Learning to rank for why-question answering

In this paper, we evaluate a number of machine learning techniques for the task of ranking answers to why -questions. We use TF-IDF together with a set of 36 linguistically motivated features that characterize questions and answers. We experiment with a number of machine learning techniques (among w...

Full description

Saved in:
Bibliographic Details
Published in:Information retrieval (Boston) Vol. 14; no. 2; pp. 107 - 132
Main Authors: Verberne, Suzan, van Halteren, Hans, Theijssen, Daphne, Raaijmakers, Stephan, Boves, Lou
Format: Journal Article
Language:English
Published: Dordrecht Springer Netherlands 01-04-2011
Springer
Springer Nature B.V
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we evaluate a number of machine learning techniques for the task of ranking answers to why -questions. We use TF-IDF together with a set of 36 linguistically motivated features that characterize questions and answers. We experiment with a number of machine learning techniques (among which several classifiers and regression techniques, Ranking SVM and SVM map ) in various settings. The purpose of the experiments is to assess how the different machine learning approaches can cope with our highly imbalanced binary relevance data, with and without hyperparameter tuning. We find that with all machine learning techniques, we can obtain an MRR score that is significantly above the TF-IDF baseline of 0.25 and not significantly lower than the best score of 0.35. We provide an in-depth analysis of the effect of data imbalance and hyperparameter tuning, and we relate our findings to previous research on learning to rank for Information Retrieval.
AbstractList In this paper, we evaluate a number of machine learning techniques for the task of ranking answers to why-questions. We use TF-IDF together with a set of 36 linguistically motivated features that characterize questions and answers. We experiment with a number of machine learning techniques (among which several classifiers and regression techniques, Ranking SVM and SVM super( )map in various settings. The purpose of the experiments is to assess how the different machine learning approaches can cope with our highly imbalanced binary relevance data, with and without hyperparameter tuning. We find that with all machine learning techniques, we can obtain an MRR score that is significantly above the TF-IDF baseline of 0.25 and not significantly lower than the best score of 0.35. We provide an in-depth analysis of the effect of data imbalance and hyperparameter tuning, and we relate our findings to previous research on learning to rank for Information Retrieval.
In this paper, we evaluate a number of machine learning techniques for the task of ranking answers to why-questions. We use TF-IDF together with a set of 36 linguistically motivated features that characterize questions and answers. We experiment with a number of machine learning techniques (among which several classifiers and regression techniques, Ranking SVM and SVM map ) in various settings. The purpose of the experiments is to assess how the different machine learning approaches can cope with our highly imbalanced binary relevance data, with and without hyperparameter tuning. We find that with all machine learning techniques, we can obtain an MRR score that is significantly above the TF-IDF baseline of 0.25 and not significantly lower than the best score of 0.35. We provide an in-depth analysis of the effect of data imbalance and hyperparameter tuning, and we relate our findings to previous research on learning to rank for Information Retrieval.
In this paper, we evaluate a number of machine learning techniques for the task of ranking answers to why -questions. We use TF-IDF together with a set of 36 linguistically motivated features that characterize questions and answers. We experiment with a number of machine learning techniques (among which several classifiers and regression techniques, Ranking SVM and SVM map ) in various settings. The purpose of the experiments is to assess how the different machine learning approaches can cope with our highly imbalanced binary relevance data, with and without hyperparameter tuning. We find that with all machine learning techniques, we can obtain an MRR score that is significantly above the TF-IDF baseline of 0.25 and not significantly lower than the best score of 0.35. We provide an in-depth analysis of the effect of data imbalance and hyperparameter tuning, and we relate our findings to previous research on learning to rank for Information Retrieval.
