Mixed effect machine learning: A framework for predicting longitudinal change in hemoglobin A1c

[Display omitted] •Integrate random effects into standard machine learning algorithms.•Framework for longitudinal supervised learning with common machine learning models.•Developed interpretable tree based mixed-effect machine learning models.•Method prospectively identifies patients at risk for fut...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedical informatics Vol. 89; pp. 56 - 67
Main Authors: Ngufor, Che, Van Houten, Holly, Caffo, Brian S., Shah, Nilay D., McCoy, Rozalina G.
Format: Journal Article
Language:English
Published: United States Elsevier Inc 01-01-2019
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract [Display omitted] •Integrate random effects into standard machine learning algorithms.•Framework for longitudinal supervised learning with common machine learning models.•Developed interpretable tree based mixed-effect machine learning models.•Method prospectively identifies patients at risk for future glycemic deterioration. Accurate and reliable prediction of clinical progression over time has the potential to improve the outcomes of chronic disease. The classical approach to analyzing longitudinal data is to use (generalized) linear mixed-effect models (GLMM). However, linear parametric models are predicated on assumptions, which are often difficult to verify. In contrast, data-driven machine learning methods can be applied to derive insight from the raw data without a priori assumptions. However, the underlying theory of most machine learning algorithms assume that the data is independent and identically distributed, making them inefficient for longitudinal supervised learning. In this study, we formulate an analytic framework, which integrates the random-effects structure of GLMM into non-linear machine learning models capable of exploiting temporal heterogeneous effects, sparse and varying-length patient characteristics inherent in longitudinal data. We applied the derived mixed-effect machine learning (MEml) framework to predict longitudinal change in glycemic control measured by hemoglobin A1c (HbA1c) among well controlled adults with type 2 diabetes. Results show that MEml is competitive with traditional GLMM, but substantially outperformed standard machine learning models that do not account for random-effects. Specifically, the accuracy of MEml in predicting glycemic change at the 1st, 2nd, 3rd, and 4th clinical visits in advanced was 1.04, 1.08, 1.11, and 1.14 times that of the gradient boosted model respectively, with similar results for the other methods. To further demonstrate the general applicability of MEml, a series of experiments were performed using real publicly available and synthetic data sets for accuracy and robustness. These experiments reinforced the superiority of MEml over the other methods. Overall, results from this study highlight the importance of modeling random-effects in machine learning approaches based on longitudinal data. Our MEml method is highly resistant to correlated data, readily accounts for random-effects, and predicts change of a longitudinal clinical outcome in real-world clinical settings with high accuracy.
AbstractList Accurate and reliable prediction of clinical progression over time has the potential to improve the outcomes of chronic disease. The classical approach to analyzing longitudinal data is to use (generalized) linear mixed-effect models (GLMM). However, linear parametric models are predicated on assumptions, which are often difficult to verify. In contrast, data-driven machine learning methods can be applied to derive insight from the raw data without a priori assumptions. However, the underlying theory of most machine learning algorithms assume that the data is independent and identically distributed, making them inefficient for longitudinal supervised learning. In this study, we formulate an analytic framework, which integrates the random-effects structure of GLMM into non-linear machine learning models capable of exploiting temporal heterogeneous effects, sparse and varying-length patient characteristics inherent in longitudinal data. We applied the derived mixed-effect machine learning (MEml) framework to predict longitudinal change in glycemic control measured by hemoglobin A1c (HbA1c) among well controlled adults with type 2 diabetes. Results show that MEml is competitive with traditional GLMM, but substantially outperformed standard machine learning models that do not account for random-effects. Specifically, the accuracy of MEml in predicting glycemic change at the 1st, 2nd, 3rd, and 4th clinical visits in advanced was 1.04, 1.08, 1.11, and 1.14 times that of the gradient boosted model respectively, with similar results for the other methods. To further demonstrate the general applicability of MEml, a series of experiments were performed using real publicly available and synthetic data sets for accuracy and robustness. These experiments reinforced the superiority of MEml over the other methods. Overall, results from this study highlight the importance of modeling random-effects in machine learning approaches based on longitudinal data. Our MEml method is highly resistant to correlated data, readily accounts for random-effects, and predicts change of a longitudinal clinical outcome in real-world clinical settings with high accuracy.
