10.1016/j.compscitech.2019.107948 10.1063/1.2745218 10.3390/en13020394 10.1103/PhysRevB.81.113401 10.1007/s11664-019-07519-6 10.1063/1.5066021 10.1021/acsenergylett.6b00417 10.7567/APEX.7.025103 10.1016/j.matlet.2011.09.060 10.1063/1.127079 10.1039/C4TA06710J 10.1186/s11671-019-3167-8 10.1039/c2jm32750c 10.1039/C4TC02471K 10.1002/1521-4095(20021016)14:20<1480::AID-ADMA1480>3.0.CO;2-O 10.1016/j.carbon.2015.12.014 10.3390/polym11010107 10.1016/j.apsusc.2013.11.162 10.1063/1.2814080 10.1103/PhysRevB.54.17954 10.1002/aenm.201904199 10.1016/j.compscitech.2017.12.030 10.1103/PhysRevLett.102.166808 10.1016/j.cej.2019.03.155 10.1002/aenm.201701797 10.1016/j.carbon.2013.06.028 10.1007/s12274-017-1683-3 10.1002/app.35193 10.1016/j.carbon.2011.09.050 10.1126/science.1184014 10.1016/j.carbon.2013.08.061 10.1021/acsnano.9b03521 10.1016/j.nanoen.2016.08.063 10.1016/j.compscitech.2014.07.009 10.1016/j.synthmet.2014.01.007 10.1002/adma.201405738 10.1063/1.4915622 10.1039/C6RA08599G 10.1007/s12274-014-0433-z 10.1002/admt.202000049 10.1002/asia.201403100 10.1103/PhysRevB.93.125432 10.1021/nl080302f 10.1002/marc.201700727 10.1016/j.compscitech.2017.03.018 10.1002/cey2.48 10.1021/acs.chemrev.6b00255 10.1039/C4RA07774A 10.1016/j.compscitech.2016.04.023 10.1016/j.carbon.2019.05.035 10.1016/j.compscitech.2016.01.014 10.1002/cey2.12 10.1063/1.3531573 10.1016/j.matlet.2013.06.008 10.1016/j.polymer.2016.12.019 10.1016/j.orgel.2017.03.007 10.1103/PhysRevB.83.235426 10.1021/nn200114p 10.1080/17458080903536541 10.1016/j.matlet.2010.03.041 10.1002/cey2.11 10.1038/nature07919 10.1016/j.rser.2015.09.004 10.1039/c3ta12691a 10.1039/C9TA03153G 10.1002/aenm.201502168 10.1021/nl0731872 10.1016/j.synthmet.2016.12.017 10.1002/asia.201500066 10.7567/APEX.9.025102 10.1016/j.colsurfa.2016.09.036 10.1002/asia.201600293 10.1021/nl502982f 10.1039/C1EE01931G 10.3390/ma7042577 10.1016/j.ssc.2008.02.024 10.1016/j.compscitech.2012.08.003 10.1016/j.synthmet.2018.03.004 10.1063/1.5118694 10.3390/en12234561 10.1016/j.nanoen.2017.03.019 10.1039/C4EE01905A 10.1103/PhysRevB.92.165426 10.1103/PhysRevLett.98.206805 10.1038/nmat3064 10.1021/acs.nanolett.9b03022 10.1016/j.seta.2019.100604 10.1016/j.pmatsci.2016.07.002 10.1021/nn1002562 10.1016/j.synthmet.2014.08.001 10.1103/PhysRevB.47.16631 10.1557/mrs2006.46 10.1016/j.polymer.2014.08.048 10.1039/C5TC03768A 10.1039/C6TC05488A 10.1063/1.2801353 10.1016/j.joule.2018.10.012 10.1002/marc.200700637 10.1063/1.3171933 10.1016/j.carbon.2005.09.013 10.1021/acs.langmuir.7b01500 10.1002/adma.201807916 10.1016/j.progpolymsci.2011.11.003 10.1021/nl802306t 10.1080/03602559.2011.593087 10.1016/j.synthmet.2012.05.029 10.1126/science.1150878 10.1039/B311016H 10.1103/PhysRevB.84.155449 10.1002/adma.201602423 10.1021/nl203806q 10.1039/C8TA04838J 10.1039/C4RA04003A 10.1016/j.matchemphys.2018.03.025 10.1021/acsami.7b05357 10.1016/j.synthmet.2011.09.044 10.1021/acsaem.9b01736 10.1038/srep03448 10.1021/ja025673r 10.1126/sciadv.aar4192 10.1016/j.synthmet.2014.06.003 10.1002/marc.200800549 10.1002/mame.200900243 10.1021/acsami.7b14890 10.1039/c2cp23517j 10.3390/jcs4010014 10.1021/nl802345s 10.1103/PhysRevB.71.205423 10.1038/nmat2090 10.3390/polym10101143 10.1002/adma.200400921 10.3390/jcs3040106 10.1038/s41467-019-13993-7 10.1021/nn202868a 10.1016/j.carbon.2016.11.074 10.1021/nn9013577 10.1002/cey2.15 10.1021/jp0475988 10.1002/cey2.9 10.1002/pssb.201200908 10.1038/nenergy.2016.33 10.1007/s10853-011-6220-2 10.1016/j.compscitech.2019.107794 |
ContentType | Journal Article |
Copyright | 2020 The Authors. published by Wenzhou University and John Wiley & Sons Australia, Ltd. 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2020 The Authors. published by Wenzhou University and John Wiley & Sons Australia, Ltd. – notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P WIN AAYXX CITATION 8FE 8FG 8FH ABUWG AFKRA ARAPS ATCPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P P5Z P62 PATMY PIMPY PQEST PQQKQ PQUKI PRINS PYCSY DOA |
DOI | 10.1002/cey2.68 |
DatabaseName | Wiley-Blackwell Open Access Collection Wiley-Blackwell Open Access Backfiles CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) Agricultural & Environmental Science Collection ProQuest Central Essentials Biological Science Collection AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) Biological Sciences Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Biological Science Collection Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection Environmental Science Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals url: http://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2637-9368 |
EndPage | 436 |
ExternalDocumentID | oai_doaj_org_article_c943da72f68947f28e5b4ef6dd54074b 10_1002_cey2_68 CEY268 |
Genre | reviewArticle |
GroupedDBID | 0R~ 1OC 24P AAHHS ACCFJ ACXQS ADKYN ADZMN ADZOD AEEZP AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ARAPS ARCSS ATCPS AVUZU BBNVY BENPR BGLVJ BHPHI CCPQU EBS EJD GROUPED_DOAJ HCIFZ IAO IEP M7P OK1 PATMY PIMPY PYCSY WIN AAYXX CITATION ITC 8FE 8FG 8FH ABUWG AZQEC DWQXO GNUQQ LK8 P62 PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c4548-acb5c8110f0ddb91b9d3c0b2dfee9011d409ad3792554511a8cea2fbf9109f0d3 |
IEDL.DBID | DOA |
ISSN | 2637-9368 |
IngestDate | Tue Oct 22 15:08:42 EDT 2024 Thu Oct 10 19:57:07 EDT 2024 Thu Sep 26 16:06:39 EDT 2024 Sat Aug 24 01:40:57 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Attribution |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4548-acb5c8110f0ddb91b9d3c0b2dfee9011d409ad3792554511a8cea2fbf9109f0d3 |
ORCID | 0000-0003-1854-8659 0000-0001-9260-161X 0000-0002-9848-9101 |
OpenAccessLink | https://doaj.org/article/c943da72f68947f28e5b4ef6dd54074b |
PQID | 2544909523 |
PQPubID | 5066174 |
PageCount | 29 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c943da72f68947f28e5b4ef6dd54074b proquest_journals_2544909523 crossref_primary_10_1002_cey2_68 wiley_primary_10_1002_cey2_68_CEY268 |
PublicationCentury | 2000 |
PublicationDate | September 2020 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: September 2020 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | Carbon energy |