In this paper, we evaluate a number of machine learning techniques for the task of ranking answers to why-questions. We use TF-IDF together with a set of 36 linguistically motivated features that characterize questions and answers. We experiment with a number of machine learning techniques (among which several classifiers and regression techniques, Ranking SVM and SVM ^sup map^) in various settings. The purpose of the experiments is to assess how the different machine learning approaches can cope with our highly imbalanced binary relevance data, with and without hyperparameter tuning. We find that with all machine learning techniques, we can obtain an MRR score that is significantly above the TF-IDF baseline of 0.25 and not significantly lower than the best score of 0.35. We provide an in-depth analysis of the effect of data imbalance and hyperparameter tuning, and we relate our findings to previous research on learning to rank for Information Retrieval.[PUBLICATION ABSTRACT]
Author Theijssen, Daphne
Boves, Lou
Raaijmakers, Stephan
Verberne, Suzan
van Halteren, Hans
Author_xml – sequence: 1
  givenname: Suzan
  surname: Verberne
  fullname: Verberne, Suzan
  email: s.verberne@let.ru.nl
  organization: Centre for Language and Speech Technology, Radboud University
– sequence: 2
  givenname: Hans
  surname: van Halteren
  fullname: van Halteren, Hans
  organization: Centre for Language and Speech Technology, Radboud University
– sequence: 3
  givenname: Daphne
  surname: Theijssen
  fullname: Theijssen, Daphne
  organization: Department of Linguistics, Radboud University
– sequence: 4
  givenname: Stephan
  surname: Raaijmakers
  fullname: Raaijmakers, Stephan
  organization: TNO Information and Communication Technology
– sequence: 5
  givenname: Lou
  surname: Boves
  fullname: Boves, Lou
  organization: Centre for Language and Speech Technology, Radboud University
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24036609$$DView record in Pascal Francis
BookMark eNqFkM1KAzEURoNUsK0-gLtBEBcSvZlJMpOlFP-g4EbXIZNJdOo0qUlL6dubcYqCIK5yF-d-ud-ZoJHzziB0SuCKAJTXkUApCAYCWJCCY36AxoSVBS45E6M0FxXHlHF6hCYxLgCAUyrG6HJuVHCte83WPgvKvWfWh2z7tsMfGxPXrXeZcnFrQkKO0aFVXTQn-3eKXu5un2cPeP50_zi7mWNNWb7GhIKpDTXKElJyQSuj86amrNGiqW1Rc2F5oxktcgZ1VZBak9JQa00NyhScF1N0MeSugv-6Qi7bqE3XKWf8JkqRqjLCS_iXrCrgjAJjiTz7RS78JrhUQ1asEjmBvP-YDJAOPsZgrFyFdqnCThKQvWY5aJZJs-w1y37nfB-soladTQ51G78XcwqpEojE5QMXV71LE34O-Dv8E3DUjPo
CitedBy_id crossref_primary_10_1007_s10115_014_0738_y
crossref_primary_10_1017_S1351324917000304
crossref_primary_10_1155_2023_2994779
crossref_primary_10_1145_2950049
crossref_primary_10_1145_2948063
crossref_primary_10_1007_s10115_014_0759_6
crossref_primary_10_1016_j_datak_2023_102246
crossref_primary_10_1080_1206212X_2021_1949117
crossref_primary_10_3233_SW_222970
crossref_primary_10_1016_j_eswa_2013_06_017
crossref_primary_10_1007_s10489_013_0475_z
Cites_doi 10.1145/1147197.1147210
10.3115/1599081.1599201
10.1007/s10994-005-0918-9
10.1145/1390156.1390306
10.1561/1500000016
10.1023/A:1022602019183
10.1109/TSMCB.2008.2002909
10.1002/asi.20009
10.1145/1277741.1277809
10.3233/IDA-2002-6504
10.1162/jmlr.2003.4.6.933
10.1162/coli.09-032-R1-08-034
10.3115/1289189.1289206
10.1145/1102351.1102363
10.21236/ADA456400
10.1145/775047.775067
10.1007/11776420_44
ContentType Journal Article
Copyright The Author(s) 2010
2015 INIST-CNRS
Springer Science+Business Media, LLC 2011
Copyright_xml – notice: The Author(s) 2010
– notice: 2015 INIST-CNRS
– notice: Springer Science+Business Media, LLC 2011
DBID C6C
IQODW
AAYXX
CITATION
0U~
1-H
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L.0
L7M
L~C
L~D
M0C
M0N
M2P
P5Z
P62
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PYYUZ
Q9U
DOI 10.1007/s10791-010-9136-6
DatabaseName Springer_OA刊
Pascal-Francis
CrossRef
Global News & ABI/Inform Professional
Trade PRO
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI-INFORM Complete
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
ProQuest Databases
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Collection
Computing Database
Science Journals (ProQuest Database)
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Trade PRO
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
Global News & ABI/Inform Professional
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ABI/INFORM China
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Computer and Information Systems Abstracts
Computer and Information Systems Abstracts

