Biliverdin therapy protects rat livers from ischemia and reperfusion injury
Heme oxygenase (HO‐1) provides a cellular defense mechanism during oxidative stress and catalyzes the rate‐limiting step in heme metabolism that produces biliverdin (BV). The role of BV and its potential use in preventing ischemia/reperfusion injury (IRI) had never been studied. This study was desig...
Saved in:
Published in: | Hepatology (Baltimore, Md.) Vol. 40; no. 6; pp. 1333 - 1341 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01-12-2004
Wiley |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Heme oxygenase (HO‐1) provides a cellular defense mechanism during oxidative stress and catalyzes the rate‐limiting step in heme metabolism that produces biliverdin (BV). The role of BV and its potential use in preventing ischemia/reperfusion injury (IRI) had never been studied. This study was designed to explore putative cytoprotective functions of BV during hepatic IRI in rat liver models of ex vivo perfusion and orthotopic liver transplantation (OLT) after prolonged periods of cold ischemia. In an ex vivo hepatic IRI model, adjunctive BV improved portal venous blood flow, increased bile production, and decreased hepatocellular damage. These findings were correlated with amelioration of histological features of IRI, as assessed by Suzuki's criteria. Following cold ischemia and syngeneic OLT, BV therapy extended animal survival from 50% in untreated controls to 90% to 100%. This effect correlated with improved liver function and preserved hepatic architecture. Additionally, BV adjuvant after OLT decreased endothelial expression of cellular adhesion molecules (P‐selectin and intracellular adhesion molecule 1), and decreased the extent of infiltration by neutrophils and inflammatory macrophages. BV also inhibited expression of inducible nitric oxide synthase and proinflammatory cytokines (interleukin 1β, tumor necrosis factor α, and interleukin 6) in OLTs. Finally, BV therapy promoted an increased expression of antiapoptotic molecules independently of HO‐1 expression, consistent with BV being an important mediator through which HO‐1 prevents cell death. In conclusion, this study documents and dissects potent cytoprotective effects of BV in well‐established rat models of hepatic IRI. Our results provide the rationale for a novel therapeutic approach using BV to maximize the function and thus the availability of donor organs. (HEPATOLOGY 2004;40:1333–1341.) |
---|---|
Bibliography: | fax: 310‐267‐2358 J.W.K.‐W. and F.H.B. contributed equally to this work. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0270-9139 1527-3350 |
DOI: | 10.1002/hep.20480 |