Carbon and carbon composites for thermoelectric applications

The urgent need for consistent, reliable, ecofriendly, and stable power sources drives the development of new green energy materials. Thermoelectric (TE) materials receive increasing attention due to their unique capability of realizing the direct energy conversion between heat and electricity, show...

Full description

Saved in:
Bibliographic Details
Published in:Carbon energy Vol. 2; no. 3; pp. 408 - 436
Main Authors: Zhang, Yichuan, Zhang, Qichun, Chen, Guangming
Format: Journal Article
Language:English
Published: Beijing John Wiley & Sons, Inc 01-09-2020
Wiley
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The urgent need for consistent, reliable, ecofriendly, and stable power sources drives the development of new green energy materials. Thermoelectric (TE) materials receive increasing attention due to their unique capability of realizing the direct energy conversion between heat and electricity, showing diverse applications in harvesting waste heat and low‐grade heat. Carbon materials such as carbon nanotubes (CNTs) and graphene have experienced a rapid development as TE materials because of their intrinsic ultrahigh electrical conductivity and light weight. Besides, polymer‐based carbon composites are particularly fascinating as the combination of the merits of polymers and filler materials leads to high TE performance and superior flexibility. Herein, the recent TE advances are systematically summarized in the studied popularity of carbon materials (ie, CNTs and graphene) and the category of polymers. The conducting polymer‐based carbon materials are particularly highlighted. Finally, the remaining challenges and some tentative suggestions possibly guiding future developments are proposed, which may pave a way for a bright future of carbon and carbon composites in the energy market. The urgent need for consistent, reliable, ecofriendly, and stable power sources drives the development of thermoelectric (TE) materials due to their unique capability to directly convert temperature gradient into electricity. Particularly, carbon and carbon composites have experienced rapid development as TE materials. This review summarized their recent advances, and proposed some the remaining challenges and some tentative suggestions possibly guiding future developments in this topic.
AbstractList The urgent need for consistent, reliable, ecofriendly, and stable power sources drives the development of new green energy materials. Thermoelectric (TE) materials receive increasing attention due to their unique capability of realizing the direct energy conversion between heat and electricity, showing diverse applications in harvesting waste heat and low‐grade heat. Carbon materials such as carbon nanotubes (CNTs) and graphene have experienced a rapid development as TE materials because of their intrinsic ultrahigh electrical conductivity and light weight. Besides, polymer‐based carbon composites are particularly fascinating as the combination of the merits of polymers and filler materials leads to high TE performance and superior flexibility. Herein, the recent TE advances are systematically summarized in the studied popularity of carbon materials (ie, CNTs and graphene) and the category of polymers. The conducting polymer‐based carbon materials are particularly highlighted. Finally, the remaining challenges and some tentative suggestions possibly guiding future developments are proposed, which may pave a way for a bright future of carbon and carbon composites in the energy market. The urgent need for consistent, reliable, ecofriendly, and stable power sources drives the development of thermoelectric (TE) materials due to their unique capability to directly convert temperature gradient into electricity. Particularly, carbon and carbon composites have experienced rapid development as TE materials. This review summarized their recent advances, and proposed some the remaining challenges and some tentative suggestions possibly guiding future developments in this topic.
Abstract The urgent need for consistent, reliable, ecofriendly, and stable power sources drives the development of new green energy materials. Thermoelectric (TE) materials receive increasing attention due to their unique capability of realizing the direct energy conversion between heat and electricity, showing diverse applications in harvesting waste heat and low‐grade heat. Carbon materials such as carbon nanotubes (CNTs) and graphene have experienced a rapid development as TE materials because of their intrinsic ultrahigh electrical conductivity and light weight. Besides, polymer‐based carbon composites are particularly fascinating as the combination of the merits of polymers and filler materials leads to high TE performance and superior flexibility. Herein, the recent TE advances are systematically summarized in the studied popularity of carbon materials (ie, CNTs and graphene) and the category of polymers. The conducting polymer‐based carbon materials are particularly highlighted. Finally, the remaining challenges and some tentative suggestions possibly guiding future developments are proposed, which may pave a way for a bright future of carbon and carbon composites in the energy market.
Abstract The urgent need for consistent, reliable, ecofriendly, and stable power sources drives the development of new green energy materials. Thermoelectric (TE) materials receive increasing attention due to their unique capability of realizing the direct energy conversion between heat and electricity, showing diverse applications in harvesting waste heat and low‐grade heat. Carbon materials such as carbon nanotubes (CNTs) and graphene have experienced a rapid development as TE materials because of their intrinsic ultrahigh electrical conductivity and light weight. Besides, polymer‐based carbon composites are particularly fascinating as the combination of the merits of polymers and filler materials leads to high TE performance and superior flexibility. Herein, the recent TE advances are systematically summarized in the studied popularity of carbon materials (ie, CNTs and graphene) and the category of polymers. The conducting polymer‐based carbon materials are particularly highlighted. Finally, the remaining challenges and some tentative suggestions possibly guiding future developments are proposed, which may pave a way for a bright future of carbon and carbon composites in the energy market.
The urgent need for consistent, reliable, ecofriendly, and stable power sources drives the development of new green energy materials. Thermoelectric (TE) materials receive increasing attention due to their unique capability of realizing the direct energy conversion between heat and electricity, showing diverse applications in harvesting waste heat and low‐grade heat. Carbon materials such as carbon nanotubes (CNTs) and graphene have experienced a rapid development as TE materials because of their intrinsic ultrahigh electrical conductivity and light weight. Besides, polymer‐based carbon composites are particularly fascinating as the combination of the merits of polymers and filler materials leads to high TE performance and superior flexibility. Herein, the recent TE advances are systematically summarized in the studied popularity of carbon materials (ie, CNTs and graphene) and the category of polymers. The conducting polymer‐based carbon materials are particularly highlighted. Finally, the remaining challenges and some tentative suggestions possibly guiding future developments are proposed, which may pave a way for a bright future of carbon and carbon composites in the energy market.
Author Chen, Guangming
Zhang, Yichuan
Zhang, Qichun
Author_xml – sequence: 1
  givenname: Yichuan
  orcidid: 0000-0001-9260-161X
  surname: Zhang
  fullname: Zhang, Yichuan
  organization: Shenzhen University
– sequence: 2
  givenname: Qichun
  orcidid: 0000-0003-1854-8659
  surname: Zhang
  fullname: Zhang, Qichun
  email: qczhang@ntu.edu.sg
  organization: City University of Hong Kong
– sequence: 3
  givenname: Guangming
  orcidid: 0000-0002-9848-9101
  surname: Chen
  fullname: Chen, Guangming
  email: chengm@szu.edu.cn
  organization: Shenzhen University
BookMark eNp1kEtLAzEUhYNUsNbiXxhw4UJak0wyMwE3MtQHFNzowlXI40ZTppMxmSL9904dETeu7uHy3XMP5xRN2tACQucELwnG9NrAni6L6ghNaZGXC5EX1eSPPkHzlDZ4IElJMBVTdFOrqEObqdZmZpQmbLuQfA8pcyFm_TvEbYAGTB-9yVTXNd6o3oc2naFjp5oE8585Qy93q-f6YbF-un-sb9cLwzirFspobipCsMPWakG0sLnBmloHIDAhlmGhbF4KyjnjhKjKgKJOO0GwGG7yGXocfW1QG9lFv1VxL4Py8nsR4ptUsfemAWkEy60qqSsqwUpHK-CagSus5QyXTA9eF6NXF8PHDlIvN2EX2yG-pJwxgQWn-UBdjpSJIaUI7vcrwfLQtDw0LYtqIK9G8tM3sP8Pk_XqlQ70FwTmf8g
CitedBy_id crossref_primary_10_1002_adma_202305416
crossref_primary_10_1039_D1MA00871D
crossref_primary_10_1088_2515_7639_acc550
crossref_primary_10_3390_app12147169
crossref_primary_10_3390_jcs8020053
crossref_primary_10_1039_D3LF00239J
crossref_primary_10_3390_ma14195604
crossref_primary_10_1016_j_cej_2021_131137
crossref_primary_10_1002_vjch_202200118
crossref_primary_10_1016_j_coco_2021_100888
crossref_primary_10_1016_j_enbuild_2021_111617
crossref_primary_10_1021_acsami_2c20489
crossref_primary_10_1002_flm2_26
crossref_primary_10_1016_j_nanoen_2020_105448
crossref_primary_10_1021_acsami_0c22123
crossref_primary_10_1038_s41528_020_00089_2
crossref_primary_10_1002_cey2_113
crossref_primary_10_1021_acsaem_1c02135
