Biowaste‐Derived, Self‐Organized Arrays of High‐Performance 2D Carbon Emitters for Organic Light‐Emitting Diodes

Low‐cost flexible organic light‐emitting diodes (OLEDs) with nanoemitter material from waste open up new opportunities for sustainable technology. The common emitter materials generated from waste are carbon dots (CDs). However, these have poor luminescent properties. Further solid‐state emission qu...

Full description

Saved in:
Bibliographic Details
Published in:Advanced materials (Weinheim) Vol. 32; no. 10; pp. e1906176 - n/a
Main Authors: Singh, Amandeep, Wolff, Annalena, Yambem, Soniya D., Esmaeili, Mostafa, Riches, James D., Shahbazi, Mahboobeh, Feron, Krishna, Eftekhari, Ehsan, Ostrikov, Kostya (Ken), Li, Qin, Sonar, Prashant
Format: Journal Article
Language:English
Published: Germany Wiley Subscription Services, Inc 01-03-2020
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Low‐cost flexible organic light‐emitting diodes (OLEDs) with nanoemitter material from waste open up new opportunities for sustainable technology. The common emitter materials generated from waste are carbon dots (CDs). However, these have poor luminescent properties. Further solid‐state emission quenching makes application in display devices challenging. Here, flexible and rigid OLED devices are demonstrated using self‐assembled 2D arrays of CDs derived from waste material, viz., human hair. High‐performance CDs with a quantum yield (QY) of 87%, self‐assembled into 2D arrays, are achieved by improving the crystallinity and decreasing the CDs' size distribution. The CD island array exhibits ultrahigh hole mobility (≈10−1 cm2 V−1 s−1) and significant reduction in solid‐state emission quenching compared to pristine CDs; hence, it is used here as an emitting layer in both indium tin oxide (ITO)‐coated glass and ITO‐coated flexible poly(ethylene terephthalate) (PET) substrate OLED devices, without any hole‐injection layer. The flexible OLED device exhibits a stable, voltage‐independent blue/cyan emission with a record maximum luminescence of 350 cd m−2, whereas the OLED device based on the rigid glass substrate shows a maximum luminescence of 700 cd m−2. This work sets up a platform to develop next‐generation OLED displays using CD emitters derived from the biowaste material. Carbon‐based nanomaterial derived from human‐hair biowaste is used as an emitter for organic light‐emitting diodes (OLEDs) and sets up a new platform for display industries seeking sustainable technology. These flexible and rigid substrate OLEDs demonstrate ways to accomplish low‐cost, stable and voltage‐independent emission and high luminescence, powered by a greater quantum yield (QY) in the solid state, resulting from controlled nanoparticle self‐assembly.
AbstractList Low-cost flexible organic light-emitting diodes (OLEDs) with nanoemitter material from waste open up new opportunities for sustainable technology. The common emitter materials generated from waste are carbon dots (CDs). However, these have poor luminescent properties. Further solid-state emission quenching makes application in display devices challenging. Here, flexible and rigid OLED devices are demonstrated using self-assembled 2D arrays of CDs derived from waste material, viz., human hair. High-performance CDs with a quantum yield (QY) of 87%, self-assembled into 2D arrays, are achieved by improving the crystallinity and decreasing the CDs' size distribution. The CD island array exhibits ultrahigh hole mobility (≈10 cm V s ) and significant reduction in solid-state emission quenching compared to pristine CDs; hence, it is used here as an emitting layer in both indium tin oxide (ITO)-coated glass and ITO-coated flexible poly(ethylene terephthalate) (PET) substrate OLED devices, without any hole-injection layer. The flexible OLED device exhibits a stable, voltage-independent blue/cyan emission with a record maximum luminescence of 350 cd m , whereas the OLED device based on the rigid glass substrate shows a maximum luminescence of 700 cd m . This work sets up a platform to develop next-generation OLED displays using CD emitters derived from the biowaste material.
