Learning to rank for why-question answering
In this paper, we evaluate a number of machine learning techniques for the task of ranking answers to why -questions. We use TF-IDF together with a set of 36 linguistically motivated features that characterize questions and answers. We experiment with a number of machine learning techniques (among w...
Saved in:
Published in: | Information retrieval (Boston) Vol. 14; no. 2; pp. 107 - 132 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Dordrecht
Springer Netherlands
01-04-2011
Springer Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In this paper, we evaluate a number of machine learning techniques for the task of ranking answers to
why
-questions. We use TF-IDF together with a set of 36 linguistically motivated features that characterize questions and answers. We experiment with a number of machine learning techniques (among which several classifiers and regression techniques, Ranking SVM and
SVM
map
) in various settings. The purpose of the experiments is to assess how the different machine learning approaches can cope with our highly imbalanced binary relevance data, with and without hyperparameter tuning. We find that with all machine learning techniques, we can obtain an MRR score that is significantly above the TF-IDF baseline of 0.25 and not significantly lower than the best score of 0.35. We provide an in-depth analysis of the effect of data imbalance and hyperparameter tuning, and we relate our findings to previous research on learning to rank for Information Retrieval. |
---|---|
AbstractList | In this paper, we evaluate a number of machine learning techniques for the task of ranking answers to why-questions. We use TF-IDF together with a set of 36 linguistically motivated features that characterize questions and answers. We experiment with a number of machine learning techniques (among which several classifiers and regression techniques, Ranking SVM and SVM super( )map in various settings. The purpose of the experiments is to assess how the different machine learning approaches can cope with our highly imbalanced binary relevance data, with and without hyperparameter tuning. We find that with all machine learning techniques, we can obtain an MRR score that is significantly above the TF-IDF baseline of 0.25 and not significantly lower than the best score of 0.35. We provide an in-depth analysis of the effect of data imbalance and hyperparameter tuning, and we relate our findings to previous research on learning to rank for Information Retrieval. In this paper, we evaluate a number of machine learning techniques for the task of ranking answers to why-questions. We use TF-IDF together with a set of 36 linguistically motivated features that characterize questions and answers. We experiment with a number of machine learning techniques (among which several classifiers and regression techniques, Ranking SVM and SVM map ) in various settings. The purpose of the experiments is to assess how the different machine learning approaches can cope with our highly imbalanced binary relevance data, with and without hyperparameter tuning. We find that with all machine learning techniques, we can obtain an MRR score that is significantly above the TF-IDF baseline of 0.25 and not significantly lower than the best score of 0.35. We provide an in-depth analysis of the effect of data imbalance and hyperparameter tuning, and we relate our findings to previous research on learning to rank for Information Retrieval. In this paper, we evaluate a number of machine learning techniques for the task of ranking answers to why -questions. We use TF-IDF together with a set of 36 linguistically motivated features that characterize questions and answers. We experiment with a number of machine learning techniques (among which several classifiers and regression techniques, Ranking SVM and SVM map ) in various