crossref_primary_10_1088_2516_1083_abd082
crossref_primary_10_1016_j_sna_2022_113938
crossref_primary_10_3390_nano11051146
crossref_primary_10_1016_j_mtchem_2023_101774
crossref_primary_10_1002_adfm_202111435
crossref_primary_10_3390_molecules27206932
crossref_primary_10_1016_j_coco_2022_101103
crossref_primary_10_1016_j_apsadv_2023_100379
crossref_primary_10_1016_j_nanoen_2021_106260
crossref_primary_10_1039_D2MA00086E
crossref_primary_10_1016_j_carbon_2021_06_068
crossref_primary_10_1007_s10853_023_08334_5
crossref_primary_10_1088_1674_1056_ac6493
crossref_primary_10_3390_cryst11010047
crossref_primary_10_1021_acsmaterialslett_3c00315
crossref_primary_10_1002_admi_202201193
crossref_primary_10_1016_j_compscitech_2021_108759
crossref_primary_10_1039_D4TC01307G
crossref_primary_10_1088_1361_6528_ac17c3
crossref_primary_10_1002_admt_202201544
crossref_primary_10_1039_D2YA00226D
crossref_primary_10_1038_s41467_024_47417_y
crossref_primary_10_1016_j_apsusc_2024_160359
crossref_primary_10_1016_j_coco_2021_100701
crossref_primary_10_1016_j_jpcs_2023_111726
crossref_primary_10_1016_j_pmatsci_2022_101003
crossref_primary_10_1016_j_scib_2023_08_057
crossref_primary_10_1021_acsami_1c23206
crossref_primary_10_1002_pc_28522
crossref_primary_10_1016_j_mtchem_2024_102129
crossref_primary_10_1002_admi_202200555
crossref_primary_10_1080_1536383X_2021_2024167
crossref_primary_10_3390_coatings14010126
crossref_primary_10_1039_D2SE01295B
crossref_primary_10_1039_D4TA02267J
crossref_primary_10_3390_polym16121752
crossref_primary_10_1021_acsaelm_1c01256
crossref_primary_10_1016_j_compscitech_2022_109291
crossref_primary_10_1021_acsami_1c07644
crossref_primary_10_1021_acssuschemeng_2c03575
crossref_primary_10_1016_j_compscitech_2023_110163
crossref_primary_10_1021_acsami_3c04596
crossref_primary_10_1016_j_compscitech_2023_110043
crossref_primary_10_1007_s42114_022_00595_z
crossref_primary_10_1016_j_ref_2023_02_005
crossref_primary_10_1039_D3YA00085K
crossref_primary_10_1016_j_susmat_2021_e00382
crossref_primary_10_1016_j_nanoen_2021_106804
crossref_primary_10_1021_acsami_1c24649
crossref_primary_10_1002_adfm_202209806
crossref_primary_10_1016_j_carbon_2023_01_030
crossref_primary_10_3390_nano14121025
crossref_primary_10_1016_j_coco_2022_101240
crossref_primary_10_1002_adfm_202406165
crossref_primary_10_1021_acsami_4c00935
crossref_primary_10_1088_2043_6262_ad08a1
crossref_primary_10_1021_acsami_3c11792
crossref_primary_10_1039_D3TA01117H
crossref_primary_10_1016_j_jallcom_2021_163433
crossref_primary_10_1021_acsaem_4c00271
crossref_primary_10_1002_asia_202100530
crossref_primary_10_1021_acsnano_3c00798
crossref_primary_10_1007_s42765_023_00267_7
crossref_primary_10_1002_adfm_202303861
crossref_primary_10_1016_j_cclet_2024_109804
crossref_primary_10_1016_j_cej_2022_135706
crossref_primary_10_1088_1674_1056_ac2802
crossref_primary_10_1002_app_54018
crossref_primary_10_1021_acsaem_3c03060
crossref_primary_10_1016_j_nanoen_2021_106577
crossref_primary_10_1039_D1TC01519B
crossref_primary_10_3390_ma14216306
crossref_primary_10_1039_D2TC02448A
crossref_primary_10_1021_acsaem_2c04160
crossref_primary_10_1039_D1MA00496D
crossref_primary_10_3390_ma16237262
crossref_primary_10_1007_s10853_022_07846_w
crossref_primary_10_1002_admt_202300309
crossref_primary_10_1016_j_cej_2024_149439
crossref_primary_10_1007_s40145_022_0657_4
crossref_primary_10_1007_s11426_023_1567_0
crossref_primary_10_1016_j_coco_2020_100612
crossref_primary_10_1002_adfm_202104836
crossref_primary_10_1002_admt_202101203
crossref_primary_10_1016_j_matchemphys_2021_124898
crossref_primary_10_1088_1361_665X_ac4120
crossref_primary_10_1021_acsami_3c09222
crossref_primary_10_1002_cey2_161
crossref_primary_10_1016_j_carbon_2022_11_057
crossref_primary_10_1002_cey2_285
crossref_primary_10_1016_j_jcis_2024_06_188
crossref_primary_10_1007_s10854_023_11430_6
crossref_primary_10_1021_acsaem_2c02498
crossref_primary_10_1088_1674_1056_ac3502
crossref_primary_10_1021_acs_nanolett_2c00696
crossref_primary_10_3390_polym14020269
crossref_primary_10_1021_acsnano_0c10662
crossref_primary_10_1016_j_carbon_2023_118654
crossref_primary_10_1002_smll_202100505
crossref_primary_10_1016_j_cej_2023_141366
crossref_primary_10_3390_molecules27062018
crossref_primary_10_1002_asia_202400211
crossref_primary_10_1016_j_coco_2024_101873
crossref_primary_10_1039_D1MA00299F
crossref_primary_10_1002_eem2_12281
crossref_primary_10_1016_j_diamond_2023_110719
crossref_primary_10_1142_S0218625X23300083
crossref_primary_10_1007_s42765_023_00305_4
crossref_primary_10_1016_j_synthmet_2021_116874
crossref_primary_10_1021_acsami_1c01059
crossref_primary_10_1007_s12274_023_6169_x
crossref_primary_10_1021_acsaem_2c00142
crossref_primary_10_1002_adma_202102990
crossref_primary_10_1016_j_mtener_2024_101643
crossref_primary_10_1177_09544089241230874
crossref_primary_10_1016_j_synthmet_2022_117196
crossref_primary_10_1039_D0TC04175K
crossref_primary_10_1016_j_compscitech_2022_109373
crossref_primary_10_1016_j_compscitech_2023_110245
crossref_primary_10_1080_09593330_2021_1983025
crossref_primary_10_1080_14786435_2022_2102264
crossref_primary_10_1016_j_coco_2022_101166
crossref_primary_10_1016_j_carbon_2022_05_043
crossref_primary_10_1021_acsmaterialslett_2c00026
crossref_primary_10_3389_fchem_2021_677821
crossref_primary_10_1039_D1TA00820J
crossref_primary_10_1109_TCPMT_2021_3095048
crossref_primary_10_1021_acsami_2c17343
crossref_primary_10_3390_ma15238672
crossref_primary_10_1080_10408436_2022_2049697
crossref_primary_10_1080_1536383X_2023_2237142
crossref_primary_10_1016_j_apmt_2021_100959
crossref_primary_10_1021_acsami_2c17349
crossref_primary_10_1088_2752_5724_ad0ca9
Cites_doi 10.1002/adma.200902221
10.1039/C8NR10537E
10.1002/aelm.201800465
10.1103/PhysRevB.47.12727
10.1002/smll.201703453
10.1002/admt.201700256
10.1016/j.compscitech.2019.107948
10.1063/1.2745218
10.3390/en13020394
10.1103/PhysRevB.81.113401
10.1007/s11664-019-07519-6
10.1063/1.5066021
10.1021/acsenergylett.6b00417
10.7567/APEX.7.025103
10.1016/j.matlet.2011.09.060
10.1063/1.127079
10.1039/C4TA06710J
10.1186/s11671-019-3167-8
10.1039/c2jm32750c
10.1039/C4TC02471K
10.1002/1521-4095(20021016)14:20<1480::AID-ADMA1480>3.0.CO;2-O
10.1016/j.carbon.2015.12.014
10.3390/polym11010107
10.1016/j.apsusc.2013.11.162
10.1063/1.2814080
10.1103/PhysRevB.54.17954
10.1002/aenm.201904199
10.1016/j.compscitech.2017.12.030
10.1103/PhysRevLett.102.166808
10.1016/j.cej.2019.03.155
10.1002/aenm.201701797
10.1016/j.carbon.2013.06.028
10.1007/s12274-017-1683-3
10.1002/app.35193
10.1016/j.carbon.2011.09.050
10.1126/science.1184014
10.1016/j.carbon.2013.08.061
10.1021/acsnano.9b03521
10.1016/j.nanoen.2016.08.063
10.1016/j.compscitech.2014.07.009
10.1016/j.synthmet.2014.01.007
10.1002/adma.201405738
10.1063/1.4915622
10.1039/C6RA08599G
10.1007/s12274-014-0433-z
10.1002/admt.202000049
10.1002/asia.201403100
10.1103/PhysRevB.93.125432
10.1021/nl080302f
10.1002/marc.201700727
10.1016/j.compscitech.2017.03.018
10.1002/cey2.48
10.1021/acs.chemrev.6b00255
10.1039/C4RA07774A
10.1016/j.compscitech.2016.04.023
10.1016/j.carbon.2019.05.035
10.1016/j.compscitech.2016.01.014
10.1002/cey2.12
10.1063/1.3531573
10.1016/j.matlet.2013.06.008
10.1016/j.polymer.2016.12.019
10.1016/j.orgel.2017.03.007
10.1103/PhysRevB.83.235426
10.1021/nn200114p
10.1080/17458080903536541
10.1016/j.matlet.2010.03.041
10.1002/cey2.11
10.1038/nature07919
10.1016/j.rser.2015.09.004
10.1039/c3ta12691a
10.1039/C9TA03153G
10.1002/aenm.201502168
10.1021/nl0731872
10.1016/j.synthmet.2016.12.017
10.1002/asia.201500066
10.7567/APEX.9.025102
10.1016/j.colsurfa.2016.09.036
10.1002/asia.201600293
10.1021/nl502982f
10.1039/C1EE01931G
10.3390/ma7042577
10.1016/j.ssc.2008.02.024
10.1016/j.compscitech.2012.08.003
10.1016/j.synthmet.2018.03.004
10.1063/1.5118694
10.3390/en12234561
10.1016/j.nanoen.2017.03.019
10.1039/C4EE01905A
10.1103/PhysRevB.92.165426
10.1103/PhysRevLett.98.206805
10.1038/nmat3064
10.1021/acs.nanolett.9b03022
10.1016/j.seta.2019.100604
10.1016/j.pmatsci.2016.07.002
10.1021/nn1002562
10.1016/j.synthmet.2014.08.001
10.1103/PhysRevB.47.16631
10.1557/mrs2006.46
10.1016/j.polymer.2014.08.048
10.1039/C5TC03768A
10.1039/C6TC05488A
10.1063/1.2801353
10.1016/j.joule.2018.10.012
10.1002/marc.200700637
10.1063/1.3171933
10.1016/j.carbon.2005.09.013
10.1021/acs.langmuir.7b01500
10.1002/adma.201807916
10.1016/j.progpolymsci.2011.11.003
10.1021/nl802306t
10.1080/03602559.2011.593087
10.1016/j.synthmet.2012.05.029
10.1126/science.1150878
10.1039/B311016H
10.1103/PhysRevB.84.155449
10.1002/adma.201602423
10.1021/nl203806q
10.1039/C8TA04838J
10.1039/C4RA04003A
10.1016/j.matchemphys.2018.03.025
10.1021/acsami.7b05357
10.1016/j.synthmet.2011.09.044
10.1021/acsaem.9b01736
10.1038/srep03448
10.1021/ja025673r
10.1126/sciadv.aar4192
10.1016/j.synthmet.2014.06.003
10.1002/marc.200800549
10.1002/mame.200900243
10.1021/acsami.7b14890
10.1039/c2cp23517j
10.3390/jcs4010014
10.1021/nl802345s
10.1103/PhysRevB.71.205423
10.1038/nmat2090
10.3390/polym10101143
10.1002/adma.200400921
10.3390/jcs3040106
10.1038/s41467-019-13993-7
10.1021/nn202868a
10.1016/j.carbon.2016.11.074
10.1021/nn9013577
10.1002/cey2.15
10.1021/jp0475988
10.1002/cey2.9
10.1002/pssb.201200908
10.1038/nenergy.2016.33
10.1007/s10853-011-6220-2
10.1016/j.compscitech.2019.107794
ContentType Journal Article
Copyright 2020 The Authors. published by Wenzhou University and John Wiley & Sons Australia, Ltd.