ABI/INFORM Global (Corporate)
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Library & Information Science
Computer Science
EISSN 1573-7659
EndPage 132
ExternalDocumentID 2304537561
10_1007_s10791_010_9136_6
24036609
Genre Feature
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4I
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
29I
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
88I
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ELW
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2P
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQBIZ
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7X
Z7Z
Z81
Z83
Z88
ZMTXR
H13
IQODW
AAYXX
ABAKF
ACZOJ
AEFQL
AFBBN
AGQEE
AGRTI
CITATION
PQBZA
0U~
1-H
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L.0
L7M
L~C
L~D
PQEST
PQUKI
Q9U
ID FETCH-LOGICAL-c452t-140ebe4eaf1176948ec2db45dc9dbf3b69f6dc543250b831bc17e4ffeb0ae3663
IEDL.DBID AEJHL
ISSN 1386-4564
IngestDate Fri Aug 16 10:39:21 EDT 2024
Fri Oct 25 07:17:06 EDT 2024
Mon Nov 04 11:10:03 EST 2024
Thu Nov 21 21:34:13 EST 2024
Sun Oct 22 16:09:09 EDT 2023
Sat Dec 16 12:01:19 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords questions
Learning to rank
Question answering
Why-questions
Information retrieval
Query processing
Machine learning
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c452t-140ebe4eaf1176948ec2db45dc9dbf3b69f6dc543250b831bc17e4ffeb0ae3663
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink http://link.springer.com/10.1007/s10791-010-9136-6
PQID 858921026
PQPubID 23500
PageCount 26
ParticipantIDs proquest_miscellaneous_907951670
proquest_miscellaneous_880654055
proquest_journals_858921026
crossref_primary_10_1007_s10791_010_9136_6
pascalfrancis_primary_24036609
springer_journals_10_1007_s10791_010_9136_6
PublicationCentury 2000
PublicationDate 2011-04-01
PublicationDateYYYYMMDD 2011-04-01
PublicationDate_xml – month: 04
  year: 2011
  text: 2011-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
– name: Heidelberg
PublicationTitle Information retrieval (Boston)
PublicationTitleAbbrev Inf Retrieval
PublicationYear 2011
Publisher Springer Netherlands
Springer
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer
– name: Springer Nature B.V
References Verberne, S., Boves, L., Oostdijk N., & Coppen, P. (2007). Evaluating discourse-based answer extraction for why-question answering. In Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval (pp. 735–736). New York, NY: ACM.
JapkowiczN.StephenS.The class imbalance problem: A systematic studyIntelligent Data Analysis2002654294491085.68628
FanW.FoxE.PathakP.WuH.The effects of fitness functions on genetic programming-based ranking discovery for web searchJournal of the American Society for Information Science and Technology200455762863610.1002/asi.20009
GoldbergD.HollandJ.Genetic algorithms and machine learningMachine Learning198832959910.1023/A:1022602019183
Trotman, A. (2004). An artificial intelligence approach to information retrieval. In Proceedings of the 27th annual international ACM SIGIR conference on research and development in information retrieval (p. 603). New York, NY: ACM.
Voorhees, E. (2000). Overview of the TREC-9 question answering track. In Proceedings of TREC-9 (Vol. 7, pp. 1–80).
DenoyerL.GallinariP.The wikipedia XML corpusACM SIGIR Forum2006401646910.1145/1147197.1147210
Xu, J., & Li, H. (2007) Adarank: A boosting algorithm for information retrieval. In Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval (pp. 391–398). New York, NY: ACM.
Yeh, J., Lin, J., Ke, H., Yang, W. (2007). Learning to rank for information retrieval using genetic programming. In Proceedings of the workshop on learning to rank for information retrieval (LR4IR) at SIGIR 2007.
Furnkranz, J., & Hullermeier, E. (2003). Pairwise preference learning and ranking. In Lecture notes in computer science: Machine learning: ECML 2003 (pp. 145–156). New York: Springer.
Maybury, M. (2002). Toward a question answering roadmap. Technical report, Mitre Corporation, Bedford, MA, USA.
Cao, Z., Qin, T., Liu, T., Tsai, M., & Li, H. (2007). Learning to rank: from pairwise approach to listwise approach. In Proceedings of the 24th international conference on machine learning (pp. 129–136). New York, NY: ACM.
Joachims, T. (2002) Optimizing search engines using clickthrough data. In Proceedings of the 8th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 133–142). New York, NY: ACM.