settings. The purpose of the experiments is to assess how the different machine learning approaches can cope with our highly imbalanced binary relevance data, with and without hyperparameter tuning. We find that with all machine learning techniques, we can obtain an MRR score that is significantly above the TF-IDF baseline of 0.25 and not significantly lower than the best score of 0.35. We provide an in-depth analysis of the effect of data imbalance and hyperparameter tuning, and we relate our findings to previous research on learning to rank for Information Retrieval. In this paper, we evaluate a number of machine learning techniques for the task of ranking answers to why-questions. We use TF-IDF together with a set of 36 linguistically motivated features that characterize questions and answers. We experiment with a number of machine learning techniques (among which several classifiers and regression techniques, Ranking SVM and SVM ^sup map^) in various settings. The purpose of the experiments is to assess how the different machine learning approaches can cope with our highly imbalanced binary relevance data, with and without hyperparameter tuning. We find that with all machine learning techniques, we can obtain an MRR score that is significantly above the TF-IDF baseline of 0.25 and not significantly lower than the best score of 0.35. We provide an in-depth analysis of the effect of data imbalance and hyperparameter tuning, and we relate our findings to previous research on learning to rank for Information Retrieval.[PUBLICATION ABSTRACT] |
Author | Theijssen, Daphne Boves, Lou Raaijmakers, Stephan Verberne, Suzan van Halteren, Hans |
Author_xml | – sequence: 1 givenname: Suzan surname: Verberne fullname: Verberne, Suzan email: s.verberne@let.ru.nl organization: Centre for Language and Speech Technology, Radboud University – sequence: 2 givenname: Hans surname: van Halteren fullname: van Halteren, Hans organization: Centre for Language and Speech Technology, Radboud University – sequence: 3 givenname: Daphne surname: Theijssen fullname: Theijssen, Daphne organization: Department of Linguistics, Radboud University – sequence: 4 givenname: Stephan surname: Raaijmakers fullname: Raaijmakers, Stephan organization: TNO Information and Communication Technology – sequence: 5 givenname: Lou surname: Boves fullname: Boves, Lou organization: Centre for Language and Speech Technology, Radboud University |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24036609$$DView record in Pascal Francis |
BookMark | eNqFkM1KAzEURoNUsK0-gLtBEBcSvZlJMpOlFP-g4EbXIZNJdOo0qUlL6dubcYqCIK5yF-d-ud-ZoJHzziB0SuCKAJTXkUApCAYCWJCCY36AxoSVBS45E6M0FxXHlHF6hCYxLgCAUyrG6HJuVHCte83WPgvKvWfWh2z7tsMfGxPXrXeZcnFrQkKO0aFVXTQn-3eKXu5un2cPeP50_zi7mWNNWb7GhIKpDTXKElJyQSuj86amrNGiqW1Rc2F5oxktcgZ1VZBak9JQa00NyhScF1N0MeSugv-6Qi7bqE3XKWf8JkqRqjLCS_iXrCrgjAJjiTz7RS78JrhUQ1asEjmBvP-YDJAOPsZgrFyFdqnCThKQvWY5aJZJs-w1y37nfB-soladTQ51G78XcwqpEojE5QMXV71LE34O-Dv8E3DUjPo |
CitedBy_id | crossref_primary_10_1007_s10115_014_0738_y crossref_primary_10_1017_S1351324917000304 crossref_primary_10_1155_2023_2994779 crossref_primary_10_1145_2950049 crossref_primary_10_1145_2948063 crossref_primary_10_1007_s10115_014_0759_6 crossref_primary_10_1016_j_datak_2023_102246 crossref_primary_10_1080_1206212X_2021_1949117 crossref_primary_10_3233_SW_222970 crossref_primary_10_1016_j_eswa_2013_06_017 crossref_primary_10_1007_s10489_013_0475_z |
Cites_doi | 10.1145/1147197.1147210 10.3115/1599081.1599201 10.1007/s10994-005-0918-9 10.1145/1390156.1390306 10.1561/1500000016 10.1023/A:1022602019183 10.1109/TSMCB.2008.2002909 10.1002/asi.20009 10.1145/1277741.1277809 10.3233/IDA-2002-6504 10.1162/jmlr.2003.4.6.933 10.1162/coli.09-032-R1-08-034 10.3115/1289189.1289206 10.1145/1102351.1102363 10.21236/ADA456400 10.1145/775047.775067 10.1007/11776420_44 |
ContentType | Journal Article |