2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2020 The Authors. published by Wenzhou University and John Wiley & Sons Australia, Ltd.
– notice: 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
WIN
AAYXX
CITATION
8FE
8FG
8FH
ABUWG
AFKRA
ARAPS
ATCPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
P5Z
P62
PATMY
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
DOA
DOI 10.1002/cey2.68
DatabaseName Wiley-Blackwell Open Access Collection
Wiley-Blackwell Open Access Backfiles
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
Agricultural & Environmental Science Collection
ProQuest Central Essentials
Biological Science Collection
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
Biological Sciences
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Biological Science Collection
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
Environmental Science Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals
  url: http://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2637-9368
EndPage 436
ExternalDocumentID oai_doaj_org_article_c943da72f68947f28e5b4ef6dd54074b
10_1002_cey2_68
CEY268
Genre reviewArticle
GroupedDBID 0R~
1OC
24P
AAHHS
ACCFJ
ACXQS
ADKYN
ADZMN
ADZOD
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ARAPS
ARCSS
ATCPS
AVUZU
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
IEP
M7P
OK1
PATMY
PIMPY
PYCSY
WIN
AAYXX
CITATION
ITC
8FE
8FG
8FH
ABUWG
AZQEC
DWQXO
GNUQQ
LK8
P62
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c4548-acb5c8110f0ddb91b9d3c0b2dfee9011d409ad3792554511a8cea2fbf9109f0d3
IEDL.DBID DOA
ISSN 2637-9368
IngestDate Tue Oct 22 15:08:42 EDT 2024
Thu Oct 10 19:57:07 EDT 2024
Thu Sep 26 16:06:39 EDT 2024
Sat Aug 24 01:40:57 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Attribution
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4548-acb5c8110f0ddb91b9d3c0b2dfee9011d409ad3792554511a8cea2fbf9109f0d3
ORCID 0000-0003-1854-8659
0000-0001-9260-161X
0000-0002-9848-9101
OpenAccessLink https://doaj.org/article/c943da72f68947f28e5b4ef6dd54074b
PQID 2544909523
PQPubID 5066174
PageCount 29
ParticipantIDs doaj_primary_oai_doaj_org_article_c943da72f68947f28e5b4ef6dd54074b
proquest_journals_2544909523
crossref_primary_10_1002_cey2_68
wiley_primary_10_1002_cey2_68_CEY268
PublicationCentury 2000
PublicationDate September 2020
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: September 2020
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Carbon energy
PublicationYear 2020
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2002; 14
2013; 3
2006; 31
2013; 1
2012; 124
2019; 11
2019; 13
2013; 62
2019; 12
2019; 14
2019; 19
2020; 13
2020; 11
2020; 10
2012; 14
2012; 12
1979
2010; 22
2018; 6
2018; 8
2018; 39
2018; 3
2018; 5
2018; 4
2009; 94
2018; 212
2008; 29
2014; 14
2005; 71
2010; 5
2010; 4
2012; 22
2019; 150
1993; 47
2019; 7
2019; 3
2019; 31
2010; 328
2019; 2
2019; 1
2011; 84
2013; 107
2011; 83
2007; 90
2020; 37
2007; 91
2016; 93
2012; 37
2007; 98
2011; 5
2019; 183
2016; 11
2016; 99
2009; 458
2016; 4
2012; 50
2016; 6
2016; 1
2006; 44
2018; 239
2018; 113
2002; 124
2000; 77
2019; 48
2010; 295
2009; 102
2012; 47
2017; 144
2018; 11
2016; 28
2005; 17
2018; 10
2016; 9
2018; 14
2017; 5
2012; 161
2012; 162
2016; 509
2017; 45
2019; 126
2008; 7
2011; 10
2008; 8
2015; 106
2014; 292
2008; 146
2017; 114
2017; 9
2014; 66
2012; 72
2020; 5
2010; 64
2020; 4
2014; 4
2020; 2
2017; 33
2017; 35
2008; 319
2003; 5
2016; 83
2016; 116
2014; 7
2012; 67
2014; 55
2015; 3
2015; 92
2016; 129
2020; 187
2015; 10
2016; 124
2016; 53
2017; 29
2014; 195
2010; 81
2004; 108
2014; 196
1996; 54
2017; 108
2011; 109
2009; 30
2015; 27
2018; 156
2011; 50
2013; 250
2012; 5
2019; 370
2017; 225
2014; 189
2014; 101
e_1_2_6_114_1
e_1_2_6_137_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_95_1
e_1_2_6_118_1
e_1_2_6_30_1
e_1_2_6_72_1
e_1_2_6_91_1
e_1_2_6_110_1
e_1_2_6_133_1
e_1_2_6_19_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_99_1
e_1_2_6_125_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_106_1
e_1_2_6_148_1
e_1_2_6_129_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
e_1_2_6_140_1
e_1_2_6_121_1
e_1_2_6_102_1
e_1_2_6_144_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_45_1
e_1_2_6_26_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_136_1
e_1_2_6_54_1
e_1_2_6_96_1
e_1_2_6_117_1
e_1_2_6_31_1
e_1_2_6_50_1
e_1_2_6_92_1
e_1_2_6_151_1
e_1_2_6_132_1
e_1_2_6_113_1
Mott NF (e_1_2_6_48_1) 1979
e_1_2_6_35_1
e_1_2_6_12_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_105_1
e_1_2_6_128_1
e_1_2_6_147_1
e_1_2_6_65_1
e_1_2_6_80_1
e_1_2_6_109_1
e_1_2_6_61_1
e_1_2_6_120_1
e_1_2_6_101_1
e_1_2_6_124_1
e_1_2_6_143_1
e_1_2_6_6_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_88_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_116_1
e_1_2_6_139_1
e_1_2_6_32_1
e_1_2_6_70_1
e_1_2_6_93_1
e_1_2_6_131_1
e_1_2_6_150_1
e_1_2_6_112_1
e_1_2_6_135_1
e_1_2_6_36_1
e_1_2_6_59_1
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_78_1
e_1_2_6_62_1
e_1_2_6_85_1
e_1_2_6_104_1
e_1_2_6_43_1
e_1_2_6_127_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_108_1
Kawamoto M (e_1_2_6_13_1) 2017; 29
e_1_2_6_142_1
e_1_2_6_100_1
e_1_2_6_146_1
e_1_2_6_123_1
e_1_2_6_7_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_98_1
e_1_2_6_115_1
e_1_2_6_75_1
e_1_2_6_138_1
e_1_2_6_10_1
e_1_2_6_94_1
e_1_2_6_119_1
e_1_2_6_71_1
e_1_2_6_90_1
e_1_2_6_130_1
e_1_2_6_111_1
e_1_2_6_134_1
e_1_2_6_14_1
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_56_1
e_1_2_6_37_1
e_1_2_6_79_1
e_1_2_6_103_1
e_1_2_6_126_1
e_1_2_6_149_1
e_1_2_6_63_1
e_1_2_6_86_1
e_1_2_6_21_1
e_1_2_6_107_1
e_1_2_6_40_1
e_1_2_6_82_1
e_1_2_6_141_1
e_1_2_6_122_1
e_1_2_6_145_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_67_1
References_xml – volume: 67
  start-page: 210
  year: 2012
  end-page: 214
  article-title: Thermoelectric behaviour of melt processed carbon nanotube/graphite/poly(lactic acid) conductive biopolymer nanocomposites (CPC)
  publication-title: Mater Lett
– volume: 31
  start-page: 206
  year: 2006
  end-page: 210
  article-title: Complex oxide materials for potential thermoelectric applications
  publication-title: MRS Bull
– volume: 5
  start-page: 5364
  year: 2012
  end-page: 5369
  article-title: Flexible carbon nanotube papers with improved thermoelectric properties
  publication-title: Energy Environ Sci
– volume: 124
  start-page: 1808
  year: 2012
  end-page: 1814
  article-title: Temperature and time dependence of electrical resistivity in an anisotropically conductive polymer composite with in situ conductive microfibrils
  publication-title: J Appl Polym Sci
– volume: 8
  start-page: 4428
  year: 2008
  end-page: 4432
  article-title: Thermoelectric behavior of segregated‐network polymer nanocomposites
  publication-title: Nano Lett
– volume: 11
  start-page: 1
  year: 2020
  end-page: 10
  article-title: Elastic conducting polymer composites in thermoelectric modules
  publication-title: Nat Commun
– volume: 14
  year: 2018
  article-title: In situ oxidation synthesis of p‐type composite with narrow‐bandgap small organic molecule coating on single‐walled carbon nanotube: flexible film and thermoelectric performance
  publication-title: Small
– volume: 5
  start-page: 7885
  year: 2011
  end-page: 7892
  article-title: Light‐weight flexible carbon nanotube based organic composites with large thermoelectric power factors
  publication-title: ACS Nano
– volume: 370
  start-page: 322
  year: 2019
  end-page: 329
  article-title: Enhancement of the thermoelectric property of nanostructured polyaniline/carbon nanotube composites by introducing pyrrole unit onto polyaniline backbone via a sustainable method
  publication-title: Chem Eng J
– volume: 29
  start-page: 29
  year: 2017
  article-title: Green processing of carbon nanomaterials