[Display omitted] •Integrate random effects into standard machine learning algorithms.•Framework for longitudinal supervised learning with common machine learning models.•Developed interpretable tree based mixed-effect machine learning models.•Method prospectively identifies patients at risk for future glycemic deterioration. Accurate and reliable prediction of clinical progression over time has the potential to improve the outcomes of chronic disease. The classical approach to analyzing longitudinal data is to use (generalized) linear mixed-effect models (GLMM). However, linear parametric models are predicated on assumptions, which are often difficult to verify. In contrast, data-driven machine learning methods can be applied to derive insight from the raw data without a priori assumptions. However, the underlying theory of most machine learning algorithms assume that the data is independent and identically distributed, making them inefficient for longitudinal supervised learning. In this study, we formulate an analytic framework, which integrates the random-effects structure of GLMM into non-linear machine learning models capable of exploiting temporal heterogeneous effects, sparse and varying-length patient characteristics inherent in longitudinal data. We applied the derived mixed-effect machine learning (MEml) framework to predict longitudinal change in glycemic control measured by hemoglobin A1c (HbA1c) among well controlled adults with type 2 diabetes. Results show that MEml is competitive with traditional GLMM, but substantially outperformed standard machine learning models that do not account for random-effects. Specifically, the accuracy of MEml in predicting glycemic change at the 1st, 2nd, 3rd, and 4th clinical visits in advanced was 1.04, 1.08, 1.11, and 1.14 times that of the gradient boosted model respectively, with similar results for the other methods. To further demonstrate the general applicability of MEml, a series of experiments were performed using real publicly available and synthetic data sets for accuracy and robustness. These experiments reinforced the superiority of MEml over the other methods. Overall, results from this study highlight the importance of modeling random-effects in machine learning approaches based on longitudinal data. Our MEml method is highly resistant to correlated data, readily accounts for random-effects, and predicts change of a longitudinal clinical outcome in real-world clinical settings with high accuracy.
Author McCoy, Rozalina G.
Caffo, Brian S.
Shah, Nilay D.
Ngufor, Che
Van Houten, Holly
AuthorAffiliation b Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
a Department of Health Sciences Research, Mayo Clinic, Rochester, MN
AuthorAffiliation_xml – name: b Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
– name: a Department of Health Sciences Research, Mayo Clinic, Rochester, MN
Author_xml – sequence: 1
  givenname: Che
  surname: Ngufor
  fullname: Ngufor, Che
  email: Ngufor.Che@mayo.edu
  organization: Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States
– sequence: 2
  givenname: Holly
  surname: Van Houten
  fullname: Van Houten, Holly
  organization: Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States
– sequence: 3
  givenname: Brian S.
  surname: Caffo
  fullname: Caffo, Brian S.
  organization: Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
– sequence: 4
  givenname: Nilay D.
  surname: Shah
  fullname: Shah, Nilay D.
  organization: Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States
– sequence: 5
  givenname: Rozalina G.
  surname: McCoy
  fullname: McCoy, Rozalina G.
  organization: Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30189255$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFP3DAQha1qq-5C-wO4VD5ySWontpOAhLRCtEUCcYGz5TjjrLeJvdhZoP8erxZW9NKTR5r3nkfvO0Iz5x0gdEJJTgkVP9b5urV5QWidkyYnhH5CC8rLIiOsJrPDLNgcHcW4TgLKufiC5mWyNAXnCyRv7Qt0GIwBPeFR6ZV1gAdQwVnXn-ElNkGN8OzDH2x8wJsAndVT2uHBu95O2846NWC9Uq4HbB1ewej7wbdpXFL9FX02aojw7e09Rg8_r-4vf2c3d7-uL5c3mWacTllXlw3hgtZM1UKQSrS10EBLAaItCsa5UUrX2rQtEa3QhrHKUFoy09RVx0VZHqOLfe5m247QaXBTUIPcBDuq8Fd6ZeW_G2dXsvdPUrCG84qkgNO3gOAftxAnOdqoYRiUA7-NskiNFxUrqEhSupfq4GMMYA7fUCJ3YORaJjByB0aSRqbek-f7x_sOjncSSXC-F0Bq6clCkFFbcDrVHRIa2Xn7n_hX6Y2g2Q
CitedBy_id crossref_primary_10_1016_j_diabres_2023_110989
crossref_primary_10_1016_j_ibusrev_2023_102203
crossref_primary_10_1017_cts_2020_545
crossref_primary_10_1155_2021_3752598
crossref_primary_10_1001_jamanetworkopen_2020_8270
crossref_primary_10_1007_s11428_021_00817_w
crossref_primary_10_1080_02664763_2023_2176834
crossref_primary_10_3389_fpsyt_2022_871916
crossref_primary_10_1371_journal_pone_0273178
crossref_primary_10_1016_j_compbiomed_2023_106670
crossref_primary_10_1002_nau_25162
crossref_primary_10_1016_j_artmed_2024_102868
crossref_primary_10_3389_fendo_2019_00185
crossref_primary_10_1038_s41598_022_23685_w
crossref_primary_10_1016_j_compmedimag_2021_101910
crossref_primary_10_1093_ehjdh_ztac072
crossref_primary_10_1080_00273171_2022_2146638