Copyright | The Author(s) 2010 2015 INIST-CNRS Springer Science+Business Media, LLC 2011 |
Copyright_xml | – notice: The Author(s) 2010 – notice: 2015 INIST-CNRS – notice: Springer Science+Business Media, LLC 2011 |
DBID | C6C IQODW AAYXX CITATION 0U~ 1-H 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L.0 L7M L~C L~D M0C M0N M2P P5Z P62 PQBIZ PQBZA PQEST PQQKQ PQUKI PYYUZ Q9U |
DOI | 10.1007/s10791-010-9136-6 |
DatabaseName | Springer_OA刊 Pascal-Francis CrossRef Global News & ABI/Inform Professional Trade PRO ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI-INFORM Complete ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials ProQuest Databases Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ABI/INFORM Professional Standard Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Collection Computing Database Science Journals (ProQuest Database) ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ABI/INFORM Collection China ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Trade PRO ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central Global News & ABI/Inform Professional ABI/INFORM Professional Advanced ABI/INFORM Professional Standard ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ProQuest Science Journals (Alumni Edition) ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ABI/INFORM China ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts ABI/INFORM Global (Corporate) |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Library & Information Science Computer Science |
EISSN | 1573-7659 |
EndPage | 132 |
ExternalDocumentID | 2304537561 10_1007_s10791_010_9136_6 24036609 |
Genre | Feature |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4I .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 29I 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 88I 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ELW ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2P M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PQBIZ PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7X Z7Z Z81 Z83 Z88 ZMTXR H13 IQODW AAYXX ABAKF ACZOJ AEFQL AFBBN AGQEE AGRTI CITATION PQBZA 0U~ 1-H 7SC 7XB 8AL 8FD 8FK JQ2 L.- L.0 L7M L~C L~D PQEST PQUKI Q9U |
ID | FETCH-LOGICAL-c452t-140ebe4eaf1176948ec2db45dc9dbf3b69f6dc543250b831bc17e4ffeb0ae3663 |
IEDL.DBID | AEJHL |
ISSN | 1386-4564 |
IngestDate | Fri Aug 16 10:39:21 EDT 2024 Fri Oct 25 07:17:06 EDT 2024 Mon Nov 04 11:10:03 EST 2024 Thu Nov 21 21:34:13 EST 2024 Sun Oct 22 16:09:09 EDT 2023 Sat Dec 16 12:01:19 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | questions Learning to rank Question answering Why-questions Information retrieval Query processing Machine learning |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c452t-140ebe4eaf1176948ec2db45dc9dbf3b69f6dc543250b831bc17e4ffeb0ae3663 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | http://link.springer.com/10.1007/s10791-010-9136-6 |
PQID | 858921026 |
PQPubID | 23500 |
PageCount | 26 |
ParticipantIDs | proquest_miscellaneous_907951670 proquest_miscellaneous_880654055 proquest_journals_858921026 crossref_primary_10_1007_s10791_010_9136_6 pascalfrancis_primary_24036609 springer_journals_10_1007_s10791_010_9136_6 |
PublicationCentury | 2000 |
PublicationDate | 2011-04-01 |
PublicationDateYYYYMMDD | 2011-04-01 |
PublicationDate_xml | – month: 04 year: 2011 text: 2011-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht – name: Heidelberg |
PublicationTitle | Information retrieval (Boston) |
PublicationTitleAbbrev | Inf Retrieval |
PublicationYear | 2011 |
Publisher | Springer Netherlands Springer Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer – name: Springer Nature B.V |