  publication-title: Adv Mater
– volume: 3
  start-page: 1649
  year: 2015
  end-page: 1654
  article-title: Enhanced thermoelectric property by the construction of a nanocomposite 3D interconnected architecture consisting of graphene nanolayers sandwiched by polypyrrole nanowires
  publication-title: J Mater Chem C
– volume: 107
  start-page: 150
  year: 2013
  end-page: 153
  article-title: Thermoelectric behaviour of segregated conductive polymer composites with hybrid fillers of carbon nanotube and bismuth telluride
  publication-title: Mater Lett
– volume: 4
  start-page: 46187
  year: 2014
  end-page: 46193
  article-title: Preparation of polypyrrole/graphene nanosheets composites with enhanced thermoelectric properties
  publication-title: RSC Adv
– volume: 7
  year: 2014
  article-title: Giant Seebeck coefficient in semiconducting single‐wall carbon nanotube film
  publication-title: Appl Phys Express
– volume: 146
  start-page: 351
  year: 2008
  end-page: 355
  article-title: Ultrahigh electron mobility in suspended graphene
  publication-title: Solid State Commun
– volume: 150
  start-page: 408
  year: 2019
  end-page: 416
  article-title: Negative thermoelectric power of melt mixed vapor grown carbon nanofiber polypropylene composites
  publication-title: Carbon
– volume: 292
  start-page: 469
  year: 2014
  end-page: 474
  article-title: Effect of acidification conditions on the properties of carbon nanotube fibers
  publication-title: Appl Surf Sci
– volume: 225
  start-page: 3
  year: 2017
  end-page: 21
  article-title: Recent progress of organic and hybrid thermoelectric materials
  publication-title: Synth Met
– volume: 44
  start-page: 768
  year: 2006
  end-page: 777
  article-title: Surface functionalities of multi‐wall carbon nanotubes after UV/Ozone and TETA treatments
  publication-title: Carbon
– volume: 9
  year: 2016
  article-title: Thermoelectric properties of single‐wall carbon nanotube films: effects of diameter and wet environment
  publication-title: Appl Phys Express
– volume: 1
  year: 2016
  article-title: Tailored semiconducting carbon nanotube networks with enhanced thermoelectric properties
  publication-title: Nat Energy
– volume: 8
  start-page: 902
  year: 2008
  end-page: 907
  article-title: Superior thermal conductivity of single‐layer graphene
  publication-title: Nano Lett
– volume: 98
  year: 2007
  article-title: Energy band‐gap engineering of graphene nanoribbons
  publication-title: Phys Rev Lett
– volume: 11
  start-page: 1489
  year: 2016
  end-page: 1511
  article-title: Nanostructured conjugated polymers for energy‐related applications beyond solar cells
  publication-title: Chem Asian J
– volume: 22
  start-page: 535
  year: 2010
  end-page: 539
  article-title: A promising approach to enhanced thermoelectric properties using carbon nanotube networks
  publication-title: Adv Mater
– volume: 90
  year: 2007
  article-title: PbTe nanocomposites synthesized from PbTe nanocrystals
  publication-title: Appl Phys Lett
– volume: 458
  start-page: 877
  year: 2009
  end-page: 880
  article-title: Narrow graphene nanoribbons from carbon nanotubes
  publication-title: Nature
– volume: 161
  start-page: 2688
  year: 2012
  end-page: 2692
  article-title: Simultaneous increase in conductivity and Seebeck coefficient in a polyaniline/graphene nanosheets thermoelectric nanocomposite
  publication-title: Synth Met
– volume: 10
  start-page: 1225
  year: 2015
  end-page: 1231
  article-title: In situ chemical oxidative polymerization preparation of poly(3,4‐ethylenedioxythiophene)/graphene nanocomposites with enhanced thermoelectric performance
  publication-title: Chem Asian J
– volume: 45
  start-page: 182
  year: 2017
  end-page: 189
  article-title: Origin of unusual thermoelectric transport behaviors in carbon nanotube filled polymer composites after solvent/acid treatments
  publication-title: Org Electron
– volume: 50
  start-page: 1511
  year: 2011
  end-page: 1514
  article-title: The resistivity response of an anisotropically conductive polymer composite with in‐situ conductive microfibrils during cooling
  publication-title: Polym Plast Technol Eng
– volume: 30
  start-page: 423
  year: 2009
  end-page: 429
  article-title: Selective localization and migration of multiwalled carbon nanotubes in blends of polycarbonate and poly(styrene‐acrylonitrile)
  publication-title: Macromol Rapid Commun
– volume: 91
  year: 2007
  article-title: Electrical properties of air‐stable, iodine‐doped carbon‐nanotube–polymer composites
  publication-title: Appl Phys Lett
– volume: 1
  start-page: 1212
  year: 2016
  end-page: 1220
  article-title: Polymer‐free carbon nanotube thermoelectrics with improved charge carrier transport and power factor
  publication-title: ACS Energy Lett
– volume: 6
  start-page: 12275
  year: 2018
  end-page: 12280
  article-title: Flexible films of poly(3,4‐ethylenedioxythiophene)/carbon nanotube thermoelectric composites prepared by dynamic 3‐phase interfacial electropolymerization and subsequent physical mixing
  publication-title: J Mater Chem A
– volume: 47
  start-page: 12727
  year: 1993
  end-page: 12731
  article-title: Effect of quantum‐well structures on the thermoelectric figure of merit
  publication-title: Phys Rev B
– volume: 126
  year: 2019
  article-title: Enhanced thermoelectric properties of semiconducting carbon nanotube films by UV/ozone treatment
  publication-title: J Appl Phys
– volume: 239
  start-page: 13
  year: 2018
  end-page: 21
  article-title: Revealing the anisotropy in thermoelectric transport performances in CNT/PANI composites
  publication-title: Synth Met
– volume: 250
  start-page: 1468
  year: 2013
  end-page: 1473
  article-title: Thermoelectric properties of single walled carbon nanotube networks in polycarbonate matrix
  publication-title: Phys Status Solidi B
– volume: 11
  start-page: 741
  year: 2018
  end-page: 750
  article-title: Chemically doped macroscopic graphene fibers with significantly enhanced thermoelectric properties
  publication-title: Nano Res
– volume: 28
  start-page: 426
  year: 2016
  end-page: 432
  article-title: Stable n‐type thermoelectric multilayer thin films with high power factor from carbonaceous nanofillers
  publication-title: Nano Energy
– volume: 91
  year: 2007
  article-title: Giant thermoelectric effect in graphene
  publication-title: Appl Phys Lett
– volume: 7
  start-page: 3801
  year: 2014
  end-page: 3807
  article-title: Abnormally enhanced thermoelectric transport properties of SWNT/PANI hybrid films by the strengthened PANI molecular ordering
  publication-title: Energy Environ Sci
– volume: 50
  start-page: 885
  year: 2012
  end-page: 895
  article-title: Increasing the thermoelectric power factor of polymer composites using a semiconducting stabilizer for carbon nanotubes
  publication-title: Carbon
– volume: 64
  start-page: 1430
  year: 2010
  end-page: 1432
  article-title: Anisotropically conductive polymer composites with a selective distribution of carbon black in an in situ microfibrillar reinforced blend
  publication-title: Mater Lett
– volume: 116
  start-page: 12123
  year: 2016
  end-page: 12149
  article-title: Rationally designing high‐performance bulk thermoelectric materials
  publication-title: Chem Rev
– volume: 3
  start-page: 53
  year: 2019
  end-page: 80
  article-title: Organic thermoelectrics: materials preparation, performance optimization, and device integration
  publication-title: Joule
– volume: 10
  start-page: 4946
  year: 2018
  end-page: 4952
  article-title: Facile synthesis of diamino‐modified graphene/polyaniline semi‐interpenetrating networks with practical high thermoelectric performance
  publication-title: ACS Appl Mater Interfaces