crossref_primary_10_1080_01605682_2022_2118630
crossref_primary_10_1002_ecm_1422
crossref_primary_10_3390_ijerph192214903
crossref_primary_10_1177_09622802221133556
crossref_primary_10_1177_09622802241242313
crossref_primary_10_1016_j_envres_2020_110704
crossref_primary_10_3390_math10060898
crossref_primary_10_1016_j_jbi_2021_103763
crossref_primary_10_3390_rs14236068
crossref_primary_10_1080_1528008X_2022_2143466
crossref_primary_10_1080_23737484_2023_2278112
crossref_primary_10_1016_j_biocon_2021_109446
crossref_primary_10_1016_j_ijmedinf_2020_104268
crossref_primary_10_1016_j_compbiomed_2022_105969
crossref_primary_10_1080_00952990_2021_2024839
crossref_primary_10_5812_ijpr_127039
crossref_primary_10_1002_cpt_3152
crossref_primary_10_1111_jce_15171
crossref_primary_10_1186_s12911_022_01889_4
crossref_primary_10_1038_s41746_023_00927_3
crossref_primary_10_1007_s10462_023_10561_w
crossref_primary_10_1007_s10260_022_00658_x
crossref_primary_10_3389_fpsyt_2024_1291362
crossref_primary_10_1093_jamia_ocaa120
crossref_primary_10_1080_01621459_2024_2340789
crossref_primary_10_1038_s41598_021_02827_6
crossref_primary_10_1093_bib_bbad002
crossref_primary_10_1002_sim_9852
crossref_primary_10_1093_jn_nxab281
crossref_primary_10_1371_journal_pdig_0000082
crossref_primary_10_3389_fmed_2021_698851
crossref_primary_10_1016_j_ijer_2023_102267
crossref_primary_10_1177_00131644221108180
crossref_primary_10_1016_j_jwb_2024_101517
Cites_doi 10.1097/MLR.0000000000000807
10.1109/JSTSP.2010.2076030
10.1016/j.athoracsur.2008.02.023
10.4236/ojs.2011.12007
10.1016/0895-4356(92)90133-8
10.1109/ICPR.2010.764
10.2337/dc11-1307
10.1007/s10994-011-5258-3
10.1186/1472-6823-8-4
10.1214/aos/1176347963
10.1080/01621459.1998.10474100
10.1001/jama.281.21.2005
10.1136/bmj.h6138
10.1016/S0140-6736(12)60480-2
10.1093/bioinformatics/btr597
10.1198/106186008X319331
10.1080/01621459.1993.10594284
10.1214/aos/1013203451
10.1109/ICASSP.2013.6638947
10.1198/106186006X133933
10.4158/EP151126.CS
10.1377/hlthaff.2014.0038
10.1093/ije/dyu262
10.1023/A:1010933404324
10.1080/01621459.1992.10475220
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright © 2018 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright © 2018 Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1016/j.jbi.2018.09.001
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE


Database_xml – sequence: 1
  dbid: ECM
  name: MEDLINE
  url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Public Health
EISSN 1532-0480
EndPage 67
ExternalDocumentID 10_1016_j_jbi_2018_09_001
30189255
S1532046418301758
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: R01 NS060910
– fundername: NIDDK NIH HHS
  grantid: K23 DK114497
– fundername: NIBIB NIH HHS
  grantid: P41 EB015909
GroupedDBID ---
--K
--M
-~X
.DC
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
6I.
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAWTL
AAXUO
AAYFN
ABBOA
ABBQC
ABFRF
ABJNI
ABLVK
ABMAC
ABMZM
ABVKL
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BAWUL
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DIK
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LCYCR
LG5
M41
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UAP
UHS
UNMZH
XPP
ZGI
ZMT
ZU3
~G-
0SF
AAXKI
ADVLN
AFJKZ
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
ABDPE
CITATION
7X8
5PM
ID FETCH-LOGICAL-c451t-d839056184a866076b86ce136e6b22455faac8cfbb06b6cf447f1134f987d5633
ISSN 1532-0464
IngestDate Tue Sep 17 20:57:58 EDT 2024
Fri Oct 25 01:06:31 EDT 2024
Fri Nov 22 02:59:12 EST 2024
Sat Sep 28 08:36:41 EDT 2024
Fri Feb 23 02:34:24 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Type 2 diabetes
Glycemic control
Glycosylated hemoglobin
Random-effects
Longitudinal supervised learning
Machine learning
Language English
License Copyright © 2018 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c451t-d839056184a866076b86ce136e6b22455faac8cfbb06b6cf447f1134f987d5633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doi.org/10.1016/j.jbi.2018.09.001
PMID 30189255
PQID 2101274216
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6495570
proquest_miscellaneous_2101274216
crossref_primary_10_1016_j_jbi_2018_09_001
pubmed_primary_30189255
elsevier_sciencedirect_doi_10_1016_j_jbi_2018_09_001
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of biomedical informatics
PublicationTitleAlternate J Biomed Inform
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Dempster, Laird, Rubin (b0145) 1977
Sela, Simonoff (b0035) 2012; 86
Therneau, Grambsch (b0040) 2013
NICE, Type 2 Diabetes in Adults: Management. URL
Santos, Barrios (b0190) 2011; 1
Ginde, Blanc, Lieberman, Camargo (b0075) 2008; 8
Friedman (b0110) 1991
J. Bruin, R Advanced: Simulating the Hospital Doctor Patient Dataset, July 2012. URL
Z.C. Lipton, D.C. Kale, C. Elkan, R. Wetzel, Learning to Diagnose with LSTM Recurrent Neural Networks. Available from
Stroup (b0115) 2012
Breiman, Friedman, Stone, Olshen (b0130) 1984
Hothorn, Hornik, Zeileis (b0180) 2006; 15
Mayo Clinic, Primary Biliary Cirrhosis.