References | Verberne, S., Boves, L., Oostdijk N., & Coppen, P. (2007). Evaluating discourse-based answer extraction for why-question answering. In Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval (pp. 735–736). New York, NY: ACM. JapkowiczN.StephenS.The class imbalance problem: A systematic studyIntelligent Data Analysis2002654294491085.68628 FanW.FoxE.PathakP.WuH.The effects of fitness functions on genetic programming-based ranking discovery for web searchJournal of the American Society for Information Science and Technology200455762863610.1002/asi.20009 GoldbergD.HollandJ.Genetic algorithms and machine learningMachine Learning198832959910.1023/A:1022602019183 Trotman, A. (2004). An artificial intelligence approach to information retrieval. In Proceedings of the 27th annual international ACM SIGIR conference on research and development in information retrieval (p. 603). New York, NY: ACM. Voorhees, E. (2000). Overview of the TREC-9 question answering track. In Proceedings of TREC-9 (Vol. 7, pp. 1–80). DenoyerL.GallinariP.The wikipedia XML corpusACM SIGIR Forum2006401646910.1145/1147197.1147210 Xu, J., & Li, H. (2007) Adarank: A boosting algorithm for information retrieval. In Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval (pp. 391–398). New York, NY: ACM. Yeh, J., Lin, J., Ke, H., Yang, W. (2007). Learning to rank for information retrieval using genetic programming. In Proceedings of the workshop on learning to rank for information retrieval (LR4IR) at SIGIR 2007. Furnkranz, J., & Hullermeier, E. (2003). Pairwise preference learning and ranking. In Lecture notes in computer science: Machine learning: ECML 2003 (pp. 145–156). New York: Springer. Maybury, M. (2002). Toward a question answering roadmap. Technical report, Mitre Corporation, Bedford, MA, USA. Cao, Z., Qin, T., Liu, T., Tsai, M., & Li, H. (2007). Learning to rank: from pairwise approach to listwise approach. In Proceedings of the 24th international conference on machine learning (pp. 129–136). New York, NY: ACM. Joachims, T. (2002) Optimizing search engines using clickthrough data. In Proceedings of the 8th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 133–142). New York, NY: ACM. TangY.ZhangY.ChawlaN.KrasserS.SVMs modeling for highly imbalanced classificationIEEE Transactions on Systems, Man, and Cybernetics, Part B200939128128810.1109/TSMCB.2008.2002909 Xia, F., Liu, T., Wang, J., Zhang, W., & Li, H. (2008). Listwise approach to learning to rank: Theory and algorithm. In Proceedings of the 25th international conference on machine learning (pp. 1192–1199). New York, NY: ACM Aslam, J. A., Kanoulas, E., Pavlu, V., Savev, S., & Yilmaz, E. (2009). Document selection methodologies for efficient and effective learning-to-rank. In Proceedings of the 32nd annual international ACM SIGIR conference on research and development in information retrieval (pp. 468–475). New York, NY: ACM. Liu, T., Xu, J., Qin, T., Xiong, W., & Li, H. (2007). Letor: Benchmark dataset for research on learning to rank for information retrieval. In Proceedings of the workshop on learning to rank for information retrieval (LR4IR) at SIGIR 2007 (pp. 3–10). Tiedemann, J. (2007). A comparison of genetic algorithms for optimizing linguistically informed IR in question answering. In Lecture notes in computer science: AI*IA 2007: Artificial intelligence and human-oriented computing (Vol. 4733, pp. 398). New York: Springer. Surdeanu, M., Ciaramita, M., & Zaragoza, H. (2008). Learning to rank answers on large online QA collections. In Proceedings of the 46th annual meeting on association for computational linguistics (pp. 719–727). VerberneSBovesLOostdijkNCoppenPWhat is not in the bag of words for why-QA?Computational Linguistics2010322229245 Hovy, E., Hermjakob, U., & Ravichandran, D. (2002). A question/answer typology with surface text patterns. In Proceedings of the human language technology conference (HLT), San Diego, CA, USA, pp. 247–251. OwenA.Infinitely imbalanced logistic regressionThe Journal of Machine Learning Research20078761772320678 Zhai, C. (2001). Notes on the Lemur TFIDF model. Technical report, School