– volume: 48
  start-page: 6978
  year: 2019
  end-page: 6984
  article-title: Effect of functional groups on the thermoelectric performance of carbon nanotubes
  publication-title: J Electron Mater
– volume: 47
  start-page: 16631
  year: 1993
  end-page: 16634
  article-title: Thermoelectric figure of merit of a one‐dimensional conductor
  publication-title: Phys Rev B
– volume: 10
  start-page: 569
  year: 2011
  end-page: 581
  article-title: Thermal properties of graphene and nanostructured carbon materials
  publication-title: Nat Mater
– volume: 5
  start-page: 4350
  year: 2017
  end-page: 4360
  article-title: Recent advances in organic polymer thermoelectric composites
  publication-title: J Mater Chem C
– volume: 72
  start-page: 1875
  year: 2012
  end-page: 1881
  article-title: The effect of molecular chain polarity on electric field‐induced aligned conductive carbon nanotube network formation in polymer melt
  publication-title: Compos Sci Technol
– volume: 14
  start-page: 1
  year: 2019
  end-page: 17
  article-title: Carbon nanomaterials for the treatment of heavy metal‐contaminated water and environmental remediation
  publication-title: Nanoscale Res Lett
– volume: 328
  start-page: 213
  year: 2010
  end-page: 216
  article-title: Two‐dimensional phonon transport in supported graphene
  publication-title: Science
– volume: 102
  year: 2009
  article-title: Anomalous thermoelectric transport of Dirac particles in graphene
  publication-title: Phys Rev Lett
– volume: 6
  year: 2016
  article-title: Outstanding low temperature thermoelectric power factor from completely organic thin films enabled by multidimensional conjugated nanomaterials
  publication-title: Adv Energy Mater
– volume: 7
  start-page: 2577
  year: 2014
  end-page: 2592
  article-title: Bismuth telluride and its alloys as materials for thermoelectric generation
  publication-title: Materials
– volume: 47
  start-page: 3713
  year: 2012
  end-page: 3719
  article-title: Conductive network formation during annealing of an oriented polyethylene‐based composite
  publication-title: J Mater Sci
– volume: 195
  start-page: 132
  year: 2014
  end-page: 136
  article-title: Preparation and thermoelectric properties of multi‐walled carbon nanotubes/polypyrrole composites
  publication-title: Synth Met
– volume: 29
  start-page: 244
  year: 2008
  end-page: 251
  article-title: A novel strategy to incorporate carbon nanotubes into thermoplastic matrices
  publication-title: Macromol Rapid Commun
– volume: 53
  start-page: 653
  year: 2016
  end-page: 671
  article-title: Recent advances in CNT/graphene based thermoelectric polymer nanocomposite: a proficient move towards waste energy harvesting
  publication-title: Renew Sustain Energy Rev
– volume: 101
  start-page: 133
  year: 2014
  end-page: 138
  article-title: Influence of the MWCNT surface functionalization on the thermoelectric properties of melt‐mixed polycarbonate composites
  publication-title: Compos Sci Technol
– volume: 55
  start-page: 5381
  year: 2014
  end-page: 5388
  article-title: Influence of a cyclic butylene terephthalate oligomer on the processability and thermoelectric properties of polycarbonate/MWCNT nanocomposites
  publication-title: Polymer
– volume: 14
  start-page: 1480
  year: 2002
  end-page: 1483
  article-title: Carbon nanotube doped polyaniline
  publication-title: Adv Mater
– volume: 113
  year: 2018
  article-title: Isotropic Seebeck coefficient of aligned single‐wall carbon nanotube films
  publication-title: Appl Phys Lett
– volume: 83
  start-page: 330
  year: 2016
  end-page: 382
  article-title: Recent advances in thermoelectric materials
  publication-title: Prog Mater Sci
– volume: 6
  start-page: 53339
  year: 2016
  end-page: 53344
  article-title: Improving the thermoelectric power factor of CNT/PEDOT: PSS nanocomposite films by ethylene glycol treatment
  publication-title: RSC Adv
– volume: 295
  start-page: 431
  year: 2010
  end-page: 436
  article-title: Influence of stabilizer concentration on transport behavior and thermopower of CNT‐filled latex‐based composites
  publication-title: Macromol Mater Eng
– volume: 12
  start-page: 1307
  year: 2012
  end-page: 1310
  article-title: Multilayered carbon nanotube/polymer composite based thermoelectric fabrics
  publication-title: Nano Lett
– volume: 3
  start-page: 106
  year: 2019
  article-title: Screening of different carbon nanotubes in melt‐mixed polymer composites with different polymer matrices for their thermoelectrical properties
  publication-title: J Compos Sci
– volume: 162
  start-page: 1348
  year: 2012
  end-page: 1356
  article-title: Carbon nanotube‐polyaniline nanohybrids: influence of the carbon nanotube characteristics on the morphological, spectroscopic, electrical and thermoelectric properties
  publication-title: Synth Met
– volume: 4
  start-page: 14
  year: 2020
  article-title: Nitrogen‐doped carbon nanotube/polypropylene composites with negative Seebeck coefficient
  publication-title: J Compos Sci
– volume: 14
  start-page: 6437
  year: 2014
  end-page: 6442
  article-title: Tuning of the thermoelectric properties of one‐dimensional material networks by electric double layer techniques using ionic liquids
  publication-title: Nano Lett
– volume: 37
  start-page: 820
  year: 2012
  end-page: 841
  article-title: Research progress on polymer–inorganic thermoelectric nanocomposite materials
  publication-title: Prog Polym Sci
– volume: 11
  start-page: 107
  year: 2019
  article-title: Recent progress in thermoelectric materials based on conjugated polymers
  publication-title: Polymers
– volume: 93
  year: 2016
  article-title: Reliability of Raman measurements of thermal conductivity of single‐layer graphene due to selective electron‐phonon coupling: a first‐principles study
  publication-title: Phys Rev B
– volume: 156
  start-page: 158
  year: 2018
  end-page: 165
  article-title: All‐aromatic SWCNT‐polyetherimide nanocomposites for thermal energy harvesting applications
  publication-title: Compos Sci Technol
– volume: 212
  start-page: 440
  year: 2018
  end-page: 445
  article-title: Free‐standing and flexible polypyrrole nanotube/reduced graphene oxide hybrid film with promising thermoelectric performance
  publication-title: Mater Chem Phys
– volume: 319
  start-page: 1229
  year: 2008
  end-page: 1232
  article-title: Chemically derived, ultrasmooth graphene nanoribbon semiconductors
  publication-title: Science
– volume: 83
  year: 2011
  article-title: Enhanced thermoelectric properties in graphene nanoribbons by resonant tunneling of electrons
  publication-title: Phys Rev B
– volume: 9
  start-page: 20124
  year: 2017
  end-page: 20131
  article-title: Polypyrrole/graphene/polyaniline ternary nanocomposite with high thermoelectric power factor
  publication-title: ACS Appl Mater Interfaces
– volume: 27
  start-page: 2996
  year: 2015
  end-page: 3001
  article-title: Completely organic multilayer thin film with thermoelectric power factor rivaling inorganic tellurides
  publication-title: Adv Mater
– year: 1979
– volume: 10
  start-page: 149
  year: 2015
  end-page: 153
  article-title: Template‐directed in situ polymerization preparation of nanocomposites of PEDOT: PSS‐coated multi‐walled carbon nanotubes with enhanced thermoelectric property
  publication-title: Chem Asian J
– volume: 108
  start-page: 513
  year: 2017
  end-page: 520
  article-title: Polypropylene‐based melt mixed composites with singlewalled carbon nanotubes for thermoelectric applications: switching from p‐type to n‐type by the addition of polyethylene glycol
  publication-title: Polymer
– volume: 2
  start-page: 7700
  year: 2019
  end-page: 7708