TangY.ZhangY.ChawlaN.KrasserS.SVMs modeling for highly imbalanced classificationIEEE Transactions on Systems, Man, and Cybernetics, Part B200939128128810.1109/TSMCB.2008.2002909
Xia, F., Liu, T., Wang, J., Zhang, W., & Li, H. (2008). Listwise approach to learning to rank: Theory and algorithm. In Proceedings of the 25th international conference on machine learning (pp. 1192–1199). New York, NY: ACM
Aslam, J. A., Kanoulas, E., Pavlu, V., Savev, S., & Yilmaz, E. (2009). Document selection methodologies for efficient and effective learning-to-rank. In Proceedings of the 32nd annual international ACM SIGIR conference on research and development in information retrieval (pp. 468–475). New York, NY: ACM.
Liu, T., Xu, J., Qin, T., Xiong, W., & Li, H. (2007). Letor: Benchmark dataset for research on learning to rank for information retrieval. In Proceedings of the workshop on learning to rank for information retrieval (LR4IR) at SIGIR 2007 (pp. 3–10).
Tiedemann, J. (2007). A comparison of genetic algorithms for optimizing linguistically informed IR in question answering. In Lecture notes in computer science: AI*IA 2007: Artificial intelligence and human-oriented computing (Vol. 4733, pp. 398). New York: Springer.
Surdeanu, M., Ciaramita, M., & Zaragoza, H. (2008). Learning to rank answers on large online QA collections. In Proceedings of the 46th annual meeting on association for computational linguistics (pp. 719–727).
VerberneSBovesLOostdijkNCoppenPWhat is not in the bag of words for why-QA?Computational Linguistics2010322229245
Hovy, E., Hermjakob, U., & Ravichandran, D. (2002). A question/answer typology with surface text patterns. In Proceedings of the human language technology conference (HLT), San Diego, CA, USA, pp. 247–251.
OwenA.Infinitely imbalanced logistic regressionThe Journal of Machine Learning Research20078761772320678
Zhai, C. (2001). Notes on the Lemur TFIDF model. Technical report, School of Computer Science, Carnegie Mellon University.
Cossock, D., & Zhang, T. (2006) Subset ranking using regression. In Lecture notes in computer science: Learning theory (Vol. 4005, p. 605). New York: Springer.
Herbrich, R., Graepel, T., & Obermayer, K. (2002). Large margin rank boundaries for ordinal regression. In Proceedings of the 8th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 133–142). New York, NY: ACM.
Akbani, R., Kwek, S., & Japkowicz, N. (2004). Applying support vector machines to imbalanced datasets. In Lecture notes in computer science: Machine learning: ECML 2004 (Vol. 3201, pp. 39–50). New York: Springer.
Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., et al. (2005). Learning to rank using gradient descent. In Proceedings of the 22nd international conference on machine learning (pp.  89–96)
Hsu, C., Chang, C., & Lin, C., et al. (2003). A practical guide to support vector classification. Technical report, Department of Computer Science, National Taiwan University, Taipei 106, Taiwan.
Usunier, N., Amini, M., & Gallinari, P. (2004). Boosting weak ranking functions to enhance passage retrieval for question answering. In Proceedings of the workshop on information retrieval for question answering (IR4QA) at SIGIR 2004 (pp. 1–6).
ShenL.JoshiA.Ranking and reranking with perceptronMachine Learning2005601739610.1007/s10994-005-0918-9
Yue, Y., Finley, T., Radlinski, F., & Joachims, T. (2007). A support vector method for optimizing average precision. In Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval (pp. 271–278). New York, NY: ACM.
FellbaumC.WordNet: An electronic lexical database1998Cambridge, MAMIT Press0913.68054
Pedersen, T., Patwardhan, S., & Michelizzi, J. (2004). WordNet::Similarity—Measuring the relatedness of concepts. In Proceedings of the national conference on artificial intelligence (pp. 1024–1025). Menlo Park: AAAI Press.
Voorhees, E. (2003). Overview of the TREC 2003 question answering track. In Proceedings of the twelfth text retrieval conference (TREC 2003) (Vol. 142, pp. 54–68).