Low‐cost flexible organic light‐emitting diodes (OLEDs) with nanoemitter material from waste open up new opportunities for sustainable technology. The common emitter materials generated from waste are carbon dots (CDs). However, these have poor luminescent properties. Further solid‐state emission quenching makes application in display devices challenging. Here, flexible and rigid OLED devices are demonstrated using self‐assembled 2D arrays of CDs derived from waste material, viz., human hair. High‐performance CDs with a quantum yield (QY) of 87%, self‐assembled into 2D arrays, are achieved by improving the crystallinity and decreasing the CDs' size distribution. The CD island array exhibits ultrahigh hole mobility (≈10−1 cm2 V−1 s−1) and significant reduction in solid‐state emission quenching compared to pristine CDs; hence, it is used here as an emitting layer in both indium tin oxide (ITO)‐coated glass and ITO‐coated flexible poly(ethylene terephthalate) (PET) substrate OLED devices, without any hole‐injection layer. The flexible OLED device exhibits a stable, voltage‐independent blue/cyan emission with a record maximum luminescence of 350 cd m−2, whereas the OLED device based on the rigid glass substrate shows a maximum luminescence of 700 cd m−2. This work sets up a platform to develop next‐generation OLED displays using CD emitters derived from the biowaste material. Carbon‐based nanomaterial derived from human‐hair biowaste is used as an emitter for organic light‐emitting diodes (OLEDs) and sets up a new platform for display industries seeking sustainable technology. These flexible and rigid substrate OLEDs demonstrate ways to accomplish low‐cost, stable and voltage‐independent emission and high luminescence, powered by a greater quantum yield (QY) in the solid state, resulting from controlled nanoparticle self‐assembly.
Low‐cost flexible organic light‐emitting diodes (OLEDs) with nanoemitter material from waste open up new opportunities for sustainable technology. The common emitter materials generated from waste are carbon dots (CDs). However, these have poor luminescent properties. Further solid‐state emission quenching makes application in display devices challenging. Here, flexible and rigid OLED devices are demonstrated using self‐assembled 2D arrays of CDs derived from waste material, viz., human hair. High‐performance CDs with a quantum yield (QY) of 87%, self‐assembled into 2D arrays, are achieved by improving the crystallinity and decreasing the CDs' size distribution. The CD island array exhibits ultrahigh hole mobility (≈10 −1 cm 2 V −1 s −1 ) and significant reduction in solid‐state emission quenching compared to pristine CDs; hence, it is used here as an emitting layer in both indium tin oxide (ITO)‐coated glass and ITO‐coated flexible poly(ethylene terephthalate) (PET) substrate OLED devices, without any hole‐injection layer. The flexible OLED device exhibits a stable, voltage‐independent blue/cyan emission with a record maximum luminescence of 350 cd m −2 , whereas the OLED device based on the rigid glass substrate shows a maximum luminescence of 700 cd m −2 . This work sets up a platform to develop next‐generation OLED displays using CD emitters derived from the biowaste material.
Low‐cost flexible organic light‐emitting diodes (OLEDs) with nanoemitter material from waste open up new opportunities for sustainable technology. The common emitter materials generated from waste are carbon dots (CDs). However, these have poor luminescent properties. Further solid‐state emission quenching makes application in display devices challenging. Here, flexible and rigid OLED devices are demonstrated using self‐assembled 2D arrays of CDs derived from waste material, viz., human hair. High‐performance CDs with a quantum yield (QY) of 87%, self‐assembled into 2D arrays, are achieved by improving the crystallinity and decreasing the CDs' size distribution. The CD island array exhibits ultrahigh hole mobility (≈10−1 cm2 V−1 s−1) and significant reduction in solid‐state emission quenching compared to pristine CDs; hence, it is used here as an emitting layer in both indium tin oxide (ITO)‐coated glass and ITO‐coated flexible poly(ethylene terephthalate) (PET) substrate OLED devices, without any hole‐injection layer. The flexible OLED device exhibits a stable, voltage‐independent blue/cyan emission with a record maximum luminescence of 350 cd m−2, whereas the OLED device based on the rigid glass substrate shows a maximum luminescence of 700 cd m−2. This work sets up a platform to develop next‐generation OLED displays using CD emitters derived from the biowaste material.