  article-title: One‐minute Joule annealing enhances the thermoelectric properties of carbon nanotube yarns via the formation of graphene at the interface
  publication-title: ACS Appl Energy Mater
– volume: 13
  start-page: 394
  year: 2020
  article-title: Boron doping of SWCNTs as a way to enhance the thermoelectric properties of melt‐mixed polypropylene/SWCNT composites
  publication-title: Energies
– volume: 62
  start-page: 430
  year: 2013
  end-page: 437
  article-title: Increasing the thermoelectric power generated by composite films using chemically functionalized single‐walled carbon nanotubes
  publication-title: Carbon
– volume: 1
  start-page: 141
  year: 2019
  end-page: 164
  article-title: The application of carbon materials in nonaqueous Na‐O batteries
  publication-title: Carbon Energy
– volume: 114
  start-page: 1
  year: 2017
  end-page: 7
  article-title: Strong anisotropy in thermoelectric properties of CNT/PANI composites
  publication-title: Carbon
– volume: 8
  year: 2018
  article-title: High performance thermoelectric materials: progress and their applications
  publication-title: Adv Energy Mater
– volume: 8
  start-page: 1417
  year: 2008
  end-page: 1422
  article-title: Colored semitransparent conductive coatings consisting of monodisperse metallic single‐walled carbon nanotubes
  publication-title: Nano Lett
– volume: 144
  start-page: 43
  year: 2017
  end-page: 50
  article-title: An unusual coral‐like morphology for composites of poly(3,4‐ethylenedioxythiophene)/carbon nanotube and the enhanced thermoelectric performance
  publication-title: Compos Sci Technol
– volume: 5
  year: 2018
  article-title: Thermally enhanced n‐type thermoelectric behavior in completely organic graphene oxide‐based thin films
  publication-title: Adv Electron Mater
– volume: 7
  start-page: 13687
  year: 2019
  end-page: 13694
  article-title: PEDOT thermoelectric composites with excellent power factors prepared by 3‐phase interfacial electropolymerization and carbon nanotube chemical doping
  publication-title: J Mater Chem A
– volume: 5
  start-page: 5472
  year: 2003
  end-page: 5476
  article-title: Doping of single‐walled carbon nanotube bundles by Brønsted acids
  publication-title: Phys Chem Chem Phys
– volume: 3
  year: 2018
  article-title: Thermoelectric devices: a review of devices, architectures, and contact optimization
  publication-title: Adv Mater Technol
– volume: 189
  start-page: 177
  year: 2014
  end-page: 182
  article-title: Investigating thermoelectric properties of doped polyaniline nanowires
  publication-title: Synth Met
– volume: 1
  start-page: 109
  year: 2019
  end-page: 123
  article-title: Carbon‐based perovskite solar cells: from single‐junction to modules
  publication-title: Carbon Energy
– volume: 5
  start-page: 337
  year: 2010
  end-page: 347
  article-title: Reducing defects on multi‐walled carbon nanotube surfaces induced by low‐power ultrasonic‐assisted hydrochloric acid treatment
  publication-title: J Exp Nanosci
– volume: 92
  year: 2015
  article-title: Diameter dependence of thermoelectric power of semiconducting carbon nanotubes
  publication-title: Phys Rev B
– volume: 8
  start-page: 3879
  year: 2008
  end-page: 3886
  article-title: Raman spectroscopy study of isolated double‐walled carbon nanotubes with different metallic and semiconducting configurations
  publication-title: Nano Lett
– volume: 3
  start-page: 6526
  year: 2015
  end-page: 6533
  article-title: Effects of one‐and two‐dimensional carbon hybridization of PEDOT: PSS on the power factor of polymer thermoelectric energy conversion devices
  publication-title: J Mater Chem A
– volume: 81
  year: 2010
  article-title: Enhanced thermoelectric figure of merit in edge‐disordered zigzag graphene nanoribbons
  publication-title: Phys Rev B
– volume: 1
  start-page: 12395
  year: 2013
  end-page: 12399
  article-title: Convenient construction of poly(3,4‐ethylenedioxythiophene)–graphene pie‐like structure with enhanced thermoelectric performance
  publication-title: J Mater Chem A
– volume: 4
  start-page: 513
  year: 2010
  end-page: 523
  article-title: Improved thermoelectric behavior of nanotube‐filled polymer composites with poly(3,4‐ethylenedioxythiophene)‐poly(styrenesulfonate)
  publication-title: ACS Nano
– volume: 10
  start-page: 1143
  year: 2018
  article-title: Morphologies tuning of polypyrrole and thermoelectric properties of polypyrrole nanowire/graphene composites
  publication-title: Polymers
– volume: 5
  year: 2020
  article-title: Advancing flexible thermoelectric devices with polymer composites
  publication-title: Adv Mater Technol
– volume: 13
  start-page: 9182
  year: 2019
  end-page: 9189
  article-title: Enhanced thermoelectric performance of as‐grown suspended graphene nanoribbons
  publication-title: ACS Nano
– volume: 108
  start-page: 16435
  year: 2004
  end-page: 16440
  article-title: Properties and structure of nitric acid oxidized single wall carbon nanotube films
  publication-title: J Phys Chem B
– volume: 1
  start-page: 8
  year: 2019
  end-page: 12
  article-title: Demanding energy from carbon
  publication-title: Carbon Energy
– volume: 33
  start-page: 8447
  year: 2017
  end-page: 8454
  article-title: Spreading dynamics of molten polymer drops on glass substrates
  publication-title: Langmuir
– volume: 7
  start-page: 105
  year: 2008
  end-page: 114
  article-title: Complex thermoelectric materials
  publication-title: Nat Mater
– volume: 1
  start-page: 13
  year: 2019
  end-page: 18
  article-title: Nanodiamonds for energy
  publication-title: Carbon Energy
– volume: 31
  year: 2019
  article-title: Flexible thermoelectric materials and generators: challenges and innovations
  publication-title: Adv Mater
– volume: 4
  start-page: 526
  year: 2016
  end-page: 532
  article-title: Large‐area, stretchable, super flexible and mechanically stable thermoelectric films of polymer/carbon nanotube composites
  publication-title: J Mater Chem C
– volume: 22
  start-page: 17612
  year: 2012
  end-page: 17618
  article-title: Enhanced thermoelectric properties of CNT/PANI composite nanofibers by highly orienting the arrangement of polymer chains
  publication-title: J Mater Chem
– volume: 2
  start-page: 223
  year: 2020
  end-page: 250
  article-title: Graphitic carbon nitride (g‐C N )‐based nanosized heteroarrays: promising materials for photoelectrochemical water splitting
  publication-title: Carbon Energy
– volume: 196
  start-page: 173
  year: 2014
  end-page: 177
  article-title: Polypyrrole nanotube film for flexible thermoelectric application
  publication-title: Synth Met
– volume: 124
  start-page: 52
  year: 2016
  end-page: 70
  article-title: Conducting polymer/carbon particle thermoelectric composites: emerging green energy materials
  publication-title: Compos Sci Technol
– volume: 11
  start-page: 6552
  year: 2019
  end-page: 6560
  article-title: High thermoelectric power‐factor composites based on flexible three‐dimensional graphene and polyaniline
  publication-title: Nanoscale
– volume: 54
  start-page: 17954
  year: 1996
  end-page: 17961
  article-title: Edge state in graphene ribbons: nanometer size effect and edge shape dependence
  publication-title: Phys Rev B
– volume: 509
  start-page: 384
  year: 2016
  end-page: 389
  article-title: Electrical property enhancement of carbon nanotube fibers from post treatments
  publication-title: Colloids Surf A Physicochem Eng Asp
– volume: 124
  start-page: 8131
  year: 2002
  end-page: 8141
  article-title: Characterization of the interface dipole at organic/metal interfaces
  publication-title: J Am Chem Soc
– volume: 4
  year: 2018
  article-title: Multifunctional structural design of graphene thermoelectrics by Bayesian optimization