CharniakE.A maximum-entropy-inspired parserACM International Conference Proceedings Series20004132139
FreundY.IyerR.SchapireR.SingerY.An efficient boosting algorithm for combining preferencesThe Journal of Machine Learning Research2003493396910.1162/jmlr.2003.4.6.9332125342
Qin, T., Liu, T., Xu, J., & Li, H. (2008) LETOR: A benchmark collection for learning to rank for information retrieval. Technical report, Microsoft Research Asia
Verberne, S., Boves, L., Oostdijk, N., & Coppen, P. (2008). Using syntactic information for improving why-question answering. In Proceedings of the 22nd international conference on computational linguistics (COLING) (pp. 953–960).
Banerjee, S., & Pedersen, T. (2002). An adapted Lesk algorithm for word sense disambiguation using WordNet. In Lecture notes in computer science: Computational linguistics and intelligent text processing (pp. 136–145). New York: Springer.
Chakrabarti, S., Khanna, R., Sawant, U., & Bhattacharyya, C. (2008). Structured learning for non-smooth ranking losses. In Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 88–96). New York, NY: ACM.
Higashinaka, R., & Isozaki, H. (2008). Corpus-based question answering for why-questions. In Proceedings of the international joint conference on natural language processing (IJCNLP) (pp. 418–425).
LiuT.Learning to rank for information retrievalFoundations and Trends in Information Retrieval20093322533110.1561/1500000016
Voorhees, E., & Tice, D. (2000). Building a question answering test collection. In Proceedings of the 23rd annual international ACM SIGIR conference on research and development in information retrieval (pp. 200–207). New York, NY: ACM.
Carterette, B., & Petkova, D. (2006). Learning a ranking from pairwise preferences. In Proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval (pp. 629–630). New York, NY: ACM.
9136_CR3
9136_CR23
9136_CR4
9136_CR24
9136_CR5
9136_CR6
9136_CR26
9136_CR7
9136_CR41
9136_CR42
9136_CR9
9136_CR21
9136_CR43
9136_CR44
Y. Tang (9136_CR30) 2009; 39
9136_CR27
9136_CR29
T. Liu (9136_CR22) 2009; 3
Y. Freund (9136_CR13) 2003; 4
L. Denoyer (9136_CR10) 2006; 40
A. Owen (9136_CR25) 2007; 8
S Verberne (9136_CR36) 2010; 32
(9136_CR12) 1998
N. Japkowicz (9136_CR20) 2002; 6
9136_CR40
9136_CR34
9136_CR35
9136_CR14
9136_CR37
L. Shen (9136_CR28) 2005; 60
9136_CR31
9136_CR32
9136_CR33
9136_CR16
9136_CR38
9136_CR17
9136_CR39
9136_CR18
9136_CR19
E. Charniak (9136_CR8) 2000; 4
D. Goldberg (9136_CR15) 1988; 3
9136_CR1
9136_CR2
W. Fan (9136_CR11) 2004; 55
References_xml – volume: 40
  start-page: 64
  issue: 1
  year: 2006
  ident: 9136_CR10
  publication-title: ACM SIGIR Forum
  doi: 10.1145/1147197.1147210
  contributor:
    fullname: L. Denoyer
– ident: 9136_CR35
  doi: 10.3115/1599081.1599201
– ident: 9136_CR7
– ident: 9136_CR23
– volume: 60
  start-page: 73
  issue: 1
  year: 2005
  ident: 9136_CR28
  publication-title: Machine Learning
  doi: 10.1007/s10994-005-0918-9
  contributor:
    fullname: L. Shen
– volume: 8
  start-page: 761
  year: 2007
  ident: 9136_CR25
  publication-title: The Journal of Machine Learning Research
  contributor:
    fullname: A. Owen
– ident: 9136_CR40
  doi: 10.1145/1390156.1390306
– ident: 9136_CR17
– ident: 9136_CR1
– ident: 9136_CR31