Breslow, Clayton (b0120) 1993; 88
Deyo, Cherkin, Ciol (b0080) 1992; 45
K.H. Brodersen, C.S. Ong, K.E. Stephan, J.M. Buhmann, The balanced accuracy and its posterior distribution, in: Pattern Recognition (ICPR), 2010 20th International Conference on, IEEE, 2010, pp. 3121–3124.
(accessed 05-May-2017).
Zhang (b0135) 1998; 93
Zeileis, Hothorn, Hornik (b0175) 2008; 17
Asar, Ritchie, Kalra, Diggle (b0050) 2015; 44
Wallace, Shah, Dennen, Bleicher, Crown (b0060) 2014; 33
Breiman (b0165) 2001; 45
Garber, Abrahamson, Barzilay, Blonde, Bloomgarden, Bush, Dagogo-Jack, DeFronzo, Einhorn, Fonseca (b0005) 2016; 22
Hajjem, Bellavance, Larocque (b0030) 2010
McCoy, Ngufor, Van Houten, Caffo, Shah (b0090) 2017; 55
Stekhoven, Bühlmann (b0100) 2011; 28
A. Graves, A.-R. Mohamed, G. Hinton, Speech recognition with deep recurrent neural networks, in: Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, IEEE, 2013, pp. 6645–6649.
Best, Drury, Davis, Taskinen, Kesäniemi, Scott, Pardy, Voysey, Keech (b0025) 2012; 35
McCoy, Van Houten, Ross, Montori, Shah (b0085) 2015; 351
Friedman (b0170) 2001
Tricco, Ivers, Grimshaw, Moher, Turner, Galipeau, Halperin, Vachon, Ramsay, Manns (b0015) 2012; 379
NCQA, National Committee for Quality Assurance (NCQA) Healthcare Effectiveness Data and Information Set (HEDIS) 2013 Diabetes Mellitus Measures. URL
H. Deng, Interpreting tree ensembles with inTrees, Available from
Grambsch, Dickson, Wiesner, Langworthy (b0095) 1989; vol. 64
Segal (b0125) 1992; 87
.
De’Ath (b0140) 2002; 83
Turner, Cull, Frighi, Holman, U.P.D.S.U. Group (b0020) 1999; 281
Optum, Optum Research Data Assets. URL
Lim, Ali, Theodorou, Sousa, Ashrafian, Chamageorgakis, Duncan, Henein, Diggle, Pepper (b0105) 2008; 85
Kubo, Watanabe, Nakamura, McDermott, Kobayashi (b0150) 2010; 4
Breiman (10.1016/j.jbi.2018.09.001_b0165) 2001; 45
10.1016/j.jbi.2018.09.001_b0045
Best (10.1016/j.jbi.2018.09.001_b0025) 2012; 35
10.1016/j.jbi.2018.09.001_b0065
Deyo (10.1016/j.jbi.2018.09.001_b0080) 1992; 45
10.1016/j.jbi.2018.09.001_b0185
10.1016/j.jbi.2018.09.001_b0160
Zhang (10.1016/j.jbi.2018.09.001_b0135) 1998; 93
Grambsch (10.1016/j.jbi.2018.09.001_b0095) 1989; vol. 64
Lim (10.1016/j.jbi.2018.09.001_b0105) 2008; 85
Hajjem (10.1016/j.jbi.2018.09.001_b0030) 2010
Friedman (10.1016/j.jbi.2018.09.001_b0110) 1991
Turner (10.1016/j.jbi.2018.09.001_b0020) 1999; 281
Asar (10.1016/j.jbi.2018.09.001_b0050) 2015; 44
Wallace (10.1016/j.jbi.2018.09.001_b0060) 2014; 33
Stroup (10.1016/j.jbi.2018.09.001_b0115) 2012
Dempster (10.1016/j.jbi.2018.09.001_b0145) 1977
Tricco (10.1016/j.jbi.2018.09.001_b0015) 2012; 379
Hothorn (10.1016/j.jbi.2018.09.001_b0180) 2006; 15
Breiman (10.1016/j.jbi.2018.09.001_b0130) 1984
Zeileis (10.1016/j.jbi.2018.09.001_b0175) 2008; 17
Santos (10.1016/j.jbi.2018.09.001_b0190) 2011; 1
Ginde (10.1016/j.jbi.2018.09.001_b0075) 2008; 8
Friedman (10.1016/j.jbi.2018.09.001_b0170) 2001
Stekhoven (10.1016/j.jbi.2018.09.001_b0100) 2011; 28
10.1016/j.jbi.2018.09.001_b0155
Segal (10.1016/j.jbi.2018.09.001_b0125) 1992; 87
10.1016/j.jbi.2018.09.001_b0010
10.1016/j.jbi.2018.09.001_b0055
10.1016/j.jbi.2018.09.001_b0195
Therneau (10.1016/j.jbi.2018.09.001_b0040) 2013
10.1016/j.jbi.2018.09.001_b0070
McCoy (10.1016/j.jbi.2018.09.001_b0085) 2015; 351
Sela (10.1016/j.jbi.2018.09.001_b0035) 2012; 86
Kubo (10.1016/j.jbi.2018.09.001_b0150) 2010; 4
Garber (10.1016/j.jbi.2018.09.001_b0005) 2016; 22
McCoy (10.1016/j.jbi.2018.09.001_b0090) 2017; 55
De’Ath (10.1016/j.jbi.2018.09.001_b0140) 2002; 83
Breslow (10.1016/j.jbi.2018.09.001_b0120) 1993; 88
References_xml – volume: 8
  start-page: 4
  year: 2008
  ident: b0075
  article-title: Validation of ICD-9-CM coding algorithm for improved identification of hypoglycemia visits
  publication-title: BMC Endocr. Disorders
  contributor:
    fullname: Camargo
– volume: 55
  start-page: 956
  year: 2017
  end-page: 964
  ident: b0090
  article-title: Trajectories of glycemic change in a national cohort of adults with previously controlled type 2 diabetes
  publication-title: Med. Care
  contributor:
    fullname: Shah
– volume: 44
  start-page: 334
  year: 2015
  end-page: 344
  ident: b0050
  article-title: Joint modelling of repeated measurement and time-to-event data: an introductory tutorial
  publication-title: Int. J. Epidemiol.
