Bioenergy from Coastal bermudagrass receiving subsurface drip irrigation with advance-treated swine wastewater
Coastal bermudagrass ( Cynodon dactylon L.) may be a potentially important source of bio-based energy in the southern US due to its vast acreage. It is often produced as part of a waste management plan with varying nutrient composition and energy characteristics on fields irrigated with livestock wa...
Saved in:
Published in: | Bioresource technology Vol. 100; no. 13; pp. 3285 - 3292 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Kidlington
Elsevier Ltd
01-07-2009
[New York, NY]: Elsevier Ltd Elsevier |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Coastal bermudagrass (
Cynodon dactylon L.) may be a potentially important source of bio-based energy in the southern US due to its vast acreage. It is often produced as part of a waste management plan with varying nutrient composition and energy characteristics on fields irrigated with livestock wastewater. The objective of this study was to determine the effect of subsurface drip irrigation with treated swine wastewater on both the quantity and quality of bermudagrass bioenergy. The treated wastewater was recycled from an advanced treatment system and used for irrigation of bermudagrass in two crop seasons. The experiment had nine water and drip line spacing treatments arrayed in a randomized complete block-design with four replicates. The bermudagrass was analyzed for calorific and mineral contents. Bermudagrass energy yields for 2004 and 2005 ranged from 127.4 to 251.4
MJ ha
−1. Compared to irrigation with commercial nitrogen fertilizer, the least biomass energy density was associated with bermudagrass receiving treated swine wastewater. Yet, in 2004 the wastewater irrigated bermudagrass had greater hay yields leading to greater energy yield per ha. This decrease in energy density of wastewater irrigated bermudagrass was associated with increased concentrations of K, Ca, and Na. After thermal conversion, these compounds are known to remain in the ash portion thereby decreasing the energy density. Nonetheless, the loss of energy density using treated effluent via SDI may be offset by the positive influence of these three elements for their catalytic properties in downstream thermal conversion processes such as promoting a lesser char yield and greater combustible gas formation. |
---|---|
Bibliography: | http://hdl.handle.net/10113/30374 http://dx.doi.org/10.1016/j.biortech.2009.01.070 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0960-8524 1873-2976 |
DOI: | 10.1016/j.biortech.2009.01.070 |