– ident: 9136_CR3
– ident: 9136_CR5
– ident: 9136_CR38
– volume: 3
  start-page: 225
  issue: 3
  year: 2009
  ident: 9136_CR22
  publication-title: Foundations and Trends in Information Retrieval
  doi: 10.1561/1500000016
  contributor:
    fullname: T. Liu
– ident: 9136_CR33
– volume: 3
  start-page: 95
  issue: 2
  year: 1988
  ident: 9136_CR15
  publication-title: Machine Learning
  doi: 10.1023/A:1022602019183
  contributor:
    fullname: D. Goldberg
– ident: 9136_CR19
– volume: 39
  start-page: 281
  issue: 1
  year: 2009
  ident: 9136_CR30
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B
  doi: 10.1109/TSMCB.2008.2002909
  contributor:
    fullname: Y. Tang
– volume: 55
  start-page: 628
  issue: 7
  year: 2004
  ident: 9136_CR11
  publication-title: Journal of the American Society for Information Science and Technology
  doi: 10.1002/asi.20009
  contributor:
    fullname: W. Fan
– ident: 9136_CR41
  doi: 10.1145/1277741.1277809
– volume: 6
  start-page: 429
  issue: 5
  year: 2002
  ident: 9136_CR20
  publication-title: Intelligent Data Analysis
  doi: 10.3233/IDA-2002-6504
  contributor:
    fullname: N. Japkowicz
– volume: 4
  start-page: 933
  year: 2003
  ident: 9136_CR13
  publication-title: The Journal of Machine Learning Research
  doi: 10.1162/jmlr.2003.4.6.933
  contributor:
    fullname: Y. Freund
– volume: 32
  start-page: 229
  issue: 2
  year: 2010
  ident: 9136_CR36
  publication-title: Computational Linguistics
  doi: 10.1162/coli.09-032-R1-08-034
  contributor:
    fullname: S Verberne
– volume: 4
  start-page: 132
  year: 2000
  ident: 9136_CR8
  publication-title: ACM International Conference Proceedings Series
  contributor:
    fullname: E. Charniak
– ident: 9136_CR26
– ident: 9136_CR18
  doi: 10.3115/1289189.1289206
– ident: 9136_CR43
– ident: 9136_CR4
  doi: 10.1145/1102351.1102363
– ident: 9136_CR16
– ident: 9136_CR24
  doi: 10.21236/ADA456400
– ident: 9136_CR2
– ident: 9136_CR14
– ident: 9136_CR6
– ident: 9136_CR32
– ident: 9136_CR39
– ident: 9136_CR34
– ident: 9136_CR37
– ident: 9136_CR29
– ident: 9136_CR42
– ident: 9136_CR21
  doi: 10.1145/775047.775067
– ident: 9136_CR9
  doi: 10.1007/11776420_44
– volume-title: WordNet: An electronic lexical database
  year: 1998
  ident: 9136_CR12
– ident: 9136_CR27
– ident: 9136_CR44
SSID ssj0006449
Score 2.123484
Snippet In this paper, we evaluate a number of machine learning techniques for the task of ranking answers to why -questions. We use TF-IDF together with a set of 36...
In this paper, we evaluate a number of machine learning techniques for the task of ranking answers to why-questions. We use TF-IDF together with a set of 36...
SourceID proquest
crossref
pascalfrancis
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 107
SubjectTerms Artificial intelligence
Computer Science
Data Mining and Knowledge Discovery
Data Structures and Information Theory
Datasets
Exact sciences and technology
Experiments
Genetic algorithms
Information and communication sciences
Information processing and retrieval
Information retrieval
Information retrieval. Man machine relationship
Information science. Documentation
Information Storage and Retrieval
Learning
Machine learning
Natural Language Processing (NLP)