  publication-title: Sci Adv
– volume: 4
  start-page: 29281
  year: 2014
  end-page: 29285
  article-title: Morphology and thermoelectric properties of graphene nanosheets enwrapped with polypyrrole
  publication-title: RSC Adv
– volume: 5
  start-page: 3779
  year: 2011
  end-page: 3787
  article-title: Control of thermal and electronic transport in defect‐engineered graphene nanoribbons
  publication-title: ACS Nano
– volume: 66
  start-page: 219
  year: 2014
  end-page: 226
  article-title: Structure–property relationships in thermally‐annealed multi‐walled carbon nanotubes
  publication-title: Carbon
– volume: 14
  start-page: 3530
  year: 2012
  end-page: 3536
  article-title: Thermoelectric properties of nanocomposite thin films prepared with poly(3,4‐ethylenedioxythiophene) poly (styrenesulfonate) and graphene
  publication-title: Phys Chem Chem Phys
– volume: 109
  year: 2011
  article-title: A nonequilibrium Green's function study of thermoelectric properties in single‐walled carbon nanotubes
  publication-title: J Appl Phys
– volume: 3
  start-page: 3448
  year: 2013
  article-title: Enhancing thermoelectric properties of organic composites through hierarchical nanostructures
  publication-title: Sci Rep
– volume: 17
  start-page: 278
  year: 2005
  end-page: 281
  article-title: Soluble self‐aligned carbon nanotube/polyaniline composites
  publication-title: Adv Mater
– volume: 187
  year: 2020
  article-title: Ternary thermoelectric composites of polypyrrole/PEDOT: PSS/carbon nanotube with unique layered structure prepared by one‐dimensional polymer nanostructure as template
  publication-title: Compos Sci Technol
– volume: 71
  year: 2005
  article-title: Charge transfer and Fermi level shift in p‐doped single‐walled carbon nanotubes
  publication-title: Phys Rev B
– volume: 35
  start-page: 26
  year: 2017
  end-page: 35
  article-title: Significantly reduced thermal conductivity and enhanced thermoelectric properties of single‐ and bi‐layer graphene nanomeshes with sub‐10 nm neck‐width
  publication-title: Nano Energy
– volume: 7
  start-page: 717
  year: 2014
  end-page: 730
  article-title: Direct synthesis of highly conductive poly(3,4‐ethylenedioxythiophene): poly(4‐styrenesulfonate)(PEDOT: PSS)/graphene composites and their applications in energy harvesting systems
  publication-title: Nano Res
– volume: 10
  year: 2020
  article-title: Covalent–organic frameworks: advanced organic electrode materials for rechargeable batteries
  publication-title: Adv Energy Mater
– volume: 4
  start-page: 2445
  year: 2010
  end-page: 2451
  article-title: Enhanced thermoelectric performance of single‐walled carbon nanotubes/polyaniline hybrid nanocomposites
  publication-title: ACS Nano
– volume: 99
  start-page: 485
  year: 2016
  end-page: 490
  article-title: Influence of annealing on thermal and electrical properties of carbon nanotube yarns
  publication-title: Carbon
– volume: 12
  year: 2019
  article-title: Thermoelectric properties of carbon nanotubes
  publication-title: Energies
– volume: 106
  year: 2015
  article-title: Carbon nanotube bundles/polystyrene composites as high‐performance flexible thermoelectric materials
  publication-title: Appl Phys Lett
– volume: 19
  start-page: 7370
  year: 2019
  end-page: 7376
  article-title: Solving the thermoelectric trade‐off problem with metallic carbon nanotubes
  publication-title: Nano Lett
– volume: 39
  year: 2018
  article-title: Recent development of thermoelectric polymers and composites
  publication-title: Macromol Rapid Commun
– volume: 94
  year: 2009
  article-title: A theoretical study on thermoelectric properties of graphene nanoribbons
  publication-title: Appl Phys Lett
– volume: 37
  year: 2020
  article-title: A review on recent developments of thermoelectric materials for room‐temperature applications
  publication-title: Sustain Energy Technol Assess
– volume: 183
  year: 2019
  article-title: Toward high thermoelectric performance for polypyrrole composites by dynamic 3‐phase interfacial electropolymerization and chemical doping of carbon nanotubes
  publication-title: Compos Sci Technol
– volume: 77
  start-page: 666
  year: 2000
  end-page: 668
  article-title: Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films
  publication-title: Appl Phys Lett
– volume: 84
  year: 2011
  article-title: Thermoelectric properties of finite graphene antidot lattices
  publication-title: Phys Rev B
– volume: 129
  start-page: 130
  year: 2016
  end-page: 136
  article-title: Enhanced thermoelectric performance by self‐assembled layered morphology of polypyrrole nanowire/single‐walled carbon nanotube composites
  publication-title: Compos Sci Technol
– ident: e_1_2_6_31_1
  doi: 10.1002/adma.200902221
– ident: e_1_2_6_110_1
  doi: 10.1039/C8NR10537E
– ident: e_1_2_6_129_1
  doi: 10.1002/aelm.201800465
– ident: e_1_2_6_30_1
  doi: 10.1103/PhysRevB.47.12727
– ident: e_1_2_6_12_1
  doi: 10.1002/smll.201703453
– ident: e_1_2_6_22_1
  doi: 10.1002/admt.201700256
– ident: e_1_2_6_123_1
  doi: 10.1016/j.compscitech.2019.107948
– ident: e_1_2_6_126_1
  doi: 10.1063/1.2745218
– ident: e_1_2_6_146_1
  doi: 10.3390/en13020394
– ident: e_1_2_6_72_1
  doi: 10.1103/PhysRevB.81.113401
– ident: e_1_2_6_46_1
  doi: 10.1007/s11664-019-07519-6
– ident: e_1_2_6_34_1
  doi: 10.1063/1.5066021
– ident: e_1_2_6_38_1
  doi: 10.1021/acsenergylett.6b00417
– ident: e_1_2_6_40_1
  doi: 10.7567/APEX.7.025103
– ident: e_1_2_6_137_1
  doi: 10.1016/j.matlet.2011.09.060
– ident: e_1_2_6_35_1
  doi: 10.1063/1.127079
– ident: e_1_2_6_121_1
  doi: 10.1039/C4TA06710J
– ident: e_1_2_6_28_1
  doi: 10.1186/s11671-019-3167-8
– ident: e_1_2_6_94_1
  doi: 10.1039/c2jm32750c
– ident: e_1_2_6_116_1
  doi: 10.1039/C4TC02471K
– ident: e_1_2_6_89_1
  doi: 10.1002/1521-4095(20021016)14:20<1480::AID-ADMA1480>3.0.CO;2-O
– ident: e_1_2_6_59_1
  doi: 10.1016/j.carbon.2015.12.014
– ident: e_1_2_6_7_1
  doi: 10.3390/polym11010107
– ident: e_1_2_6_44_1
  doi: 10.1016/j.apsusc.2013.11.162
– ident: e_1_2_6_69_1
  doi: 10.1063/1.2814080
– ident: e_1_2_6_18_1
  doi: 10.1103/PhysRevB.54.17954
– ident: e_1_2_6_3_1
  doi: 10.1002/aenm.201904199
– ident: e_1_2_6_144_1
  doi: 10.1016/j.compscitech.2017.12.030
– ident: e_1_2_6_66_1
  doi: 10.1103/PhysRevLett.102.166808
– ident: e_1_2_6_124_1
  doi: 10.1016/j.cej.2019.03.155
– ident: e_1_2_6_6_1
  doi: 10.1002/aenm.201701797
– ident: e_1_2_6_133_1
  doi: 10.1016/j.carbon.2013.06.028
– ident: e_1_2_6_80_1
  doi: 10.1007/s12274-017-1683-3
– ident: e_1_2_6_85_1
  doi: 10.1002/app.35193
– ident: e_1_2_6_136_1
  doi: 10.1016/j.carbon.2011.09.050
– ident: e_1_2_6_64_1
  doi: 10.1126/science.1184014
– ident: e_1_2_6_60_1
  doi: 10.1016/j.carbon.2013.08.061
– ident: e_1_2_6_79_1
  doi: 10.1021/acsnano.9b03521
– ident: e_1_2_6_128_1
  doi: 10.1016/j.nanoen.2016.08.063
– ident: e_1_2_6_141_1
  doi: 10.1016/j.compscitech.2014.07.009
– ident: e_1_2_6_88_1
  doi: 10.1016/j.synthmet.2014.01.007
– ident: e_1_2_6_125_1
  doi: 10.1002/adma.201405738
– ident: e_1_2_6_130_1
  doi: 10.1063/1.4915622
– ident: e_1_2_6_102_1
  doi: 10.1039/C6RA08599G
– ident: e_1_2_6_112_1
  doi: 10.1007/s12274-014-0433-z
– ident: e_1_2_6_24_1
  doi: 10.1002/admt.202000049
– ident: e_1_2_6_99_1
  doi: 10.1002/asia.201403100
– ident: e_1_2_6_78_1
  doi: 10.1103/PhysRevB.93.125432
– ident: e_1_2_6_50_1
  doi: 10.1021/nl080302f
– ident: e_1_2_6_23_1
  doi: 10.1002/marc.201700727
– ident: e_1_2_6_100_1
  doi: 10.1016/j.compscitech.2017.03.018
– ident: e_1_2_6_4_1
  doi: 10.1002/cey2.48
– ident: e_1_2_6_9_1
  doi: 10.1021/acs.chemrev.6b00255
– ident: e_1_2_6_117_1
  doi: 10.1039/C4RA07774A
– ident: e_1_2_6_105_1
  doi: 10.1016/j.compscitech.2016.04.023
– ident: e_1_2_6_140_1