Author Ostrikov, Kostya (Ken)
Sonar, Prashant
Shahbazi, Mahboobeh
Li, Qin
Yambem, Soniya D.
Feron, Krishna
Esmaeili, Mostafa
Riches, James D.
Eftekhari, Ehsan
Wolff, Annalena
Singh, Amandeep
Author_xml – sequence: 1
  givenname: Amandeep
  surname: Singh
  fullname: Singh, Amandeep
  organization: Queensland University of Technology
– sequence: 2
  givenname: Annalena
  surname: Wolff
  fullname: Wolff, Annalena
  organization: Queensland University of Technology
– sequence: 3
  givenname: Soniya D.
  surname: Yambem
  fullname: Yambem, Soniya D.
  organization: Queensland University of Technology
– sequence: 4
  givenname: Mostafa
  surname: Esmaeili
  fullname: Esmaeili, Mostafa
  organization: Griffith University
– sequence: 5
  givenname: James D.
  surname: Riches
  fullname: Riches, James D.
  organization: Queensland University of Technology
– sequence: 6
  givenname: Mahboobeh
  surname: Shahbazi
  fullname: Shahbazi, Mahboobeh
  organization: Queensland University of Technology
– sequence: 7
  givenname: Krishna
  surname: Feron
  fullname: Feron, Krishna
  organization: University of Newcastle
– sequence: 8
  givenname: Ehsan
  surname: Eftekhari
  fullname: Eftekhari, Ehsan
  organization: Griffith University
– sequence: 9
  givenname: Kostya (Ken)
  surname: Ostrikov
  fullname: Ostrikov, Kostya (Ken)
  organization: Queensland University of Technology
– sequence: 10
  givenname: Qin
  surname: Li
  fullname: Li, Qin
  email: qin.li@griffith.edu.au
  organization: Griffith University
– sequence: 11
  givenname: Prashant
  orcidid: 0000-0002-1119-4897
  surname: Sonar
  fullname: Sonar, Prashant
  email: sonar.prashant@qut.edu.au
  organization: Queensland University of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31984568$$D View this record in MEDLINE/PubMed
BookMark eNqFkbtOwzAYhS0EgnJZGZElFgZSbMdx4rG03KQikIA5cpw_xSiJwU6BMvEIPCNPgku5SCxMtnW-88nSWUfLrW0BoW1K-pQQdqDKRvUZoZIImool1KMJoxEnMllGPSLjJJKCZ2to3fs7QogURKyitZjKjCci66HnQ2OflO_g_fVtBM48QrmPr6CuwvvCTVRrXqDEA-fUzGNb4VMzuQ3RJbjKuka1GjAb4aFyhW3xUWO6DpzHIcOLtsbj0OhC5TM07QSPjC3Bb6KVStUetr7ODXRzfHQ9PI3GFydnw8E40jxhImK0koUGIksZi3AjjBUxF4qA4GlRacXTRKRxIoBmlBcBVxnTsiRUFxWnPN5AewvvvbMPU_Bd3hivoa5VC3bqcxZsTPKMsoDu_kHv7NS14XeBSnnMY8rnwv6C0s5676DK751plJvllOTzTfL5JvnPJqGw86WdFg2UP_j3CAGQC-DJ1DD7R5cPRueDX_kHUOudOA
CitedBy_id crossref_primary_10_1039_D1NA00576F
crossref_primary_10_1016_j_mtchem_2020_100361
crossref_primary_10_1002_admt_202100583
crossref_primary_10_1002_adom_202000742
crossref_primary_10_1063_5_0174642
crossref_primary_10_1039_D3GC03827K
crossref_primary_10_1016_j_cej_2021_132230
crossref_primary_10_3390_ijms231911071
crossref_primary_10_1021_acsami_2c15251
crossref_primary_10_1002_adom_202300075
crossref_primary_10_1016_S1872_5805_21_60042_2
crossref_primary_10_1021_acsami_2c21073
crossref_primary_10_1039_D1TC04941K
crossref_primary_10_1021_acssuschemeng_0c09133
crossref_primary_10_1063_5_0143219