  contributor:
    fullname: Diggle
– volume: 15
  start-page: 651
  year: 2006
  end-page: 674
  ident: b0180
  article-title: Unbiased recursive partitioning: a conditional inference framework
  publication-title: J. Comput. Graph. Stat.
  contributor:
    fullname: Zeileis
– volume: vol. 64
  start-page: 699
  year: 1989
  end-page: 704
  ident: b0095
  article-title: Application of the mayo primary biliary cirrhosis survival model to mayo liver transplant patients
  publication-title: Mayo Clinic Proceedings
  contributor:
    fullname: Langworthy
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0165
  article-title: Random forests
  publication-title: Mach. Learn.
  contributor:
    fullname: Breiman
– volume: 379
  start-page: 2252
  year: 2012
  end-page: 2261
  ident: b0015
  article-title: Effectiveness of quality improvement strategies on the management of diabetes: a systematic review and meta-analysis
  publication-title: Lancet
  contributor:
    fullname: Manns
– start-page: 1
  year: 1977
  end-page: 38
  ident: b0145
  article-title: Maximum likelihood from incomplete data via the em algorithm
  publication-title: J. Roy. Stat. Soc. Ser. B (Methodol.)
  contributor:
    fullname: Rubin
– volume: 17
  start-page: 492
  year: 2008
  end-page: 514
  ident: b0175
  article-title: Model-based recursive partitioning
  publication-title: J. Comput. Graph. Stat.
  contributor:
    fullname: Hornik
– volume: 86
  start-page: 169
  year: 2012
  end-page: 207
  ident: b0035
  article-title: RE-EM trees: a data mining approach for longitudinal and clustered data
  publication-title: Mach. Learn.
  contributor:
    fullname: Simonoff
– volume: 4
  start-page: 974
  year: 2010
  end-page: 984
  ident: b0150
  article-title: A sequential pattern classifier based on hidden markov kernel machine and its application to phoneme classification
  publication-title: IEEE J. Sel. Top. Signal Process.
  contributor:
    fullname: Kobayashi
– volume: 22
  start-page: 84
  year: 2016
  end-page: 113
  ident: b0005
  article-title: Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm–2016 executive summary
  publication-title: Endocr. Pract.
  contributor:
    fullname: Fonseca
– volume: 87
  start-page: 407
  year: 1992
  end-page: 418
  ident: b0125
  article-title: Tree-structured methods for longitudinal data
  publication-title: J. Am. Stat. Assoc.
  contributor:
    fullname: Segal
– volume: 85
  start-page: 2026
  year: 2008
  end-page: 2029
  ident: b0105
  article-title: Longitudinal study of the profile and predictors of left ventricular mass regression after stentless aortic valve replacement
  publication-title: Ann. Thorac. Surg.
  contributor:
    fullname: Pepper
– volume: 33
  start-page: 1187
  year: 2014
  end-page: 1194
  ident: b0060
  article-title: Optum labs: building a novel node in the learning health care system
  publication-title: Health Aff.
  contributor:
    fullname: Crown
– volume: 45
  start-page: 613
  year: 1992
  end-page: 619
  ident: b0080
  article-title: Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases
  publication-title: J. Clin. Epidemiol.
  contributor:
    fullname: Ciol
– volume: 83
  start-page: 1105
  year: 2002
  end-page: 1117
  ident: b0140
  article-title: Multivariate regression trees: a new technique for modeling species–environment relationships
  publication-title: Ecology
  contributor:
    fullname: De’Ath
– start-page: 34
  year: 2010
  ident: b0030
  article-title: Generalized mixed effects regression trees
  publication-title: Mixed Effects Trees For. Clustered Data
  contributor:
    fullname: Larocque
– start-page: 1189
  year: 2001
  end-page: 1232
  ident: b0170
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
  contributor:
    fullname: Friedman
– volume: 1
  start-page: 58
  year: 2011
  ident: b0190
  article-title: Small sample estimation in dynamic panel data models: a simulation study
  publication-title: Open J. Stat.
  contributor:
    fullname: Barrios
– volume: 351
  start-page: h6138
  year: 2015
  ident: b0085
  article-title: Hba1c overtesting and overtreatment among us adults with controlled type 2 diabetes, 2001-13: observational population based study
  publication-title: BMJ
  contributor:
    fullname: Shah
– volume: 35
  start-page: 1165
  year: 2012
  end-page: 1170
  ident: b0025
  article-title: Glycemic control over 5 years in 4,900 people with type 2 diabetes
  publication-title: Diabetes Care
  contributor:
    fullname: Keech
– start-page: 1
  year: 1991
  end-page: 67
  ident: b0110
  article-title: Multivariate adaptive regression splines
  publication-title: Ann. Stat.
  contributor:
    fullname: Friedman
– volume: 281
  start-page: 2005
  year: 1999
  end-page: 2012
  ident: b0020
  article-title: Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49)
  publication-title: Jama
  contributor:
    fullname: U.P.D.S.U. Group
– volume: 93
  start-page: 180
  year: 1998
  end-page: 193
  ident: b0135
  article-title: Classification trees for multiple binary responses
  publication-title: J. Am. Stat. Assoc.
  contributor:
    fullname: Zhang
– year: 1984
  ident: b0130
  article-title: Classification and Regression Trees
  contributor:
    fullname: Olshen
– year: 2013
  ident: b0040
  article-title: Modeling Survival Data: Extending the Cox Model
  contributor:
    fullname: Grambsch
– volume: 28
  start-page: 112
  year: 2011
  end-page: 118
  ident: b0100
  article-title: Missforestnon-parametric missing value imputation for mixed-type data
  publication-title: Bioinformatics
  contributor:
    fullname: Bühlmann
– year: 2012
  ident: b0115
  article-title: Generalized Linear Mixed Models: Modern Concepts, Methods and Applications
  contributor:
    fullname: Stroup
– volume: 88
  start-page: 9
  year: 1993
  end-page: 25
  ident: b0120
  article-title: Approximate inference in generalized linear mixed models
  publication-title: J. Am. Stat. Assoc.
  contributor:
    fullname: Clayton
– volume: 55
  start-page: 956
  issue: 11
  year: 2017
  ident: 10.1016/j.jbi.2018.09.001_b0090
  article-title: Trajectories of glycemic change in a national cohort of adults with previously controlled type 2 diabetes
  publication-title: Med. Care
  doi: 10.1097/MLR.0000000000000807
  contributor:
    fullname: McCoy
– ident: 10.1016/j.jbi.2018.09.001_b0185
– volume: vol. 64
  start-page: 699
  year: 1989
  ident: 10.1016/j.jbi.2018.09.001_b0095
  article-title: Application of the mayo primary biliary cirrhosis survival model to mayo liver transplant patients
  contributor:
    fullname: Grambsch
– ident: 10.1016/j.jbi.2018.09.001_b0160
– volume: 4
  start-page: 974
  issue: 6
  year: 2010
  ident: 10.1016/j.jbi.2018.09.001_b0150
  article-title: A sequential pattern classifier based on hidden markov kernel machine and its application to phoneme classification
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2010.2076030
  contributor:
    fullname: Kubo
– ident: 10.1016/j.jbi.2018.09.001_b0055
– volume: 85
  start-page: 2026
  issue: 6
  year: 2008
  ident: 10.1016/j.jbi.2018.09.001_b0105
  article-title: Longitudinal study of the profile and predictors of left ventricular mass regression after stentless aortic valve replacement
  publication-title: Ann. Thorac. Surg.
  doi: 10.1016/j.athoracsur.2008.02.023
  contributor:
    fullname: Lim
– volume: 1
  start-page: 58
  issue: 02
  year: 2011
  ident: 10.1016/j.jbi.2018.09.001_b0190
  article-title: Small sample estimation in dynamic panel data models: a simulation study
  publication-title: Open J. Stat.
  doi: 10.4236/ojs.2011.12007
  contributor:
    fullname: Santos
– volume: 83
  start-page: 1105
  issue: 4
  year: 2002
  ident: 10.1016/j.jbi.2018.09.001_b0140
  article-title: Multivariate regression trees: a new technique for modeling species–environment relationships
  publication-title: Ecology
  contributor:
    fullname: De’Ath
– ident: 10.1016/j.jbi.2018.09.001_b0045
– volume: 45
  start-page: 613
  issue: 6
  year: 1992
  ident: 10.1016/j.jbi.2018.09.001_b0080
  article-title: Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases
  publication-title: J. Clin. Epidemiol.
  doi: 10.1016/0895-4356(92)90133-8
  contributor:
    fullname: Deyo
– ident: 10.1016/j.jbi.2018.09.001_b0010
– ident: 10.1016/j.jbi.2018.09.001_b0195
  doi: 10.1109/ICPR.2010.764
– volume: 35
  start-page: 1165
  issue: 5
  year: 2012
  ident: 10.1016/j.jbi.2018.09.001_b0025
  article-title: Glycemic control over 5 years in 4,900 people with type 2 diabetes
  publication-title: Diabetes Care
  doi: 10.2337/dc11-1307
  contributor:
    fullname: Best
– volume: 86
  start-page: 169
  issue: 2
  year: 2012
  ident: 10.1016/j.jbi.2018.09.001_b0035
  article-title: RE-EM trees: a data mining approach for longitudinal and clustered data
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-011-5258-3
  contributor:
    fullname: Sela
– volume: 8
  start-page: 4
  issue: 1
  year: 2008
  ident: 10.1016/j.jbi.2018.09.001_b0075
  article-title: Validation of ICD-9-CM coding algorithm for improved identification of hypoglycemia visits
  publication-title: BMC Endocr. Disorders
  doi: 10.1186/1472-6823-8-4
  contributor:
    fullname: Ginde
– start-page: 1
  year: 1991
  ident: 10.1016/j.jbi.2018.09.001_b0110
  article-title: Multivariate adaptive regression splines
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176347963
  contributor:
    fullname: Friedman
– year: 1984
  ident: 10.1016/j.jbi.2018.09.001_b0130
  contributor:
    fullname: Breiman
– volume: 93
  start-page: 180
  issue: 441
  year: 1998
  ident: 10.1016/j.jbi.2018.09.001_b0135
  article-title: Classification trees for multiple binary responses
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1998.10474100
  contributor:
    fullname: Zhang
– volume: 281
  start-page: 2005
  issue: 21
  year: 1999
  ident: 10.1016/j.jbi.2018.09.001_b0020
  article-title: Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49)
  publication-title: Jama
  doi: 10.1001/jama.281.21.2005
  contributor:
    fullname: Turner
– volume: 351
  start-page: h6138
  year: 2015
  ident: 10.1016/j.jbi.2018.09.001_b0085
  article-title: Hba1c overtesting and overtreatment among us adults with controlled type 2 diabetes, 2001-13: observational population based study
  publication-title: BMJ
  doi: 10.1136/bmj.h6138
  contributor:
    fullname: McCoy
– year: 2012
  ident: 10.1016/j.jbi.2018.09.001_b0115
  contributor:
    fullname: Stroup
– volume: 379
  start-page: 2252
  issue: 9833
  year: 2012
  ident: 10.1016/j.jbi.2018.09.001_b0015
  article-title: Effectiveness of quality improvement strategies on the management of diabetes: a systematic review and meta-analysis
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)60480-2
  contributor:
    fullname: Tricco
– volume: 28
  start-page: 112
  issue: 1
  year: 2011
  ident: 10.1016/j.jbi.2018.09.001_b0100
  article-title: Missforestnon-parametric missing value imputation for mixed-type data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr597
  contributor:
    fullname: Stekhoven
– volume: 17
  start-page: 492
  issue: 2
  year: 2008
  ident: 10.1016/j.jbi.2018.09.001_b0175
  article-title: Model-based recursive partitioning
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/106186008X319331
  contributor:
    fullname: Zeileis
– volume: 88
  start-page: 9
  issue: 421
  year: 1993
  ident: 10.1016/j.jbi.2018.09.001_b0120
  article-title: Approximate inference in generalized linear mixed models
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1993.10594284
  contributor:
    fullname: Breslow
– start-page: 34
  year: 2010
  ident: 10.1016/j.jbi.2018.09.001_b0030
  article-title: Generalized mixed effects regression trees
  publication-title: Mixed Effects Trees For. Clustered Data
  contributor:
    fullname: Hajjem
– start-page: 1
  year: 1977
  ident: 10.1016/j.jbi.2018.09.001_b0145
  article-title: Maximum likelihood from incomplete data via the em algorithm
  publication-title: J. Roy. Stat. Soc. Ser. B (Methodol.)
  contributor:
    fullname: Dempster
– start-page: 1189
  year: 2001
  ident: 10.1016/j.jbi.2018.09.001_b0170
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1013203451
  contributor:
    fullname: Friedman
– ident: 10.1016/j.jbi.2018.09.001_b0065
– ident: 10.1016/j.jbi.2018.09.001_b0155
  doi: 10.1109/ICASSP.2013.6638947
– volume: 15
  start-page: 651
  issue: 3
  year: 2006
  ident: 10.1016/j.jbi.2018.09.001_b0180
  article-title: Unbiased recursive partitioning: a conditional inference framework
  publication-title: J. Comput. Graph. Stat.
  doi: 10.1198/106186006X133933
  contributor:
    fullname: Hothorn
– volume: 22
  start-page: 84
  issue: 1
  year: 2016
  ident: 10.1016/j.jbi.2018.09.001_b0005
  article-title: Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm–2016 executive summary
  publication-title: Endocr. Pract.