Pattern Recognition
Questions
Ranking
Ranking systems
Ratings & rankings
Regression
Regression analysis
Relevance
Research process. Evaluation
Sciences and techniques of general use
Studies
Support vector machines
Tasks
Tuning
Title Learning to rank for why-question answering
URI https://link.springer.com/article/10.1007/s10791-010-9136-6
https://www.proquest.com/docview/858921026
https://search.proquest.com/docview/880654055
https://search.proquest.com/docview/907951670
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB7xuOwK8SiLKC_5sOKwyCixHcc-ImgpCO0FkPYW1S-QkFJEWyH-PeM0CXQFBzhFSsaOPZ_tGXs8MwC_g3ciYy5BBFhGRc4NVYZzygWzyikrtI--w4Pr_O8_ddaLYXJYe3RRPhw3FslqoX7n65bHSzq4bOiUSyoXYRlFT4Zje_mkdzm4atdflPC62mYpSWOwlMaW-VElc9Jo5XE4RsaEWUaLOZXzPytpJXz6a99p9jqs1qomOZmNjQ1Y8GUH1po0DqSe1R34-S4mYQf2a08GckhqV6UIXUO92UZkvSOTEYkZ3wkSkef7F1p1ItKi9HuuavsFt_3ezemA1hkXqEXEJhR3Wwiq8MOQprnUQnnLnBGZs9qZwI3UQTqbCY6Kk1E8NTbNvQjBm2ToOSovW7BUjkq_DcQw7ziqF56FIIzKtRbM2cTmCQv4UnfhT8P54nEWWKN4C6EcmVYg04rItEJ24WAOm7ZEjCYoZYK17TZgFfUkHBcqUzruaLE4ab_i7IkmkWHpR1MkiXZl1Fmzz0k0tiVLZZ504aiB-O0fnzZ550vUu_BjdlgdrwTtwdLkaer3YXHspgf18I7Pi5vz_isp0fS3
link.rule.ids 315,782,786,27933,27934,41073,42142,48344,48347,48357,49649,49652,49662,52153
linkProvider Springer Nature
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7xGAAhHgVEgYIHxACylMSOY48VUIp4LBSJLapfMLUVbYX495zTpFAEA6zJxXHus33nnO87gGPvLE8TGyECSUp5xjSVmjHKeGKklYYrF3KH2w_Z_ZO8uAw0OazKhSlOu1chyWKl_pLsloVTOrhuqJgJKuZhkSvBcSgvNq87V63pAowmXhX7LCloYEupgpk_NTJjjlYH3SFqxk9KWsz4nN_CpIX1aa3_q98bsFY6m6Q5GR2bMOd6NVivCjmQcl7XYOULK2ENGmUuAzkhZbJSAK-S3ppysj6TUZ-Emu8EhcjbyzstviLIov17K1rbhsfWZee8TcuaC9QgZiOK-y2Elbuuj-NMKC6dSazmqTXKas-0UF5Yk3KGrpOWLNYmzhz33umo6xi6Lzuw0Ov33C4QnTjL0MFwifdcy0wpnlgTmSxKPF5UdTitVJ8PJtQa-SeJclBajkrLg9JyUYfDGXCmTwQ-QSEibG2_Qisvp-Ewl6lUYU-Lj5PpXZw_ISjS7bn-GEVCZBm91vR3EYV9SWORRXU4qyD-fMevXd77k_QRLLU7d7f57fX9zT4sT35dhwNCB7Aweh27BswP7fiwHOsfKcr3GQ
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB4VkCoQAhpATSmpD4hDK4vdtddrn6qoJEoLipBaJG6r-AWnTUQSof57xvsICYID4ro79trz-THe8XwDcOKd5WliI0QgSSnPmKZSM0YZT4y00nDlQuzw4G82vJHnvUCT87OJhSlvuzcuySqmIbA0FbOzifVnS4FvWbixg2uIipmgYg02OD7Dgb7R7f0ZXC4WY9zuVXnmkoIG5pTGsflSJStb0_ZkNEUt-Sq9xYr9-cxlWu5E_d1392EPdmojlHSrUfMJPriiBbtNggdSz_cWbC2xFbbguI5xIKekDmIKoDbS-wuu1lsyG5OQC56gEHm4-0_LHgVZ3BcfytoO4Lrf-_drQOtcDNQgljOK5zCEm7uRj-NMKC6dSazmqTXKas-0UF5Yk3KGJpWWLNYmzhz33ulo5BiaNYewXowL9xmITpxlaHi4xHuuZaYUT6yJTBYlHh-qNnxvYMgnFeVG_kSuHJSWo9LyoLRctKGzAtSiROAZFCLC2o4a5PJ6ek5zmUoVzrpYnCze4rwKzpJR4cZzFAkeZ7Rm09dFFLYljUUWteFHA_fTN15t8pc3SX-Dj1fn_fzy9_DiCDarP9rh3tBXWJ_dz90xrE3tvFMP-0elRf_c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+to+rank+for+why-question+answering&rft.jtitle=Information+retrieval+%28Boston%29&rft.au=Verberne%2C+Suzan&rft.au=van+Halteren%2C+Hans&rft.au=Theijssen%2C+Daphne&rft.au=Raaijmakers%2C+Stephan&rft.date=2011-04-01&rft.pub=Springer+Netherlands&rft.issn=1386-4564&rft.eissn=1573-7659&rft.volume=14&rft.issue=2&rft.spage=107&rft.epage=132&rft_id=info:doi/10.1007%2Fs10791-010-9136-6&rft.externalDocID=10_1007_s10791_010_9136_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-4564&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-4564&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-4564&client=summon