crossref_primary_10_1021_acsami_3c00036
crossref_primary_10_1002_adma_202204804
crossref_primary_10_3390_coatings11010005
crossref_primary_10_1002_admt_202201390
crossref_primary_10_1039_D0TC00102C
crossref_primary_10_1016_j_foodchem_2023_137127
crossref_primary_10_1016_j_apt_2022_103560
crossref_primary_10_1016_j_jlumin_2024_120560
crossref_primary_10_1039_D1TA00036E
crossref_primary_10_1021_acsnano_4c03098
crossref_primary_10_1021_acssuschemeng_3c00371
crossref_primary_10_1007_s40097_022_00501_5
crossref_primary_10_1071_CH23008
Cites_doi 10.1016/j.carbon.2014.05.081
10.1038/nchem.1651
10.1016/j.carbon.2013.07.095
10.1039/C8NR01834K
10.1039/C5NR07042B
10.1038/nature04414
10.1002/adom.201801599
10.1038/nature12739
10.1038/ncomms6045
10.1038/nmat1611
10.1002/adma.201604436
10.1016/j.snb.2019.05.035
10.1038/ncomms7420
10.1039/C7RE00197E
10.1002/anie.201001451
10.3998/ark.5550190.0002.116
10.1039/C4TC00636D
10.1039/C8NA00329G
10.1038/nmat3178
10.1038/nature12401
10.1038/nmat4293
10.1039/C7CC08876K
10.1038/s41467-018-04635-5
10.1002/adhm.201601419
ContentType Journal Article
Copyright 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Copyright_xml – notice: 2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
– notice: 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DBID NPM
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.201906176
DatabaseName PubMed
CrossRef
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle PubMed
CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed

CrossRef
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 10_1002_adma_201906176
31984568
ADMA201906176
Genre article
Journal Article
GrantInformation_xml – fundername: Science and Engineering Faculty
– fundername: Australian Research Council
  funderid: FT130101337; ARC DP160104089
– fundername: QUT
  funderid: QUT/322120‐0301/07
– fundername: Australian Research Council
  grantid: FT130101337
– fundername: QUT
  grantid: QUT/322120-0301/07
– fundername: Australian Research Council
  grantid: ARC DP160104089
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AAYOK
ABEML
ABTAH
ACBWZ
ACSCC
AFFNX
ASPBG
AVWKF
AZFZN
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
NPM
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
AAMNL
AAYXX
CITATION
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c4526-21f9bce09d9369bc022b346a0e647bfca47567356e1814b21fa82c9d01cbf4143
IEDL.DBID 33P
ISSN 0935-9648
IngestDate Fri Aug 16 01:22:41 EDT 2024
Tue Nov 19 05:27:23 EST 2024
Thu Nov 21 21:20:06 EST 2024
Sat Sep 28 08:29:31 EDT 2024
Sat Aug 24 01:08:10 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords carbon dots
biowaste
charge carrier mobility
organic light emitting diodes
emitters
Language English
License 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4526-21f9bce09d9369bc022b346a0e647bfca47567356e1814b21fa82c9d01cbf4143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-1119-4897