PublicationYear | 2020 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2002; 14 2013; 3 2006; 31 2013; 1 2012; 124 2019; 11 2019; 13 2013; 62 2019; 12 2019; 14 2019; 19 2020; 13 2020; 11 2020; 10 2012; 14 2012; 12 1979 2010; 22 2018; 6 2018; 8 2018; 39 2018; 3 2018; 5 2018; 4 2009; 94 2018; 212 2008; 29 2014; 14 2005; 71 2010; 5 2010; 4 2012; 22 2019; 150 1993; 47 2019; 7 2019; 3 2019; 31 2010; 328 2019; 2 2019; 1 2011; 84 2013; 107 2011; 83 2007; 90 2020; 37 2007; 91 2016; 93 2012; 37 2007; 98 2011; 5 2019; 183 2016; 11 2016; 99 2009; 458 2016; 4 2012; 50 2016; 6 2016; 1 2006; 44 2018; 239 2018; 113 2002; 124 2000; 77 2019; 48 2010; 295 2009; 102 2012; 47 2017; 144 2018; 11 2016; 28 2005; 17 2018; 10 2016; 9 2018; 14 2017; 5 2012; 161 2012; 162 2016; 509 2017; 45 2019; 126 2008; 7 2011; 10 2008; 8 2015; 106 2014; 292 2008; 146 2017; 114 2017; 9 2014; 66 2012; 72 2020; 5 2010; 64 2020; 4 2014; 4 2020; 2 2017; 33 2017; 35 2008; 319 2003; 5 2016; 83 2016; 116 2014; 7 2012; 67 2014; 55 2015; 3 2015; 92 2016; 129 2020; 187 2015; 10 2016; 124 2016; 53 2017; 29 2014; 195 2010; 81 2004; 108 2014; 196 1996; 54 2017; 108 2011; 109 2009; 30 2015; 27 2018; 156 2011; 50 2013; 250 2012; 5 2019; 370 2017; 225 2014; 189 2014; 101 e_1_2_6_114_1 e_1_2_6_137_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_95_1 e_1_2_6_118_1 e_1_2_6_30_1 e_1_2_6_72_1 e_1_2_6_91_1 e_1_2_6_110_1 e_1_2_6_133_1 e_1_2_6_19_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_99_1 e_1_2_6_125_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_106_1 e_1_2_6_148_1 e_1_2_6_129_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 e_1_2_6_140_1 e_1_2_6_121_1 e_1_2_6_102_1 e_1_2_6_144_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_45_1 e_1_2_6_26_1 e_1_2_6_68_1 e_1_2_6_73_1 e_1_2_6_136_1 e_1_2_6_54_1 e_1_2_6_96_1 e_1_2_6_117_1 e_1_2_6_31_1 e_1_2_6_50_1 e_1_2_6_92_1 e_1_2_6_151_1 e_1_2_6_132_1 e_1_2_6_113_1 Mott NF (e_1_2_6_48_1) 1979 e_1_2_6_35_1 e_1_2_6_12_1 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_58_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_105_1 e_1_2_6_128_1 e_1_2_6_147_1 e_1_2_6_65_1 e_1_2_6_80_1 e_1_2_6_109_1 e_1_2_6_61_1 e_1_2_6_120_1 e_1_2_6_101_1 e_1_2_6_124_1 e_1_2_6_143_1 e_1_2_6_6_1 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_88_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_97_1 e_1_2_6_116_1 e_1_2_6_139_1 e_1_2_6_32_1 e_1_2_6_70_1 e_1_2_6_93_1 e_1_2_6_131_1 e_1_2_6_150_1 e_1_2_6_112_1 e_1_2_6_135_1 e_1_2_6_36_1 e_1_2_6_59_1 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_78_1 e_1_2_6_62_1 e_1_2_6_85_1 e_1_2_6_104_1 e_1_2_6_43_1 e_1_2_6_127_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_108_1 Kawamoto M (e_1_2_6_13_1) 2017; 29 e_1_2_6_142_1 e_1_2_6_100_1 e_1_2_6_146_1 e_1_2_6_123_1 e_1_2_6_7_1 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_98_1 e_1_2_6_115_1 e_1_2_6_75_1 e_1_2_6_138_1 e_1_2_6_10_1 e_1_2_6_94_1 e_1_2_6_119_1 e_1_2_6_71_1 e_1_2_6_90_1 e_1_2_6_130_1 e_1_2_6_111_1 e_1_2_6_134_1 e_1_2_6_14_1 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_56_1 e_1_2_6_37_1 e_1_2_6_79_1 e_1_2_6_103_1 e_1_2_6_126_1 e_1_2_6_149_1 e_1_2_6_63_1 e_1_2_6_86_1 e_1_2_6_21_1 e_1_2_6_107_1 e_1_2_6_40_1 e_1_2_6_82_1 e_1_2_6_141_1 e_1_2_6_122_1 e_1_2_6_145_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_29_1 e_1_2_6_44_1 e_1_2_6_67_1 |
References_xml | – volume: 67 start-page: 210 year: 2012 end-page: 214 article-title: Thermoelectric behaviour of melt processed carbon nanotube/graphite/poly(lactic acid) conductive biopolymer nanocomposites (CPC) publication-title: Mater Lett – volume: 31 start-page: 206 year: 2006 end-page: 210 article-title: Complex oxide materials for potential thermoelectric applications publication-title: MRS Bull – volume: 5 start-page: 5364 year: 2012 end-page: 5369 article-title: Flexible carbon nanotube papers with improved thermoelectric properties publication-title: Energy Environ Sci – volume: 124 start-page: 1808 year: 2012 end-page: 1814 article-title: Temperature and time dependence of electrical resistivity in an anisotropically conductive polymer composite with in situ conductive microfibrils publication-title: J Appl Polym Sci – volume: 8 start-page: 4428 year: 2008 end-page: 4432 article-title: Thermoelectric behavior of segregated‐network polymer nanocomposites publication-title: Nano Lett – volume: 11 start-page: 1 year: 2020 end-page: 10 article-title: Elastic conducting polymer composites in thermoelectric modules publication-title: Nat Commun – volume: 14 year: 2018 article-title: In situ oxidation synthesis of p‐type composite with narrow‐bandgap small organic molecule coating on single‐walled carbon nanotube: flexible film and thermoelectric performance publication-title: Small – volume: 5 start-page: 7885 year: 2011 end-page: 7892 article-title: Light‐weight flexible carbon nanotube based organic composites with large thermoelectric power factors publication-title: ACS Nano – volume: 370 start-page: 322 year: 2019 end-page: 329 article-title: Enhancement of the thermoelectric property of nanostructured polyaniline/carbon nanotube composites by introducing pyrrole unit onto polyaniline backbone via a sustainable method publication-title: Chem Eng J – volume: 29 start-page: 29 year: 2017 article-title: Green processing of carbon nanomaterials publication-title: Adv Mater – volume: 3 start-page: 1649 year: 2015 end-page: 1654 article-title: Enhanced thermoelectric property by the construction of a nanocomposite 3D interconnected architecture consisting of graphene nanolayers sandwiched by polypyrrole nanowires publication-title: J Mater Chem C – volume: 107 start-page: 150 year: 2013 end-page: 153 article-title: Thermoelectric behaviour of segregated conductive polymer composites with hybrid fillers of carbon nanotube and bismuth telluride publication-title: Mater Lett – volume: 4 start-page: 46187 year: 2014 end-page: 46193 article-title: Preparation of polypyrrole/graphene nanosheets composites with enhanced thermoelectric