  doi: 10.1016/j.carbon.2019.05.035
– ident: e_1_2_6_86_1
  doi: 10.1016/j.compscitech.2016.01.014
– ident: e_1_2_6_14_1
  doi: 10.1002/cey2.12
– ident: e_1_2_6_37_1
  doi: 10.1063/1.3531573
– ident: e_1_2_6_139_1
  doi: 10.1016/j.matlet.2013.06.008
– volume-title: Electronic Processes in Non‐Crystalline Materials
  year: 1979
  ident: e_1_2_6_48_1
  contributor:
    fullname: Mott NF
– ident: e_1_2_6_143_1
  doi: 10.1016/j.polymer.2016.12.019
– ident: e_1_2_6_103_1
  doi: 10.1016/j.orgel.2017.03.007
– ident: e_1_2_6_71_1
  doi: 10.1103/PhysRevB.83.235426
– ident: e_1_2_6_73_1
  doi: 10.1021/nn200114p
– ident: e_1_2_6_43_1
  doi: 10.1080/17458080903536541
– ident: e_1_2_6_83_1
  doi: 10.1016/j.matlet.2010.03.041
– ident: e_1_2_6_26_1
  doi: 10.1002/cey2.11
– ident: e_1_2_6_77_1
  doi: 10.1038/nature07919
– ident: e_1_2_6_16_1
  doi: 10.1016/j.rser.2015.09.004
– ident: e_1_2_6_113_1
  doi: 10.1039/c3ta12691a
– ident: e_1_2_6_45_1
  doi: 10.1039/C9TA03153G
– ident: e_1_2_6_127_1
  doi: 10.1002/aenm.201502168
– ident: e_1_2_6_67_1
  doi: 10.1021/nl0731872
– ident: e_1_2_6_27_1
  doi: 10.1016/j.synthmet.2016.12.017
– ident: e_1_2_6_114_1
  doi: 10.1002/asia.201500066
– ident: e_1_2_6_41_1
  doi: 10.7567/APEX.9.025102
– ident: e_1_2_6_54_1
  doi: 10.1016/j.colsurfa.2016.09.036
– ident: e_1_2_6_11_1
  doi: 10.1002/asia.201600293
– ident: e_1_2_6_36_1
  doi: 10.1021/nl502982f
– ident: e_1_2_6_19_1
  doi: 10.1039/C1EE01931G
– ident: e_1_2_6_62_1
  doi: 10.3390/ma7042577
– ident: e_1_2_6_65_1
  doi: 10.1016/j.ssc.2008.02.024
– ident: e_1_2_6_131_1
  doi: 10.1016/j.compscitech.2012.08.003
– ident: e_1_2_6_96_1
  doi: 10.1016/j.synthmet.2018.03.004
– ident: e_1_2_6_47_1
  doi: 10.1063/1.5118694
– ident: e_1_2_6_32_1
  doi: 10.3390/en12234561
– ident: e_1_2_6_17_1
  doi: 10.1016/j.nanoen.2017.03.019
– ident: e_1_2_6_92_1
  doi: 10.1039/C4EE01905A
– ident: e_1_2_6_49_1
  doi: 10.1103/PhysRevB.92.165426
– ident: e_1_2_6_75_1
  doi: 10.1103/PhysRevLett.98.206805
– ident: e_1_2_6_29_1
  doi: 10.1038/nmat3064
– ident: e_1_2_6_33_1
  doi: 10.1021/acs.nanolett.9b03022
– ident: e_1_2_6_25_1
  doi: 10.1016/j.seta.2019.100604
– ident: e_1_2_6_2_1
  doi: 10.1016/j.pmatsci.2016.07.002
– ident: e_1_2_6_91_1
  doi: 10.1021/nn1002562
– ident: e_1_2_6_10_1
  doi: 10.1016/j.synthmet.2014.08.001
– ident: e_1_2_6_42_1
  doi: 10.1103/PhysRevB.47.16631
– ident: e_1_2_6_8_1
  doi: 10.1557/mrs2006.46
– ident: e_1_2_6_142_1
  doi: 10.1016/j.polymer.2014.08.048
– ident: e_1_2_6_106_1
  doi: 10.1039/C5TC03768A
– ident: e_1_2_6_20_1
  doi: 10.1039/C6TC05488A
– ident: e_1_2_6_51_1
  doi: 10.1063/1.2801353
– ident: e_1_2_6_82_1
  doi: 10.1016/j.joule.2018.10.012
– ident: e_1_2_6_149_1
  doi: 10.1002/marc.200700637
– ident: e_1_2_6_68_1
  doi: 10.1063/1.3171933
– ident: e_1_2_6_58_1
  doi: 10.1016/j.carbon.2005.09.013
– ident: e_1_2_6_150_1
  doi: 10.1021/acs.langmuir.7b01500
– ident: e_1_2_6_21_1
  doi: 10.1002/adma.201807916
– ident: e_1_2_6_87_1
  doi: 10.1016/j.progpolymsci.2011.11.003
– ident: e_1_2_6_52_1
  doi: 10.1021/nl802306t
– ident: e_1_2_6_132_1
  doi: 10.1080/03602559.2011.593087
– ident: e_1_2_6_93_1
  doi: 10.1016/j.synthmet.2012.05.029
– ident: e_1_2_6_76_1
  doi: 10.1126/science.1150878
– ident: e_1_2_6_53_1
  doi: 10.1039/B311016H
– ident: e_1_2_6_70_1
  doi: 10.1103/PhysRevB.84.155449
– volume: 29
  start-page: 29
  year: 2017
  ident: e_1_2_6_13_1
  article-title: Green processing of carbon nanomaterials
  publication-title: Adv Mater
  doi: 10.1002/adma.201602423
  contributor:
    fullname: Kawamoto M
– ident: e_1_2_6_138_1
  doi: 10.1021/nl203806q
– ident: e_1_2_6_101_1
  doi: 10.1039/C8TA04838J
– ident: e_1_2_6_115_1
  doi: 10.1039/C4RA04003A
– ident: e_1_2_6_118_1
  doi: 10.1016/j.matchemphys.2018.03.025
– ident: e_1_2_6_122_1
  doi: 10.1021/acsami.7b05357
– ident: e_1_2_6_108_1
  doi: 10.1016/j.synthmet.2011.09.044
– ident: e_1_2_6_57_1
  doi: 10.1021/acsaem.9b01736
– ident: e_1_2_6_120_1
  doi: 10.1038/srep03448
– ident: e_1_2_6_63_1
  doi: 10.1021/ja025673r
– ident: e_1_2_6_74_1
  doi: 10.1126/sciadv.aar4192
– ident: e_1_2_6_104_1
  doi: 10.1016/j.synthmet.2014.06.003
– ident: e_1_2_6_148_1
  doi: 10.1002/marc.200800549
– ident: e_1_2_6_135_1
  doi: 10.1002/mame.200900243
– ident: e_1_2_6_109_1
  doi: 10.1021/acsami.7b14890
– ident: e_1_2_6_111_1
  doi: 10.1039/c2cp23517j
– ident: e_1_2_6_147_1
  doi: 10.3390/jcs4010014
– ident: e_1_2_6_134_1
  doi: 10.1021/nl802345s
– ident: e_1_2_6_56_1
  doi: 10.1103/PhysRevB.71.205423
– ident: e_1_2_6_61_1
  doi: 10.1038/nmat2090
– ident: e_1_2_6_119_1
  doi: 10.3390/polym10101143
– ident: e_1_2_6_90_1
  doi: 10.1002/adma.200400921
– ident: e_1_2_6_145_1
  doi: 10.3390/jcs3040106
– ident: e_1_2_6_151_1
  doi: 10.1038/s41467-019-13993-7
– ident: e_1_2_6_97_1
  doi: 10.1021/nn202868a
– ident: e_1_2_6_95_1
  doi: 10.1016/j.carbon.2016.11.074
– ident: e_1_2_6_98_1
  doi: 10.1021/nn9013577
– ident: e_1_2_6_5_1
  doi: 10.1002/cey2.15
– ident: e_1_2_6_55_1
  doi: 10.1021/jp0475988
– ident: e_1_2_6_15_1
  doi: 10.1002/cey2.9
– ident: e_1_2_6_84_1
  doi: 10.1002/pssb.201200908
– ident: e_1_2_6_39_1
  doi: 10.1038/nenergy.2016.33
– ident: e_1_2_6_81_1
  doi: 10.1007/s10853-011-6220-2
– ident: e_1_2_6_107_1
  doi: 10.1016/j.compscitech.2019.107794
SSID ssj0002171029
Score 2.5714557
Snippet The urgent need for consistent, reliable, ecofriendly, and stable power sources drives the development of new green energy materials. Thermoelectric (TE)...
Abstract The urgent need for consistent, reliable, ecofriendly, and stable power sources drives the development of new green energy materials. Thermoelectric...
Abstract The urgent need for consistent, reliable, ecofriendly, and stable power sources drives the development of new green energy materials. Thermoelectric...
SourceID doaj
proquest
crossref
wiley
SourceType Open Website
Aggregation Database
Publisher
StartPage 408
SubjectTerms Alternative energy sources
Carbon
Carbon nanotubes
Clean energy
Conducting polymers
Copyright
Electrical conductivity
Electrical resistivity
Energy
Energy conversion
Fossil fuels
Graphene
Graphite
Green development
Heat
Nanotechnology
Nanotubes
Polymer matrix composites
Polymers
Power sources
Renewable energy
Sustainable development
Thermoelectric materials
thermoplastic polymers
Weight reduction
Title Carbon and carbon composites for thermoelectric applications
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcey2.68
https://www.proquest.com/docview/2544909523
https://doaj.org/article/c943da72f68947f28e5b4ef6dd54074b
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELWgEwyITxEoyEPX0MRxEltigdKqEwsgwWT5U2IgRS0d-PfcOaEKA2JhixJFsu5iv_eUu3eEjBzAkK91lhps6-G-hC0lOCRE5NxbrnNfYb_z_KG-fxZ3U7TJ2Yz6wpqw1h64DdzYSl44XbNQCcnrwIQvDfehcg6t47iJp28memIKz2Ag2oCcsu2SRZfRsfWf7AoNVXvwE136f1DLPkGNCDPbJ3sdNaQ37ZIOyJZvDsluzzDwiFxP9NIsGgryn9r2EmvCsfDKryjwT4p87m3RDrd5tbT_f_qYPM2mj5N52s0_SC0HIZFqa0orAJ9D5pyRuZGusJlhLniPHaMOtJl2RS1BFqDNmBbWaxZMAAog4Z3ihAyaReNPCWUW0KoOIUgdOC8dsLYi1HE0VS1DXiWEfodFvbc2F6o1NGYKI6cqkZBbDNfmMfpSxxuQLdVlS_2VrYQMv4Otus2yUuiSJoHqsSIho5iA39agJtMXVomz_1jKOdlhqJ1jvdiQDD6Wa39BtldufRm_pS8ayM29
link.rule.ids 315,782,786,866,2108,27935,27936
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Carbon+and+carbon+composites+for+thermoelectric+applications&rft.jtitle=Carbon+energy&rft.au=Zhang%2C+Yichuan&rft.au=Zhang%2C+Qichun&rft.au=Chen%2C+Guangming&rft.date=2020-09-01&rft.issn=2637-9368&rft.eissn=2637-9368&rft.volume=2&rft.issue=3&rft.spage=408&rft.epage=436&rft_id=info:doi/10.1002%2Fcey2.68&rft.externalDBID=10.1002%252Fcey2.68&rft.externalDocID=CEY268
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2637-9368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2637-9368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2637-9368&client=summon