OpenAccessLink https://eprints.qut.edu.au/198266/1/49118208.pdf
PMID 31984568
PQID 2374343144
PQPubID 2045203
PageCount 7
ParticipantIDs proquest_miscellaneous_2346294812
proquest_journals_2374343144
crossref_primary_10_1002_adma_201906176
pubmed_primary_31984568
wiley_primary_10_1002_adma_201906176_ADMA201906176
PublicationCentury 2000
PublicationDate 2020-03-01
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2020
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 7
2017; 6
2015; 14
2006; 439
2015; 6
2019; 1
2013; 500
2013; 64
2006; 5
2017; 29
2007; 75
2013; 5
2012; 11
2018; 9
2014; 5
2018; 3
2014; 505
2014; 2
2011; 50
2019; 295
2018; 10
2018; 54
2016; 8
2014; 77
2001; 2001
e_1_2_4_21_1
e_1_2_4_20_1
e_1_2_4_23_1
e_1_2_4_22_1
e_1_2_4_25_1
Lu C. K. (e_1_2_4_24_1) 2007; 75
e_1_2_4_1_1
e_1_2_4_3_1
e_1_2_4_2_1
e_1_2_4_5_1
e_1_2_4_4_1
e_1_2_4_7_1
e_1_2_4_6_1
e_1_2_4_9_1
e_1_2_4_8_1
e_1_2_4_10_1
e_1_2_4_11_1
e_1_2_4_12_1
e_1_2_4_13_1
e_1_2_4_14_1
e_1_2_4_15_1
e_1_2_4_16_1
e_1_2_4_18_1
e_1_2_4_17_1
e_1_2_4_19_1
References_xml – volume: 439
  start-page: 55
  year: 2006
  publication-title: Nature
– volume: 3
  start-page: 164
  year: 2018
  publication-title: React. Chem. Eng.
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 500
  start-page: 59
  year: 2013
  publication-title: Nature
– volume: 5
  start-page: 265
  year: 2006
  publication-title: Nat. Mater.
– volume: 50
  start-page: 360
  year: 2011
  publication-title: Angew. Chem., Int. Ed.
– volume: 6
  year: 2017
  publication-title: Adv. Healthcare Mater.
– volume: 5
  start-page: 466
  year: 2013
  publication-title: Nat. Chem.
– volume: 2001
  start-page: 242
  year: 2001
  publication-title: Arkivoc
– volume: 5
  start-page: 5045
  year: 2014
  publication-title: Nat. Commun.
– volume: 295
  start-page: 12
  year: 2019
  publication-title: Sens. Actuators, B
– volume: 10
  year: 2018
  publication-title: Nanoscale
– volume: 8
  start-page: 7449
  year: 2016
  publication-title: Nanoscale
– volume: 54
  start-page: 5960
  year: 2018
  publication-title: Chem. Commun.
– volume: 77
  start-page: 775
  year: 2014
  publication-title: Carbon
– volume: 1
  start-page: 1413
  year: 2019
  publication-title: Nanoscale Adv.
– volume: 9
  start-page: 2249
  year: 2018
  publication-title: Nat. Commun.
– volume: 505
  start-page: 73
  year: 2014
  publication-title: Nature
– volume: 6
  start-page: 6420
  year: 2015
  publication-title: Nat. Commun.
– volume: 11
  start-page: 131
  year: 2012
  publication-title: Nat. Mater.
– volume: 75
  start-page: 2
  year: 2007
  publication-title: Phys. Rev. B
– volume: 64
  start-page: 424
  year: 2013
  publication-title: Carbon
– volume: 14
  start-page: 833
  year: 2015
  publication-title: Nat. Mater.
– volume: 2
  start-page: 6477
  year: 2014
  publication-title: J. Mater. Chem. C
– volume: 7
  year: 2019
  publication-title: Adv. Opt. Mater.