properties publication-title: RSC Adv – volume: 7 year: 2014 article-title: Giant Seebeck coefficient in semiconducting single‐wall carbon nanotube film publication-title: Appl Phys Express – volume: 146 start-page: 351 year: 2008 end-page: 355 article-title: Ultrahigh electron mobility in suspended graphene publication-title: Solid State Commun – volume: 150 start-page: 408 year: 2019 end-page: 416 article-title: Negative thermoelectric power of melt mixed vapor grown carbon nanofiber polypropylene composites publication-title: Carbon – volume: 292 start-page: 469 year: 2014 end-page: 474 article-title: Effect of acidification conditions on the properties of carbon nanotube fibers publication-title: Appl Surf Sci – volume: 225 start-page: 3 year: 2017 end-page: 21 article-title: Recent progress of organic and hybrid thermoelectric materials publication-title: Synth Met – volume: 44 start-page: 768 year: 2006 end-page: 777 article-title: Surface functionalities of multi‐wall carbon nanotubes after UV/Ozone and TETA treatments publication-title: Carbon – volume: 9 year: 2016 article-title: Thermoelectric properties of single‐wall carbon nanotube films: effects of diameter and wet environment publication-title: Appl Phys Express – volume: 1 year: 2016 article-title: Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties publication-title: Nat Energy – volume: 8 start-page: 902 year: 2008 end-page: 907 article-title: Superior thermal conductivity of single‐layer graphene publication-title: Nano Lett – volume: 98 year: 2007 article-title: Energy band‐gap engineering of graphene nanoribbons publication-title: Phys Rev Lett – volume: 11 start-page: 1489 year: 2016 end-page: 1511 article-title: Nanostructured conjugated polymers for energy‐related applications beyond solar cells publication-title: Chem Asian J – volume: 22 start-page: 535 year: 2010 end-page: 539 article-title: A promising approach to enhanced thermoelectric properties using carbon nanotube networks publication-title: Adv Mater – volume: 90 year: 2007 article-title: PbTe nanocomposites synthesized from PbTe nanocrystals publication-title: Appl Phys Lett – volume: 458 start-page: 877 year: 2009 end-page: 880 article-title: Narrow graphene nanoribbons from carbon nanotubes publication-title: Nature – volume: 161 start-page: 2688 year: 2012 end-page: 2692 article-title: Simultaneous increase in conductivity and Seebeck coefficient in a polyaniline/graphene nanosheets thermoelectric nanocomposite publication-title: Synth Met – volume: 10 start-page: 1225 year: 2015 end-page: 1231 article-title: In situ chemical oxidative polymerization preparation of poly(3,4‐ethylenedioxythiophene)/graphene nanocomposites with enhanced thermoelectric performance publication-title: Chem Asian J – volume: 45 start-page: 182 year: 2017 end-page: 189 article-title: Origin of unusual thermoelectric transport behaviors in carbon nanotube filled polymer composites after solvent/acid treatments publication-title: Org Electron – volume: 50 start-page: 1511 year: 2011 end-page: 1514 article-title: The resistivity response of an anisotropically conductive polymer composite with in‐situ conductive microfibrils during cooling publication-title: Polym Plast Technol Eng – volume: 30 start-page: 423 year: 2009 end-page: 429 article-title: Selective localization and migration of multiwalled carbon nanotubes in blends of polycarbonate and poly(styrene‐acrylonitrile) publication-title: Macromol Rapid Commun – volume: 91 year: 2007 article-title: Electrical properties of air‐stable, iodine‐doped carbon‐nanotube–polymer composites publication-title: Appl Phys Lett – volume: 1 start-page: 1212 year: 2016 end-page: 1220 article-title: Polymer‐free carbon nanotube thermoelectrics with improved charge carrier transport and power factor publication-title: ACS Energy Lett – volume: 6 start-page: 12275 year: 2018 end-page: 12280 article-title: Flexible films of poly(3,4‐ethylenedioxythiophene)/carbon nanotube thermoelectric composites prepared by dynamic 3‐phase interfacial electropolymerization and subsequent physical mixing publication-title: J Mater Chem A – volume: 47 start-page: 12727 year: 1993 end-page: 12731 article-title: Effect of quantum‐well structures on the thermoelectric figure of merit publication-title: Phys Rev B – volume: 126 year: 2019 article-title: Enhanced thermoelectric properties of semiconducting carbon nanotube films by UV/ozone treatment publication-title: J Appl Phys – volume: 239 start-page: 13 year: 2018 end-page: 21 article-title: Revealing the anisotropy in thermoelectric transport performances in CNT/PANI composites publication-title: Synth Met – volume: 250 start-page: 1468 year: 2013 end-page: 1473 article-title: Thermoelectric properties of single walled carbon nanotube networks in polycarbonate matrix publication-title: Phys Status Solidi B – volume: 11 start-page: 741 year: 2018 end-page: 750 article-title: Chemically doped macroscopic graphene fibers with significantly enhanced thermoelectric properties publication-title: Nano Res – volume: 28 start-page: 426 year: 2016 end-page: 432 article-title: Stable n‐type thermoelectric multilayer thin films with high power factor from carbonaceous nanofillers publication-title: Nano Energy – volume: 91 year: 2007 article-title: Giant thermoelectric effect in graphene publication-title: Appl Phys Lett – volume: 7 start-page: 3801 year: 2014 end-page: 3807 article-title: Abnormally enhanced thermoelectric transport properties of SWNT/PANI hybrid films by the strengthened PANI molecular ordering publication-title: Energy Environ Sci – volume: 50 start-page: 885 year: 2012 end-page: 895 article-title: Increasing the thermoelectric power factor of polymer composites using a semiconducting stabilizer for carbon nanotubes publication-title: Carbon – volume: 64 start-page: 1430 year: 2010 end-page: 1432 article-title: Anisotropically conductive polymer composites with a selective distribution of carbon black in an in situ microfibrillar reinforced blend publication-title: Mater Lett – volume: 116 start-page: 12123 year: 2016 end-page: 12149 article-title: Rationally designing high‐performance bulk thermoelectric materials publication-title: Chem Rev – volume: 3 start-page: 53 year: 2019 end-page: 80 article-title: Organic thermoelectrics: materials preparation, performance optimization, and device integration publication-title: Joule – volume: 10 start-page: 4946 year: 2018 end-page: 4952 article-title: Facile synthesis of diamino‐modified graphene/polyaniline semi‐interpenetrating networks with practical high thermoelectric performance publication-title: ACS Appl Mater Interfaces – volume: 48 start-page: 6978 year: 2019 end-page: 6984 article-title: Effect of functional groups on the thermoelectric performance of carbon nanotubes publication-title: J Electron Mater – volume: 47 start-page: 16631 year: 1993 end-page: 16634 article-title: Thermoelectric figure of merit of a one‐dimensional conductor publication-title: Phys Rev B – volume: 10 start-page: 569 year: 2011 end-page: 581 article-title: Thermal properties of graphene and nanostructured carbon materials publication-title: Nat Mater – volume: 5 start-page: 4350 year: 2017 end-page: 4360 article-title: Recent advances in organic polymer thermoelectric composites publication-title: J Mater Chem C – volume: 72 start-page: 1875 year: 2012 end-page: 1881 article-title: The effect of molecular chain polarity on electric field‐induced aligned conductive carbon nanotube network formation in polymer melt publication-title: Compos Sci Technol – volume: 14 start-page: 1 year: 2019 end-page: 17 article-title: Carbon nanomaterials for the treatment of heavy metal‐contaminated water and environmental remediation publication-title: Nanoscale Res Lett – volume: 328 start-page: 213 year: 2010 end-page: 216 article-title: Two‐dimensional phonon transport in supported graphene publication-title: Science – volume: 102 year: 2009 article-title: Anomalous thermoelectric transport of Dirac particles in graphene publication-title: Phys Rev Lett – volume: 6 year: 2016 article-title: Outstanding low temperature thermoelectric power factor from completely organic thin films enabled by multidimensional conjugated nanomaterials publication-title: Adv Energy Mater – volume: 7 start-page: 2577 year: 2014 end-page: 2592 article-title: Bismuth telluride and its alloys as materials for thermoelectric generation publication-title: Materials – volume: 47 start-page: 3713 year: 2012 end-page: 3719 article-title: Conductive network formation during annealing of an oriented polyethylene‐based composite publication-title: J Mater Sci – volume: 195 start-page: 132 year: 2014 end-page: 136 article-title: Preparation and thermoelectric properties of multi‐walled carbon nanotubes/polypyrrole composites publication-title: Synth Met – volume: 29 start-page: 244 year: 2008 end-page: 251 article-title: A novel strategy to incorporate carbon nanotubes into thermoplastic matrices publication-title: Macromol Rapid Commun – volume: 53 start-page: 653 year: 2016 end-page: 671 article-title: Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: a proficient move towards waste energy harvesting publication-title: Renew Sustain Energy Rev – volume: 101 start-page: 133 year: 2014 end-page: 138 article-title: Influence of the MWCNT surface functionalization on the thermoelectric properties of melt‐mixed polycarbonate composites publication-title: Compos Sci Technol – volume: 55 start-page: 5381 year: 2014 end-page: 5388 article-title: Influence of a cyclic butylene terephthalate oligomer on the processability and thermoelectric properties of polycarbonate/MWCNT nanocomposites publication-title: Polymer – volume: 14 start-page: 1480 year: 2002 end-page: 1483 article-title: Carbon nanotube doped polyaniline publication-title: Adv Mater – volume: 113 year: 2018 article-title: Isotropic Seebeck coefficient of aligned single‐wall carbon nanotube films publication-title: Appl Phys Lett – volume: 83 start-page: 330 year: 2016 end-page: 382 article-title: Recent advances in thermoelectric materials publication-title: Prog Mater Sci – volume: 6 start-page: 53339 year: 2016 end-page: 53344 article-title: Improving the thermoelectric power factor of CNT/PEDOT: PSS nanocomposite films by ethylene glycol treatment publication-title: RSC Adv – volume: 295 start-page: 431 year: 2010 end-page: 436 article-title: Influence of stabilizer concentration on transport behavior and thermopower of CNT‐filled latex‐based composites publication-title: Macromol Mater Eng – volume: 12 start-page: 1307 year: 2012 end-page: 1310 article-title: Multilayered carbon nanotube/polymer composite based thermoelectric fabrics publication-title: Nano Lett – volume: 3 start-page: 106 year: 2019 article-title: Screening of different carbon nanotubes in melt‐mixed polymer composites with different polymer matrices for their thermoelectrical properties publication-title: J Compos Sci – volume: 162 start-page: 1348 year: 2012 end-page: 1356 article-title: Carbon nanotube‐polyaniline nanohybrids: influence of the carbon nanotube characteristics on the morphological, spectroscopic, electrical and thermoelectric properties publication-title: Synth Met – volume: 4 start-page: 14 year: 2020 article-title: Nitrogen‐doped carbon nanotube/polypropylene composites with negative Seebeck coefficient publication-title: J Compos Sci – volume: 14 start-page: 6437 year: 2014 end-page: 6442 article-title: Tuning of the thermoelectric properties of one‐dimensional material networks by electric double layer techniques using ionic liquids publication-title: Nano Lett – volume: 37 start-page: 820 year: 2012 end-page: 841 article-title: Research progress on polymer–inorganic thermoelectric nanocomposite materials publication-title: Prog Polym Sci – volume: 11 start-page: 107 year: 2019 article-title: Recent progress in thermoelectric materials based on conjugated polymers publication-title: Polymers – volume: 93 year: 2016 article-title: Reliability of Raman measurements of thermal conductivity of single‐layer graphene due to selective electron‐phonon coupling: a first‐principles study publication-title: Phys Rev B – volume: 156 start-page: 158 year: 2018 end-page: 165 article-title: All‐aromatic SWCNT‐polyetherimide nanocomposites for thermal energy harvesting applications publication-title: Compos Sci Technol – volume: 212 start-page: 440 year: 2018 end-page: 445 article-title: Free‐standing and flexible polypyrrole nanotube/reduced graphene oxide hybrid film with promising thermoelectric performance publication-title: Mater Chem Phys – volume: 319 start-page: 1229 year: 2008 end-page: 1232 article-title: Chemically derived, ultrasmooth graphene nanoribbon semiconductors publication-title: Science – volume: 83 year: 2011 article-title: Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons publication-title: Phys Rev B – volume: 9 start-page: 20124 year: 2017 end-page: 20131 article-title: Polypyrrole/graphene/polyaniline ternary nanocomposite with high thermoelectric power factor publication-title: ACS Appl Mater Interfaces – volume: 27 start-page: 2996 year: 2015 end-page: 3001 article-title: Completely organic multilayer thin film with thermoelectric power factor rivaling inorganic tellurides publication-title: Adv Mater – year: 1979 – volume: 10 start-page: 149 year: 2015 end-page: 153 article-title: Template‐directed in situ polymerization preparation of nanocomposites of PEDOT: PSS‐coated multi‐walled carbon nanotubes with enhanced thermoelectric property publication-title: Chem Asian J – volume: 108 start-page: 513 year: 2017 end-page: 520 article-title: Polypropylene‐based melt mixed composites with singlewalled carbon nanotubes for thermoelectric applications: switching from p‐type to n‐type by the addition of polyethylene glycol publication-title: Polymer – volume: 2 start-page: 7700 year: 2019 end-page: 7708 article-title: One‐minute Joule annealing enhances the thermoelectric properties of carbon nanotube yarns via the formation of graphene at the interface publication-title: ACS Appl Energy Mater – volume: 13 start-page: 394 year: 2020 article-title: Boron doping of SWCNTs as a way to enhance the thermoelectric properties of melt‐mixed polypropylene/SWCNT composites publication-title: Energies – volume: 62 start-page: 430 year: 2013 end-page: 437 article-title: Increasing the thermoelectric power generated by composite films using chemically functionalized single‐walled carbon nanotubes publication-title: Carbon – volume: 1 start-page: 141 year: 2019 end-page: 164 article-title: The application of carbon materials in nonaqueous Na‐O batteries publication-title: Carbon Energy – volume: 114 start-page: 1 year: 2017 end-page: 7 article-title: Strong anisotropy in thermoelectric properties of CNT/PANI composites publication-title: Carbon – volume: 8 year: 2018 article-title: High performance thermoelectric materials: progress and their applications publication-title: Adv Energy Mater – volume: 8 start-page: 1417 year: 2008 end-page: 1422 article-title: Colored semitransparent conductive coatings consisting of monodisperse metallic single‐walled carbon nanotubes publication-title: Nano Lett – volume: 144 start-page: 43 year: 2017 end-page: 50 article-title: An unusual coral‐like morphology for composites of poly(3,4‐ethylenedioxythiophene)/carbon nanotube and the enhanced thermoelectric performance publication-title: Compos Sci Technol – volume: 5 year: 2018 article-title: Thermally enhanced n‐type thermoelectric behavior in completely organic graphene oxide‐based thin films publication-title: Adv Electron Mater – volume: 7 start-page: 13687 year: 2019 end-page: 13694 article-title: PEDOT thermoelectric composites with excellent power factors prepared by 3‐phase interfacial electropolymerization and carbon nanotube chemical doping publication-title: J Mater Chem A – volume: 5 start-page: 5472 year: 2003 end-page: 5476 article-title: Doping of single‐walled carbon nanotube bundles by Brønsted acids publication-title: Phys Chem Chem Phys – volume: 3 year: 2018 article-title: Thermoelectric devices: a review of devices, architectures, and contact optimization publication-title: Adv Mater Technol – volume: 189 start-page: 177 year: 2014 end-page: 182 article-title: Investigating thermoelectric properties of doped polyaniline nanowires publication-title: Synth Met – volume: 1 start-page: 109 year: 2019 end-page: 123 article-title: Carbon‐based perovskite solar cells: from single‐junction to modules publication-title: Carbon Energy – volume: 5 start-page: 337 year: 2010 end-page: 347 article-title: Reducing defects on multi‐walled carbon nanotube surfaces induced by low‐power ultrasonic‐assisted hydrochloric acid treatment publication-title: J Exp Nanosci – volume: 92 year: 2015 article-title: Diameter dependence of thermoelectric power of semiconducting carbon nanotubes publication-title: Phys Rev B – volume: 8 start-page: 3879 year: 2008 end-page: 3886 article-title: Raman spectroscopy study of isolated double‐walled carbon nanotubes with different metallic and semiconducting configurations publication-title: Nano Lett – volume: 3 start-page: 6526 year: 2015 end-page: 6533 article-title: Effects of one‐and two‐dimensional carbon hybridization of PEDOT: PSS on the power factor of polymer thermoelectric energy conversion devices publication-title: J Mater Chem A – volume: 81 year: 2010 article-title: Enhanced thermoelectric figure of merit in edge‐disordered zigzag graphene nanoribbons publication-title: Phys Rev B – volume: 1 start-page: 12395 year: 2013 end-page: 12399 article-title: Convenient construction of poly(3,4‐ethylenedioxythiophene)–graphene pie‐like structure with enhanced thermoelectric performance publication-title: J Mater Chem A – volume: 4 start-page: 513 year: 2010 end-page: 523 article-title: Improved thermoelectric behavior of nanotube‐filled polymer composites with poly(3,4‐ethylenedioxythiophene)‐poly(styrenesulfonate) publication-title: ACS Nano – volume: 10 start-page: 1143 year: 2018 article-title: Morphologies tuning of polypyrrole and thermoelectric properties of polypyrrole nanowire/graphene composites publication-title: Polymers – volume: 5 year: 2020 article-title: Advancing flexible thermoelectric devices with polymer composites publication-title: Adv Mater Technol – volume: 13 start-page: 9182 year: 2019 end-page: 9189 article-title: Enhanced thermoelectric performance of as‐grown suspended graphene nanoribbons publication-title: ACS Nano – volume: 108 start-page: 16435 year: 2004 end-page: 16440 article-title: Properties and structure of nitric acid oxidized single wall carbon nanotube films publication-title: J Phys Chem B – volume: 1 start-page: 8 year: 2019 end-page: 12 article-title: Demanding energy from carbon publication-title: Carbon Energy – volume: 33 start-page: 8447 year: 2017 end-page: 8454 article-title: Spreading dynamics of molten polymer drops on glass substrates publication-title: Langmuir – volume: 7 start-page: 105 year: 2008 end-page: 114 article-title: Complex thermoelectric materials publication-title: Nat Mater – volume: 1 start-page: 13 year: 2019 end-page: 18 article-title: Nanodiamonds for energy publication-title: Carbon Energy – volume: 31 year: 2019 article-title: Flexible thermoelectric materials and generators: challenges and innovations publication-title: Adv Mater – volume: 4 start-page: 526 year: 2016 end-page: 532 article-title: Large‐area, stretchable, super flexible and mechanically stable thermoelectric films of polymer/carbon nanotube composites publication-title: J Mater Chem C – volume: 22 start-page: 17612 year: 2012 end-page: 17618 article-title: Enhanced thermoelectric properties of CNT/PANI composite nanofibers by highly orienting the arrangement of polymer chains publication-title: J Mater Chem – volume: 2 start-page: 223 year: 2020 end-page: 250 article-title: Graphitic carbon nitride (g‐C N )‐based nanosized heteroarrays: promising materials for photoelectrochemical water splitting publication-title: Carbon Energy – volume: 196 start-page: 173 year: 2014 end-page: 177 article-title: Polypyrrole nanotube film for flexible thermoelectric application publication-title: Synth Met – volume: 124 start-page: 52 year: 2016 end-page: 70 article-title: Conducting polymer/carbon particle thermoelectric composites: emerging green energy materials publication-title: Compos Sci Technol – volume: 11 start-page: 6552 year: 2019 end-page: 6560 article-title: High thermoelectric power‐factor composites based on flexible three‐dimensional graphene and polyaniline publication-title: Nanoscale – volume: 54 start-page: 17954 year: 1996 end-page: 17961 article-title: Edge state in graphene ribbons: nanometer size effect and edge shape dependence publication-title: Phys Rev B – volume: 509 start-page: 384 year: 2016 end-page: 389 article-title: Electrical property enhancement of carbon nanotube fibers from post treatments publication-title: Colloids Surf A Physicochem Eng Asp – volume: 124 start-page: 8131 year: 2002 end-page: 8141 article-title: Characterization of the interface dipole at organic/metal interfaces publication-title: J Am Chem Soc – volume: 4 year: 2018 article-title: Multifunctional structural design of graphene thermoelectrics by Bayesian optimization publication-title: Sci Adv – volume: 4 start-page: 29281 year: 2014 end-page: 29285 article-title: Morphology and thermoelectric properties of graphene nanosheets enwrapped with polypyrrole publication-title: RSC Adv – volume: 5 start-page: 3779 year: 2011 end-page: 3787 article-title: Control of thermal and electronic transport in defect‐engineered graphene nanoribbons publication-title: ACS Nano – volume: 66 start-page: 219 year: 2014 end-page: 226 article-title: Structure–property relationships in thermally‐annealed multi‐walled carbon nanotubes publication-title: Carbon – volume: 14 start-page: 3530 year: 2012 end-page: 3536 article-title: Thermoelectric properties of nanocomposite thin films prepared with poly(3,4‐ethylenedioxythiophene) poly (styrenesulfonate) and graphene publication-title: Phys Chem Chem Phys – volume: 109 year: 2011 article-title: A nonequilibrium Green's function study of thermoelectric properties in single‐walled carbon nanotubes publication-title: J Appl Phys – volume: 3 start-page: 3448 year: 2013 article-title: Enhancing thermoelectric properties of organic composites through hierarchical nanostructures publication-title: Sci Rep – volume: 17 start-page: 278 year: 2005 end-page: 281 article-title: Soluble self‐aligned carbon nanotube/polyaniline composites publication-title: Adv Mater – volume: 187 year: 2020 article-title: Ternary thermoelectric composites of polypyrrole/PEDOT: PSS/carbon nanotube with unique layered structure prepared by one‐dimensional polymer nanostructure as template publication-title: Compos Sci Technol – volume: 71 year: 2005 article-title: Charge transfer and Fermi level shift in p‐doped single‐walled carbon nanotubes publication-title: Phys Rev B – volume: 35 start-page: 26 year: 2017 end-page: 35 article-title: Significantly reduced thermal conductivity and enhanced thermoelectric properties of single‐ and bi‐layer graphene nanomeshes with sub‐10 nm neck‐width publication-title: Nano Energy – volume: 7 start-page: 717 year: 2014 end-page: 730 article-title: Direct synthesis of highly conductive poly(3,4‐ethylenedioxythiophene): poly(4‐styrenesulfonate)(PEDOT: PSS)/graphene composites and their applications in energy harvesting systems publication-title: Nano Res – volume: 10 year: 2020 article-title: Covalent–organic frameworks: advanced organic electrode materials for rechargeable batteries publication-title: Adv Energy Mater – volume: 4 start-page: 2445 year: 2010 end-page: 2451 article-title: Enhanced thermoelectric performance of single‐walled carbon nanotubes/polyaniline hybrid nanocomposites publication-title: ACS Nano – volume: 99 start-page: 485 year: 2016 end-page: 490 article-title: Influence of annealing on thermal and electrical properties of carbon nanotube yarns publication-title: Carbon – volume: 12 year: 2019 