  doi: 10.4158/EP151126.CS
  contributor:
    fullname: Garber
– volume: 33
  start-page: 1187
  issue: 7
  year: 2014
  ident: 10.1016/j.jbi.2018.09.001_b0060
  article-title: Optum labs: building a novel node in the learning health care system
  publication-title: Health Aff.
  doi: 10.1377/hlthaff.2014.0038
  contributor:
    fullname: Wallace
– volume: 44
  start-page: 334
  issue: 1
  year: 2015
  ident: 10.1016/j.jbi.2018.09.001_b0050
  article-title: Joint modelling of repeated measurement and time-to-event data: an introductory tutorial
  publication-title: Int. J. Epidemiol.
  doi: 10.1093/ije/dyu262
  contributor:
    fullname: Asar
– ident: 10.1016/j.jbi.2018.09.001_b0070
– year: 2013
  ident: 10.1016/j.jbi.2018.09.001_b0040
  contributor:
    fullname: Therneau
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.jbi.2018.09.001_b0165
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
  contributor:
    fullname: Breiman
– volume: 87
  start-page: 407
  issue: 418
  year: 1992
  ident: 10.1016/j.jbi.2018.09.001_b0125
  article-title: Tree-structured methods for longitudinal data
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1992.10475220
  contributor:
    fullname: Segal
SSID ssj0011556
Score 2.5115905
Snippet [Display omitted] •Integrate random effects into standard machine learning algorithms.•Framework for longitudinal supervised learning with common machine...
Accurate and reliable prediction of clinical progression over time has the potential to improve the outcomes of chronic disease. The classical approach to...
SourceID pubmedcentral
proquest
crossref
pubmed
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 56
SubjectTerms Adult
Algorithms
Diabetes Mellitus, Type 2 - blood
Diabetes Mellitus, Type 2 - diagnosis
Disease Progression
Glycated Hemoglobin A - analysis
Glycemic control
Glycosylated hemoglobin
Humans
Longitudinal Studies
Longitudinal supervised learning
Machine Learning
Random-effects
Type 2 diabetes
Title Mixed effect machine learning: A framework for predicting longitudinal change in hemoglobin A1c
URI https://dx.doi.org/10.1016/j.jbi.2018.09.001
https://www.ncbi.nlm.nih.gov/pubmed/30189255
https://search.proquest.com/docview/2101274216
https://pubmed.ncbi.nlm.nih.gov/PMC6495570
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF6cBEpLKa37cl9soacGGUtarVa9mcTFLSSXpCU3sZJ2Y5tECokFyb_vjEYvJ6S0hV6EWUnW4u_zaHb2mxnGPhkdqcxmqeMFxjhC-8KJIus6iXE9LLfihQqTk-dH4eGJ2p-J2WDQNGTqxv4r0jAGWGPm7F-g3X4pDMBnwByOgDoc_wj3g-U1-JAk09g9r6SSpukNcUp56LYRZFUaw4tL3Kup1M9nBXYvKrOqUxalBGM8ZGHOCywcgqERN73HnaU8_gryuhjruiekPzwtLQUG9hYtlX6CbZkX5Zos3xy7XndbItYWxL3KAo3bSNBCL4jBZ_pmd3_cj1pgotRG1KJNp9lQe4L19VBrShEG0x-jdk-NyaauQ7XNDWTv7U29Pe68FyhEsRqvkiXK-dSYypR2L8FWmniED8Q5gK0DaxWoLbbjgREDG7oz_TY7-d7uUYEnJqkaL0262TOv1IO3HnSf13N3VXNbnNvzdo6fsic1rnxK_HrGBiYfske94pVD9uCglmUM2WMK_nLKaXvO4oqEnEjIaxLyhoRf-JS3FORAC95RkPcpyImCfJnzjoIcKPiC_fg6O96bO3UnDycVgbt2MnDDcamqhFZSTkKZKJka15dGJuBDBoHVOlWpTZKJTGRqhQit6_rCRirMAun7L9l2XuTmNeOwXjCZ1iacwGWenWjjgpcr4LYo863rj9jn5peOL6hgS9woGVcxwBIjLPEkQjXniIkGi7j2OMmTjIE4v7vtY4NbDNYYt9h0boryKvawXF4oPFeO2CvCsZ0F0ElFsIIfsXAD4fYCrPS-eSZfLqqK71JEWCrvzb9N9y172P0F37Ht9WVp3rOtq6z8UHP6F0JMyjU
link.rule.ids 230,315,782,786,887,27933,27934
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixed+effect+machine+learning%3A+A+framework+for+predicting+longitudinal+change+in+hemoglobin+A1c&rft.jtitle=Journal+of+biomedical+informatics&rft.au=Ngufor%2C+Che&rft.au=Van+Houten%2C+Holly&rft.au=Caffo%2C+Brian+S.&rft.au=Shah%2C+Nilay+D.&rft.date=2019-01-01&rft.pub=Elsevier+Inc&rft.issn=1532-0464&rft.eissn=1532-0480&rft.volume=89&rft.spage=56&rft.epage=67&rft_id=info:doi/10.1016%2Fj.jbi.2018.09.001&rft.externalDocID=S1532046418301758
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0464&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0464&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0464&client=summon