– ident: e_1_2_4_19_1
  doi: 10.1016/j.carbon.2014.05.081
– ident: e_1_2_4_9_1
  doi: 10.1038/nchem.1651
– ident: e_1_2_4_2_1
  doi: 10.1016/j.carbon.2013.07.095
– ident: e_1_2_4_8_1
  doi: 10.1039/C8NR01834K
– ident: e_1_2_4_21_1
  doi: 10.1039/C5NR07042B
– ident: e_1_2_4_11_1
  doi: 10.1038/nature04414
– ident: e_1_2_4_5_1
  doi: 10.1002/adom.201801599
– ident: e_1_2_4_12_1
  doi: 10.1038/nature12739
– ident: e_1_2_4_15_1
  doi: 10.1038/ncomms6045
– ident: e_1_2_4_23_1
  doi: 10.1038/nmat1611
– ident: e_1_2_4_25_1
  doi: 10.1002/adma.201604436
– ident: e_1_2_4_6_1
  doi: 10.1016/j.snb.2019.05.035
– ident: e_1_2_4_13_1
  doi: 10.1038/ncomms7420
– ident: e_1_2_4_22_1
  doi: 10.1039/C7RE00197E
– ident: e_1_2_4_16_1
  doi: 10.1002/anie.201001451
– ident: e_1_2_4_20_1
  doi: 10.3998/ark.5550190.0002.116
– ident: e_1_2_4_3_1
  doi: 10.1039/C4TC00636D
– ident: e_1_2_4_7_1
  doi: 10.1039/C8NA00329G
– ident: e_1_2_4_14_1
  doi: 10.1038/nmat3178
– volume: 75
  start-page: 2
  year: 2007
  ident: e_1_2_4_24_1
  publication-title: Phys. Rev. B
  contributor:
    fullname: Lu C. K.
– ident: e_1_2_4_1_1
  doi: 10.1038/nature12401
– ident: e_1_2_4_10_1
  doi: 10.1038/nmat4293
– ident: e_1_2_4_17_1
  doi: 10.1039/C7CC08876K
– ident: e_1_2_4_4_1
  doi: 10.1038/s41467-018-04635-5
– ident: e_1_2_4_18_1
  doi: 10.1002/adhm.201601419
SSID ssj0009606
Score 2.5057528
Snippet Low‐cost flexible organic light‐emitting diodes (OLEDs) with nanoemitter material from waste open up new opportunities for sustainable technology. The common...
Low-cost flexible organic light-emitting diodes (OLEDs) with nanoemitter material from waste open up new opportunities for sustainable technology. The common...
SourceID proquest
crossref
pubmed
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage e1906176
SubjectTerms Arrays
biowaste
Carbon dots
charge carrier mobility
Display devices
Emitters
Glass substrates
Hole mobility
Human performance
Human wastes
Indium tin oxides
Luminescence
Materials science
Optical properties
Organic light emitting diodes
Polyethylene terephthalate
Quenching
Size distribution
Title Biowaste‐Derived, Self‐Organized Arrays of High‐Performance 2D Carbon Emitters for Organic Light‐Emitting Diodes
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201906176
https://www.ncbi.nlm.nih.gov/pubmed/31984568
https://www.proquest.com/docview/2374343144
https://search.proquest.com/docview/2346294812