of Computer Science, Carnegie Mellon University. Cossock, D., & Zhang, T. (2006) Subset ranking using regression. In Lecture notes in computer science: Learning theory (Vol. 4005, p. 605). New York: Springer. Herbrich, R., Graepel, T., & Obermayer, K. (2002). Large margin rank boundaries for ordinal regression. In Proceedings of the 8th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 133–142). New York, NY: ACM. Akbani, R., Kwek, S., & Japkowicz, N. (2004). Applying support vector machines to imbalanced datasets. In Lecture notes in computer science: Machine learning: ECML 2004 (Vol. 3201, pp. 39–50). New York: Springer. Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., et al. (2005). Learning to rank using gradient descent. In Proceedings of the 22nd international conference on machine learning (pp. 89–96) Hsu, C., Chang, C., & Lin, C., et al. (2003). A practical guide to support vector classification. Technical report, Department of Computer Science, National Taiwan University, Taipei 106, Taiwan. Usunier, N., Amini, M., & Gallinari, P. (2004). Boosting weak ranking functions to enhance passage retrieval for question answering. In Proceedings of the workshop on information retrieval for question answering (IR4QA) at SIGIR 2004 (pp. 1–6). ShenL.JoshiA.Ranking and reranking with perceptronMachine Learning2005601739610.1007/s10994-005-0918-9 Yue, Y., Finley, T., Radlinski, F., & Joachims, T. (2007). A support vector method for optimizing average precision. In Proceedings of the 30th annual international ACM SIGIR conference on research and development in information retrieval (pp. 271–278). New York, NY: ACM. FellbaumC.WordNet: An electronic lexical database1998Cambridge, MAMIT Press0913.68054 Pedersen, T., Patwardhan, S., & Michelizzi, J. (2004). WordNet::Similarity—Measuring the relatedness of concepts. In Proceedings of the national conference on artificial intelligence (pp. 1024–1025). Menlo Park: AAAI Press. Voorhees, E. (2003). Overview of the TREC 2003 question answering track. In Proceedings of the twelfth text retrieval conference (TREC 2003) (Vol. 142, pp. 54–68). CharniakE.A maximum-entropy-inspired parserACM International Conference Proceedings Series20004132139 FreundY.IyerR.SchapireR.SingerY.An efficient boosting algorithm for combining preferencesThe Journal of Machine Learning Research2003493396910.1162/jmlr.2003.4.6.9332125342 Qin, T., Liu, T., Xu, J., & Li, H. (2008) LETOR: A benchmark collection for learning to rank for information retrieval. Technical report, Microsoft Research Asia Verberne, S., Boves, L., Oostdijk, N., & Coppen, P. (2008). Using syntactic information for improving why-question answering. In Proceedings of the 22nd international conference on computational linguistics (COLING) (pp. 953–960). Banerjee, S., & Pedersen, T. (2002). An adapted Lesk algorithm for word sense disambiguation using WordNet. In Lecture notes in computer science: Computational linguistics and intelligent text processing (pp. 136–145). New York: Springer. Chakrabarti, S., Khanna, R., Sawant, U., & Bhattacharyya, C. (2008). Structured learning for non-smooth ranking losses. In Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 88–96). New York, NY: ACM. Higashinaka, R., & Isozaki, H. (2008). Corpus-based question answering for why-questions. In Proceedings of the international joint conference on natural language processing (IJCNLP) (pp. 418–425). LiuT.Learning to rank for information retrievalFoundations and Trends in Information Retrieval20093322533110.1561/1500000016 Voorhees, E., & Tice, D. (2000). Building a question answering test collection. In Proceedings of the 23rd annual international ACM SIGIR conference on research and development in information retrieval (pp. 200–207). New York, NY: ACM. Carterette, B., & Petkova, D. (2006). Learning a ranking from pairwise preferences. In Proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval (pp. 629–630). New York, NY: ACM. 9136_CR3 9136_CR23 9136_CR4 9136_CR24 9136_CR5 9136_CR6 9136_CR26 9136_CR7 9136_CR41 9136_CR42 9136_CR9 9136_CR21 9136_CR43 9136_CR44 Y. Tang (9136_CR30) 2009; 39 9136_CR27 9136_CR29 T. Liu (9136_CR22) 2009; 3 Y. Freund (9136_CR13) 2003; 4 L. Denoyer (9136_CR10) 2006; 40 A. Owen (9136_CR25) 2007; 8 S Verberne (9136_CR36) 2010; 32 (9136_CR12) 1998 N. Japkowicz (9136_CR20) 2002; 6 9136_CR40 9136_CR34 9136_CR35 9136_CR14 9136_CR37 L. Shen (9136_CR28) 2005; 60 9136_CR31 9136_CR32 9136_CR33 9136_CR16 9136_CR38 9136_CR17 9136_CR39 9136_CR18 9136_CR19 E. Charniak (9136_CR8) 2000; 4 D. Goldberg (9136_CR15) 1988; 3 9136_CR1 9136_CR2 W. Fan (9136_CR11) 2004; 55 |
References_xml | – volume: 40 start-page: 64 issue: 1 year: 2006 ident: 9136_CR10 publication-title: ACM SIGIR Forum doi: 10.1145/1147197.1147210 contributor: fullname: L. Denoyer – ident: 9136_CR35 doi: 10.3115/1599081.1599201 – ident: 9136_CR7 – ident: 9136_CR23 – volume: 60 start-page: 73 issue: 1 year: 2005 ident: 9136_CR28 publication-title: Machine Learning doi: 10.1007/s10994-005-0918-9 contributor: fullname: L. Shen – volume: 8 start-page: 761 year: 2007 ident: 9136_CR25 publication-title: The Journal of Machine Learning Research contributor: fullname: A. Owen – ident: 9136_CR40 doi: 10.1145/1390156.1390306 – ident: 9136_CR17 – ident: 9136_CR1 – ident: 9136_CR31 – ident: 9136_CR3 – ident: 9136_CR5 – ident: 9136_CR38 – volume: 3 start-page: 225 issue: 3 year: 2009 ident: 9136_CR22 publication-title: Foundations and Trends in Information Retrieval doi: 10.1561/1500000016 contributor: fullname: T. Liu – ident: 9136_CR33 – volume: 3 start-page: 95 issue: 2 year: 1988 ident: 9136_CR15 publication-title: Machine Learning doi: 10.1023/A:1022602019183 contributor: fullname: D. Goldberg – ident: 9136_CR19 – volume: 39 start-page: 281 issue: 1 year: 2009 ident: 9136_CR30 publication-title: IEEE Transactions on Systems, Man, and Cybernetics, Part B doi: 10.1109/TSMCB.2008.2002909 contributor: fullname: Y. Tang – volume: 55 start-page: 628 issue: 7 year: 2004 ident: 9136_CR11 publication-title: Journal of the American Society for Information Science and Technology doi: 10.1002/asi.20009 contributor: fullname: W. Fan – ident: 9136_CR41 doi: 10.1145/1277741.1277809 – volume: 6 start-page: 429 issue: 5 year: 2002 ident: 9136_CR20 publication-title: Intelligent Data Analysis doi: 10.3233/IDA-2002-6504 contributor: fullname: N. Japkowicz – volume: 4 start-page: 933 year: 2003 ident: 9136_CR13 publication-title: The Journal of Machine Learning Research doi: 10.1162/jmlr.2003.4.6.933 contributor: fullname: Y. Freund – volume: 32 start-page: 229 issue: 2 year: 2010 ident: 9136_CR36 publication-title: Computational Linguistics doi: 10.1162/coli.09-032-R1-08-034 contributor: fullname: S Verberne – volume: 4 start-page: 132 year: 2000 ident: 9136_CR8 publication-title: ACM International Conference Proceedings Series contributor: fullname: E. Charniak – ident: 9136_CR26 – ident: 9136_CR18 doi: 10.3115/1289189.1289206 – ident: 9136_CR43 – ident: 9136_CR4 doi: 10.1145/1102351.1102363 – ident: 9136_CR16 – ident: 9136_CR24 doi: 10.21236/ADA456400 – ident: 9136_CR2 – ident: 9136_CR14 – ident: 9136_CR6 – ident: 9136_CR32 – ident: 9136_CR39 – ident: 9136_CR34 – ident: 9136_CR37 – ident: 9136_CR29 – ident: 9136_CR42 – ident: 9136_CR21 doi: 10.1145/775047.775067 – ident: 9136_CR9 doi: 10.1007/11776420_44 – volume-title: WordNet: An electronic lexical database year: 1998 ident: 9136_CR12 – ident: 9136_CR27 – ident: 9136_CR44 |
SSID | ssj0006449 |
Score | 2.123484 |
Snippet | In this paper, we evaluate a number of machine learning techniques for the task of ranking answers to
why
-questions. We use TF-IDF together with a set of 36... In this paper, we evaluate a number of machine learning techniques for the task of ranking answers to why-questions. We use TF-IDF together with a set of 36... |
SourceID | proquest crossref pascalfrancis springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 107 |
SubjectTerms | Artificial intelligence Computer Science Data Mining and Knowledge Discovery Data Structures and Information Theory Datasets Exact sciences and technology Experiments Genetic algorithms Information and communication sciences Information processing and retrieval Information retrieval Information retrieval. Man machine relationship Information science. Documentation Information Storage and Retrieval Learning Machine learning Natural Language Processing (NLP) Pattern Recognition Questions Ranking Ranking systems Ratings & rankings Regression Regression analysis Relevance Research process. Evaluation Sciences and techniques of general use Studies Support vector machines Tasks Tuning |
Title | Learning to rank for why-question answering |
URI | https://link.springer.com/article/10.1007/s10791-010-9136-6 https://www.proquest.com/docview/858921026 https://search.proquest.com/docview/880654055 https://search.proquest.com/docview/907951670 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB7xuOwK8SiLKC_5sOKwyCixHcc-ImgpCO0FkPYW1S-QkFJEWyH-PeM0CXQFBzhFSsaOPZ_tGXs8MwC_g3ciYy5BBFhGRc4NVYZzygWzyikrtI--w4Pr_O8_ddaLYXJYe3RRPhw3FslqoX7n65bHSzq4bOiUSyoXYRlFT4Zje_mkdzm4atdflPC62mYpSWOwlMaW-VElc9Jo5XE4RsaEWUaLOZXzPytpJXz6a99p9jqs1qomOZmNjQ1Y8GUH1po0DqSe1R34-S4mYQf2a08GckhqV6UIXUO92UZkvSOTEYkZ3wkSkef7F1p1ItKi9HuuavsFt_3ezemA1hkXqEXEJhR3Wwiq8MOQprnUQnnLnBGZs9qZwI3UQTqbCY6Kk1E8NTbNvQjBm2ToOSovW7BUjkq_DcQw7ziqF56FIIzKtRbM2cTmCQv4UnfhT8P54nEWWKN4C6EcmVYg04rItEJ24WAOm7ZEjCYoZYK17TZgFfUkHBcqUzruaLE4ab_i7IkmkWHpR1MkiXZl1Fmzz0k0tiVLZZ504aiB-O0fnzZ550vUu_BjdlgdrwTtwdLkaer3YXHspgf18I7Pi5vz_isp0fS3 |
link.rule.ids | 315,782,786,27933,27934,41073,42142,48344,48347,48357,49649,49652,49662,52153 |
linkProvider | Springer Nature |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7xGAAhHgVEgYIHxACylMSOY48VUIp4LBSJLapfMLUVbYX495zTpFAEA6zJxXHus33nnO87gGPvLE8TGyECSUp5xjSVmjHKeGKklYYrF3KH2w_Z_ZO8uAw0OazKhSlOu1chyWKl_pLsloVTOrhuqJgJKuZhkSvBcSgvNq87V63pAowmXhX7LCloYEupgpk_NTJjjlYH3SFqxk9KWsz4nN_CpIX1aa3_q98bsFY6m6Q5GR2bMOd6NVivCjmQcl7XYOULK2ENGmUuAzkhZbJSAK-S3ppysj6TUZ-Emu8EhcjbyzstviLIov17K1rbhsfWZee8TcuaC9QgZiOK-y2Elbuuj-NMKC6dSazmqTXKas-0UF5Yk3KGrpOWLNYmzhz33umo6xi6Lzuw0Ov33C4QnTjL0MFwifdcy0wpnlgTmSxKPF5UdTitVJ8PJtQa-SeJclBajkrLg9JyUYfDGXCmTwQ-QSEibG2_Qisvp-Ewl6lUYU-Lj5PpXZw_ISjS7bn-GEVCZBm91vR3EYV9SWORRXU4qyD-fMevXd77k_QRLLU7d7f57fX9zT4sT35dhwNCB7Aweh27BswP7fiwHOsfKcr3GQ |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxEB4VkCoQAhpATSmpD4hDK4vdtddrn6qoJEoLipBaJG6r-AWnTUQSof57xvsICYID4ro79trz-THe8XwDcOKd5WliI0QgSSnPmKZSM0YZT4y00nDlQuzw4G82vJHnvUCT87OJhSlvuzcuySqmIbA0FbOzifVnS4FvWbixg2uIipmgYg02OD7Dgb7R7f0ZXC4WY9zuVXnmkoIG5pTGsflSJStb0_ZkNEUt-Sq9xYr9-cxlWu5E_d1392EPdmojlHSrUfMJPriiBbtNggdSz_cWbC2xFbbguI5xIKekDmIKoDbS-wuu1lsyG5OQC56gEHm4-0_LHgVZ3BcfytoO4Lrf-_drQOtcDNQgljOK5zCEm7uRj-NMKC6dSazmqTXKas-0UF5Yk3KGJpWWLNYmzhz33ulo5BiaNYewXowL9xmITpxlaHi4xHuuZaYUT6yJTBYlHh-qNnxvYMgnFeVG_kSuHJSWo9LyoLRctKGzAtSiROAZFCLC2o4a5PJ6ek5zmUoVzrpYnCze4rwKzpJR4cZzFAkeZ7Rm09dFFLYljUUWteFHA_fTN15t8pc3SX-Dj1fn_fzy9_DiCDarP9rh3tBXWJ_dz90xrE3tvFMP-0elRf_c |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+to+rank+for+why-question+answering&rft.jtitle=Information+retrieval+%28Boston%29&rft.au=Verberne%2C+Suzan&rft.au=van+Halteren%2C+Hans&rft.au=Theijssen%2C+Daphne&rft.au=Raaijmakers%2C+Stephan&rft.date=2011-04-01&rft.pub=Springer+Netherlands&rft.issn=1386-4564&rft.eissn=1573-7659&rft.volume=14&rft.issue=2&rft.spage=107&rft.epage=132&rft_id=info:doi/10.1007%2Fs10791-010-9136-6&rft.externalDocID=10_1007_s10791_010_9136_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-4564&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-4564&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-4564&client=summon |