article-title: Thermoelectric properties of carbon nanotubes publication-title: Energies – volume: 106 year: 2015 article-title: Carbon nanotube bundles/polystyrene composites as high‐performance flexible thermoelectric materials publication-title: Appl Phys Lett – volume: 19 start-page: 7370 year: 2019 end-page: 7376 article-title: Solving the thermoelectric trade‐off problem with metallic carbon nanotubes publication-title: Nano Lett – volume: 39 year: 2018 article-title: Recent development of thermoelectric polymers and composites publication-title: Macromol Rapid Commun – volume: 94 year: 2009 article-title: A theoretical study on thermoelectric properties of graphene nanoribbons publication-title: Appl Phys Lett – volume: 37 year: 2020 article-title: A review on recent developments of thermoelectric materials for room‐temperature applications publication-title: Sustain Energy Technol Assess – volume: 183 year: 2019 article-title: Toward high thermoelectric performance for polypyrrole composites by dynamic 3‐phase interfacial electropolymerization and chemical doping of carbon nanotubes publication-title: Compos Sci Technol – volume: 77 start-page: 666 year: 2000 end-page: 668 article-title: Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films publication-title: Appl Phys Lett – volume: 84 year: 2011 article-title: Thermoelectric properties of finite graphene antidot lattices publication-title: Phys Rev B – volume: 129 start-page: 130 year: 2016 end-page: 136 article-title: Enhanced thermoelectric performance by self‐assembled layered morphology of polypyrrole nanowire/single‐walled carbon nanotube composites publication-title: Compos Sci Technol – ident: e_1_2_6_31_1 doi: 10.1002/adma.200902221 – ident: e_1_2_6_110_1 doi: 10.1039/C8NR10537E – ident: e_1_2_6_129_1 doi: 10.1002/aelm.201800465 – ident: e_1_2_6_30_1 doi: 10.1103/PhysRevB.47.12727 – ident: e_1_2_6_12_1 doi: 10.1002/smll.201703453 – ident: e_1_2_6_22_1 doi: 10.1002/admt.201700256 – ident: e_1_2_6_123_1 doi: 10.1016/j.compscitech.2019.107948 – ident: e_1_2_6_126_1 doi: 10.1063/1.2745218 – ident: e_1_2_6_146_1 doi: 10.3390/en13020394 – ident: e_1_2_6_72_1 doi: 10.1103/PhysRevB.81.113401 – ident: e_1_2_6_46_1 doi: 10.1007/s11664-019-07519-6 – ident: e_1_2_6_34_1 doi: 10.1063/1.5066021 – ident: e_1_2_6_38_1 doi: 10.1021/acsenergylett.6b00417 – ident: e_1_2_6_40_1 doi: 10.7567/APEX.7.025103 – ident: e_1_2_6_137_1 doi: 10.1016/j.matlet.2011.09.060 – ident: e_1_2_6_35_1 doi: 10.1063/1.127079 – ident: e_1_2_6_121_1 doi: 10.1039/C4TA06710J – ident: e_1_2_6_28_1 doi: 10.1186/s11671-019-3167-8 – ident: e_1_2_6_94_1 doi: 10.1039/c2jm32750c – ident: e_1_2_6_116_1 doi: 10.1039/C4TC02471K – ident: e_1_2_6_89_1 doi: 10.1002/1521-4095(20021016)14:20<1480::AID-ADMA1480>3.0.CO;2-O – ident: e_1_2_6_59_1 doi: 10.1016/j.carbon.2015.12.014 – ident: e_1_2_6_7_1 doi: 10.3390/polym11010107 – ident: e_1_2_6_44_1 doi: 10.1016/j.apsusc.2013.11.162 – ident: e_1_2_6_69_1 doi: 10.1063/1.2814080 – ident: e_1_2_6_18_1 doi: 10.1103/PhysRevB.54.17954 – ident: e_1_2_6_3_1 doi: 10.1002/aenm.201904199 – ident: e_1_2_6_144_1 doi: 10.1016/j.compscitech.2017.12.030 – ident: e_1_2_6_66_1 doi: 10.1103/PhysRevLett.102.166808 – ident: e_1_2_6_124_1 doi: 10.1016/j.cej.2019.03.155 – ident: e_1_2_6_6_1 doi: 10.1002/aenm.201701797 – ident: e_1_2_6_133_1 doi: 10.1016/j.carbon.2013.06.028 – ident: e_1_2_6_80_1 doi: 10.1007/s12274-017-1683-3 – ident: e_1_2_6_85_1 doi: 10.1002/app.35193 – ident: e_1_2_6_136_1 doi: 10.1016/j.carbon.2011.09.050 – ident: e_1_2_6_64_1 doi: 10.1126/science.1184014 – ident: e_1_2_6_60_1 doi: 10.1016/j.carbon.2013.08.061 – ident: e_1_2_6_79_1 doi: 10.1021/acsnano.9b03521 – ident: e_1_2_6_128_1 doi: 10.1016/j.nanoen.2016.08.063 – ident: e_1_2_6_141_1 doi: 10.1016/j.compscitech.2014.07.009 – ident: e_1_2_6_88_1 doi: 10.1016/j.synthmet.2014.01.007 – ident: e_1_2_6_125_1 doi: 10.1002/adma.201405738 – ident: e_1_2_6_130_1 doi: 10.1063/1.4915622 – ident: e_1_2_6_102_1 doi: 10.1039/C6RA08599G – ident: e_1_2_6_112_1 doi: 10.1007/s12274-014-0433-z – ident: e_1_2_6_24_1 doi: 10.1002/admt.202000049 – ident: e_1_2_6_99_1 doi: 10.1002/asia.201403100 – ident: e_1_2_6_78_1 doi: 10.1103/PhysRevB.93.125432 – ident: e_1_2_6_50_1 doi: 10.1021/nl080302f – ident: e_1_2_6_23_1 doi: 10.1002/marc.201700727 – ident: e_1_2_6_100_1 doi: 10.1016/j.compscitech.2017.03.018 – ident: e_1_2_6_4_1 doi: 10.1002/cey2.48 – ident: e_1_2_6_9_1 doi: 10.1021/acs.chemrev.6b00255 – ident: e_1_2_6_117_1 doi: 10.1039/C4RA07774A – ident: e_1_2_6_105_1 doi: 10.1016/j.compscitech.2016.04.023 – ident: e_1_2_6_140_1 doi: 10.1016/j.carbon.2019.05.035 – ident: e_1_2_6_86_1 doi: 10.1016/j.compscitech.2016.01.014 – ident: e_1_2_6_14_1 doi: 10.1002/cey2.12 – ident: e_1_2_6_37_1 doi: 10.1063/1.3531573 – ident: e_1_2_6_139_1 doi: 10.1016/j.matlet.2013.06.008 – volume-title: Electronic Processes in Non‐Crystalline Materials year: 1979 ident: e_1_2_6_48_1 contributor: fullname: Mott NF – ident: e_1_2_6_143_1 doi: 10.1016/j.polymer.2016.12.019 – ident: e_1_2_6_103_1 doi: 10.1016/j.orgel.2017.03.007 – ident: e_1_2_6_71_1 doi: 10.1103/PhysRevB.83.235426 – ident: e_1_2_6_73_1 doi: 10.1021/nn200114p – ident: e_1_2_6_43_1 doi: 10.1080/17458080903536541 – ident: e_1_2_6_83_1 doi: 10.1016/j.matlet.2010.03.041 – ident: e_1_2_6_26_1 doi: 10.1002/cey2.11 – ident: e_1_2_6_77_1 doi: 10.1038/nature07919 – ident: e_1_2_6_16_1 doi: 10.1016/j.rser.2015.09.004 – ident: e_1_2_6_113_1 doi: 10.1039/c3ta12691a – ident: e_1_2_6_45_1 doi: 10.1039/C9TA03153G – ident: e_1_2_6_127_1 doi: 10.1002/aenm.201502168 – ident: e_1_2_6_67_1 doi: 10.1021/nl0731872 – ident: e_1_2_6_27_1 doi: 10.1016/j.synthmet.2016.12.017 – ident: e_1_2_6_114_1 doi: 10.1002/asia.201500066 – ident: e_1_2_6_41_1 doi: 10.7567/APEX.9.025102 – ident: e_1_2_6_54_1 doi: 10.1016/j.colsurfa.2016.09.036 – ident: e_1_2_6_11_1 doi: 10.1002/asia.201600293 – ident: e_1_2_6_36_1 doi: 10.1021/nl502982f – ident: e_1_2_6_19_1 doi: 10.1039/C1EE01931G – ident: e_1_2_6_62_1 doi: 10.3390/ma7042577 – ident: e_1_2_6_65_1 doi: 10.1016/j.ssc.2008.02.024 – ident: e_1_2_6_131_1 doi: 10.1016/j.compscitech.2012.08.003 – ident: e_1_2_6_96_1 doi: 10.1016/j.synthmet.2018.03.004 – ident: e_1_2_6_47_1 doi: 10.1063/1.5118694 – ident: e_1_2_6_32_1 doi: 10.3390/en12234561 – ident: e_1_2_6_17_1 doi: 10.1016/j.nanoen.2017.03.019 – ident: e_1_2_6_92_1 doi: 10.1039/C4EE01905A – ident: e_1_2_6_49_1 doi: 10.1103/PhysRevB.92.165426 – ident: e_1_2_6_75_1 doi: 10.1103/PhysRevLett.98.206805 – ident: e_1_2_6_29_1 doi: 10.1038/nmat3064 – ident: e_1_2_6_33_1 doi: 10.1021/acs.nanolett.9b03022 – ident: e_1_2_6_25_1 doi: 10.1016/j.seta.2019.100604 – ident: e_1_2_6_2_1 doi: 10.1016/j.pmatsci.2016.07.002 – ident: e_1_2_6_91_1 doi: 10.1021/nn1002562 – ident: e_1_2_6_10_1 doi: 10.1016/j.synthmet.2014.08.001 – ident: e_1_2_6_42_1 doi: 10.1103/PhysRevB.47.16631 – ident: e_1_2_6_8_1 doi: 10.1557/mrs2006.46 – ident: e_1_2_6_142_1 doi: 10.1016/j.polymer.2014.08.048 – ident: e_1_2_6_106_1 doi: 10.1039/C5TC03768A – ident: e_1_2_6_20_1 doi: 10.1039/C6TC05488A – ident: e_1_2_6_51_1 doi: 10.1063/1.2801353 – ident: e_1_2_6_82_1 doi: 10.1016/j.joule.2018.10.012 – ident: e_1_2_6_149_1 doi: 10.1002/marc.200700637 – ident: e_1_2_6_68_1 doi: 10.1063/1.3171933 – ident: e_1_2_6_58_1 doi: 10.1016/j.carbon.2005.09.013 – ident: e_1_2_6_150_1 doi: 10.1021/acs.langmuir.7b01500 – ident: e_1_2_6_21_1 doi: 10.1002/adma.201807916 – ident: e_1_2_6_87_1 doi: 10.1016/j.progpolymsci.2011.11.003 – ident: e_1_2_6_52_1 doi: 10.1021/nl802306t – ident: e_1_2_6_132_1 doi: 10.1080/03602559.2011.593087 – ident: e_1_2_6_93_1 doi: 10.1016/j.synthmet.2012.05.029 – ident: e_1_2_6_76_1 doi: 10.1126/science.1150878 – ident: e_1_2_6_53_1 doi: 10.1039/B311016H – ident: e_1_2_6_70_1 doi: 10.1103/PhysRevB.84.155449 – volume: 29 start-page: 29 year: 2017 ident: e_1_2_6_13_1 article-title: Green processing of carbon nanomaterials publication-title: Adv Mater doi: 10.1002/adma.201602423 contributor: fullname: Kawamoto M – ident: e_1_2_6_138_1 doi: 10.1021/nl203806q – ident: e_1_2_6_101_1 doi: 10.1039/C8TA04838J – ident: e_1_2_6_115_1 doi: 10.1039/C4RA04003A – ident: e_1_2_6_118_1 doi: 10.1016/j.matchemphys.2018.03.025 – ident: e_1_2_6_122_1 doi: 10.1021/acsami.7b05357 – ident: e_1_2_6_108_1 doi: 10.1016/j.synthmet.2011.09.044 – ident: e_1_2_6_57_1 doi: 10.1021/acsaem.9b01736 – ident: e_1_2_6_120_1 doi: 10.1038/srep03448 – ident: e_1_2_6_63_1 doi: 10.1021/ja025673r – ident: e_1_2_6_74_1 doi: 10.1126/sciadv.aar4192 – ident: e_1_2_6_104_1 doi: 10.1016/j.synthmet.2014.06.003 – ident: e_1_2_6_148_1 doi: 10.1002/marc.200800549 – ident: e_1_2_6_135_1 doi: 10.1002/mame.200900243 – ident: e_1_2_6_109_1 doi: 10.1021/acsami.7b14890 – ident: e_1_2_6_111_1 doi: 10.1039/c2cp23517j – ident: e_1_2_6_147_1 doi: 10.3390/jcs4010014 – ident: e_1_2_6_134_1 doi: 10.1021/nl802345s – ident: e_1_2_6_56_1 doi: 10.1103/PhysRevB.71.205423 – ident: e_1_2_6_61_1 doi: 10.1038/nmat2090 – ident: e_1_2_6_119_1 doi: 10.3390/polym10101143 – ident: e_1_2_6_90_1 doi: 10.1002/adma.200400921 – ident: e_1_2_6_145_1 doi: 10.3390/jcs3040106 – ident: e_1_2_6_151_1 doi: 10.1038/s41467-019-13993-7 – ident: e_1_2_6_97_1 doi: 10.1021/nn202868a – ident: e_1_2_6_95_1 doi: 10.1016/j.carbon.2016.11.074 – ident: e_1_2_6_98_1 doi: 10.1021/nn9013577 – ident: e_1_2_6_5_1 doi: 10.1002/cey2.15 – ident: e_1_2_6_55_1 doi: 10.1021/jp0475988 – ident: e_1_2_6_15_1 doi: 10.1002/cey2.9 – ident: e_1_2_6_84_1 doi: 10.1002/pssb.201200908 – ident: e_1_2_6_39_1 doi: 10.1038/nenergy.2016.33 – ident: e_1_2_6_81_1 doi: 10.1007/s10853-011-6220-2 – ident: e_1_2_6_107_1 doi: 10.1016/j.compscitech.2019.107794 |
SSID | ssj0002171029 |
Score | 2.5714557 |
Snippet | The urgent need for consistent, reliable, ecofriendly, and stable power sources drives the development of new green energy materials. Thermoelectric (TE)... Abstract The urgent need for consistent, reliable, ecofriendly, and stable power sources drives the development of new green energy materials. Thermoelectric... Abstract The urgent need for consistent, reliable, ecofriendly, and stable power sources drives the development of new green energy materials. Thermoelectric... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Publisher |
StartPage | 408 |
SubjectTerms | Alternative energy sources Carbon Carbon nanotubes Clean energy Conducting polymers Copyright Electrical conductivity Electrical resistivity Energy Energy conversion Fossil fuels Graphene Graphite Green development Heat Nanotechnology Nanotubes Polymer matrix composites Polymers Power sources Renewable energy Sustainable development Thermoelectric materials thermoplastic polymers Weight reduction |
Title | Carbon and carbon composites for thermoelectric applications |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcey2.68 https://www.proquest.com/docview/2544909523 https://doaj.org/article/c943da72f68947f28e5b4ef6dd54074b |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgEwyITxEoyEPX0MRxEltigdKqEwsgwWT5U2IgRS0d-PfcOaEKA2JhixJFsu5iv_eUu3eEjBzAkK91lhps6-G-hC0lOCRE5NxbrnNfYb_z_KG-fxZ3U7TJ2Yz6wpqw1h64DdzYSl44XbNQCcnrwIQvDfehcg6t47iJp28memIKz2Ag2oCcsu2SRZfRsfWf7AoNVXvwE136f1DLPkGNCDPbJ3sdNaQ37ZIOyJZvDsluzzDwiFxP9NIsGgryn9r2EmvCsfDKryjwT4p87m3RDrd5tbT_f_qYPM2mj5N52s0_SC0HIZFqa0orAJ9D5pyRuZGusJlhLniPHaMOtJl2RS1BFqDNmBbWaxZMAAog4Z3ihAyaReNPCWUW0KoOIUgdOC8dsLYi1HE0VS1DXiWEfodFvbc2F6o1NGYKI6cqkZBbDNfmMfpSxxuQLdVlS_2VrYQMv4Otus2yUuiSJoHqsSIho5iA39agJtMXVomz_1jKOdlhqJ1jvdiQDD6Wa39BtldufRm_pS8ayM29 |
link.rule.ids | 315,782,786,866,2108,27935,27936 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+and+carbon+composites+for+thermoelectric+applications&rft.jtitle=Carbon+energy&rft.au=Zhang%2C+Yichuan&rft.au=Zhang%2C+Qichun&rft.au=Chen%2C+Guangming&rft.date=2020-09-01&rft.issn=2637-9368&rft.eissn=2637-9368&rft.volume=2&rft.issue=3&rft.spage=408&rft.epage=436&rft_id=info:doi/10.1002%2Fcey2.68&rft.externalDBID=10.1002%252Fcey2.68&rft.externalDocID=CEY268 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2637-9368&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2637-9368&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2637-9368&client=summon |