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4Bp3IAWvoIj8pISFwakXW8iX1cyCIOgJAAiVs0sR1ppTapNl0eN34Cv5FfwtjZzXbFoVK5xRlPbHkynhnb8xlgnzuUfS16YaqMCgVKDLHs89BIG2meYmqNW4c8vUovbmU2dDA5XRZ_iw_RLbg5zfDztVNwLJrDOWgoGo8bRAaNjLDD3KZQwedwxJdz1N3EX67pNvtClQg5Q22M-OEi-6JVeuNqLnqu3vScrL-_0xuwNnU72aD9Tz7Ckq0-wepfYISb8HA0qu-RhP7y9JzRuztrfrAr-7Ok8jRj0xr6whgfG1aXzJ0QIdLlPPOA8Ywd47ioKzb8NfK4nYxorOXW7MwtBBCLJ1KbLBvVxjaf4eZkeH18Gk7vZQi1u5A85L1SFdpGJN04oSdyA4pYJBjZRKRFqVGk_SSN-4kl90EUVB0l18pEPV2Ughy0L7BS1ZX9BkzJ2NBQFJERKMpeH42iCVdRdIyopBYBHMzkkv9u4TfyFmiZ524s824sA9iZiS2fqmGT8zh1mbMUNAaw15FJgdyuCFa2nrg6IuEOs4YH8LUVd9cUzU-SPEwZAPdS_Ucf8kF2PuhKW__DtA0fuIvo_Sm3HVj5M57YXVhuzOS7_7VfAe-e-uc
link.rule.ids 315,782,786,1408,27934,27935,46065,46489
linkProvider Wiley-Blackwell
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB7RcgAOLb8ltICRkLgQNet4Hfu4bbZaxLaq1CJxixzbkVaiCdpl-3PrI_CMPAkzzm62Kw5IiFuS8cSWx-MZjz2fAd5zQtm3ohdn2ulYGGViU_V57JRPLM9M5h3FIUdn2clXlQ8JJmewzIVp8SG6gBtpRpivScEpIL2_Qg01LgAHoUVDKyw34L6QQtHATtPTFe6uDNdr0nZfrJG-xG1M-P46_7pd-sPZXPddg_E52v4PzX4MWwvPkw3aofIE7vn6KTy6g0f4DK4PJs2VQbn_uv2Z47dL7z6yM_-twvdF0qZ3-IepuZmxpmJ0SARJp6vkA8ZzdmimZVOz4cUkQHcypLGW27IxxQKQJRCxTpZPGudnz-HL0fD8cBQvrmaILd1JHvNepUvrExRwKvEJPYEyFdIkXoqsrKwRWV9maV969CBEicWN4la7pGfLSqCP9gI266b2L4FplTrsijJxwoiq1zdO45yrcYFsjFZWRPBhKZjie4vAUbRYy7ygviy6voxgbym3YqGJs4KnGSXP4roxgncdGXWINkZM7Zs5lRGSE2wNj2CnlXdXFU5RCp1MFQEPYv1LG4pBfjzo3l79C9NbeDA6Px4X408nn3fhIacFfjj0tgebP6Zz_xo2Zm7-Jozz38uh_xA
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bT9swFD7iIiH2MBiDLeMyIyHtZVFTx3Xsx460AnFRJUDiLXJsR6q0Jahdt_HGT-A38kt27LTpKh4mwVsc-8SWT47P58v5DHBEHcu-Zu0wkUaGTAkVqqJDQyNspGmiEmvcOuTJVXJ5K9Keo8lpovhrfohmwc1Zhh-vnYHfmaI1Jw1VxvMGoUNDJ8yXYZUhFneH-uJ4MKfd5f52TbfbF0rOxIy2MaKtRflFt_QMay5CV-97-huvb_UmvJ3iTtKtf5R3sGTLLXjzDxvhe_jzbVj9Vqj1p4fHFN_9suYrubLfC0xPQzatwS-M1P2YVAVxR0QwazAPPSA0JcdqlFcl6f0YeuJOgnmkltbk3K0EoIjPxDpJOqyMHW_DTb93fXwSTi9mCLW7kTyk7ULm2kao3pjjE-KAPGZcRZazJC-0YkmHJ3GHW8QPLMfiSlAtTdTWecEQoe3ASlmV9iMQKWKDXZFHhilWtDvKSBxxJU6PlZJCswC-zPSS3dX8G1nNtEwz15dZ05cB7M3Ulk3tcJzROHGhszhrDOCwyUYLctsiqrTVxJVhnDrSGhrAh1rdTVU4QAmEmCIA6rX6nzZk3fSi26Q-vUToM6wN0n52fnp5tgvr1M3u_Ym3PVj5OZrYfVgem8mB_8v_ArFt_bY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Biowaste%E2%80%90Derived%2C+Self%E2%80%90Organized+Arrays+of+High%E2%80%90Performance+2D+Carbon+Emitters+for+Organic+Light%E2%80%90Emitting+Diodes&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Singh%2C+Amandeep&rft.au=Wolff%2C+Annalena&rft.au=Yambem%2C+Soniya+D.&rft.au=Esmaeili%2C+Mostafa&rft.date=2020-03-01&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=32&rft.issue=10&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fadma.201906176&rft.externalDBID=10.1002%252Fadma.201906176&rft.externalDocID=ADMA201906176
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon