Mixed effect machine learning: A framework for predicting longitudinal change in hemoglobin A1c
[Display omitted] •Integrate random effects into standard machine learning algorithms.•Framework for longitudinal supervised learning with common machine learning models.•Developed interpretable tree based mixed-effect machine learning models.•Method prospectively identifies patients at risk for fut...
Saved in:
Published in: | Journal of biomedical informatics Vol. 89; pp. 56 - 67 |
---|---|
Main Authors: | , , , , |
Format: | Journal Article |
Language: | English |
Published: |
United States
Elsevier Inc
01-01-2019
|
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | [Display omitted]
•Integrate random effects into standard machine learning algorithms.•Framework for longitudinal supervised learning with common machine learning models.•Developed interpretable tree based mixed-effect machine learning models.•Method prospectively identifies patients at risk for future glycemic deterioration.
Accurate and reliable prediction of clinical progression over time has the potential to improve the outcomes of chronic disease. The classical approach to analyzing longitudinal data is to use (generalized) linear mixed-effect models (GLMM). However, linear parametric models are predicated on assumptions, which are often difficult to verify. In contrast, data-driven machine learning methods can be applied to derive insight from the raw data without a priori assumptions. However, the underlying theory of most machine learning algorithms assume that the data is independent and identically distributed, making them inefficient for longitudinal supervised learning. In this study, we formulate an analytic framework, which integrates the random-effects structure of GLMM into non-linear machine learning models capable of exploiting temporal heterogeneous effects, sparse and varying-length patient characteristics inherent in longitudinal data. We applied the derived mixed-effect machine learning (MEml) framework to predict longitudinal change in glycemic control measured by hemoglobin A1c (HbA1c) among well controlled adults with type 2 diabetes. Results show that MEml is competitive with traditional GLMM, but substantially outperformed standard machine learning models that do not account for random-effects. Specifically, the accuracy of MEml in predicting glycemic change at the 1st, 2nd, 3rd, and 4th clinical visits in advanced was 1.04, 1.08, 1.11, and 1.14 times that of the gradient boosted model respectively, with similar results for the other methods. To further demonstrate the general applicability of MEml, a series of experiments were performed using real publicly available and synthetic data sets for accuracy and robustness. These experiments reinforced the superiority of MEml over the other methods. Overall, results from this study highlight the importance of modeling random-effects in machine learning approaches based on longitudinal data. Our MEml method is highly resistant to correlated data, readily accounts for random-effects, and predicts change of a longitudinal clinical outcome in real-world clinical settings with high accuracy. |
---|---|
AbstractList | Accurate and reliable prediction of clinical progression over time has the potential to improve the outcomes of chronic disease. The classical approach to analyzing longitudinal data is to use (generalized) linear mixed-effect models (GLMM). However, linear parametric models are predicated on assumptions, which are often difficult to verify. In contrast, data-driven machine learning methods can be applied to derive insight from the raw data without a priori assumptions. However, the underlying theory of most machine learning algorithms assume that the data is independent and identically distributed, making them inefficient for longitudinal supervised learning. In this study, we formulate an analytic framework, which integrates the random-effects structure of GLMM into non-linear machine learning models capable of exploiting temporal heterogeneous effects, sparse and varying-length patient characteristics inherent in longitudinal data. We applied the derived mixed-effect machine learning (MEml) framework to predict longitudinal change in glycemic control measured by hemoglobin A1c (HbA1c) among well controlled adults with type 2 diabetes. Results show that MEml is competitive with traditional GLMM, but substantially outperformed standard machine learning models that do not account for random-effects. Specifically, the accuracy of MEml in predicting glycemic change at the 1st, 2nd, 3rd, and 4th clinical visits in advanced was 1.04, 1.08, 1.11, and 1.14 times that of the gradient boosted model respectively, with similar results for the other methods. To further demonstrate the general applicability of MEml, a series of experiments were performed using real publicly available and synthetic data sets for accuracy and robustness. These experiments reinforced the superiority of MEml over the other methods. Overall, results from this study highlight the importance of modeling random-effects in machine learning approaches based on longitudinal data. Our MEml method is highly resistant to correlated data, readily accounts for random-effects, and predicts change of a longitudinal clinical outcome in real-world clinical settings with high accuracy. [Display omitted] •Integrate random effects into standard machine learning algorithms.•Framework for longitudinal supervised learning with common machine learning models.•Developed interpretable tree based mixed-effect machine learning models.•Method prospectively identifies patients at risk for future glycemic deterioration. Accurate and reliable prediction of clinical progression over time has the potential to improve the outcomes of chronic disease. The classical approach to analyzing longitudinal data is to use (generalized) linear mixed-effect models (GLMM). However, linear parametric models are predicated on assumptions, which are often difficult to verify. In contrast, data-driven machine learning methods can be applied to derive insight from the raw data without a priori assumptions. However, the underlying theory of most machine learning algorithms assume that the data is independent and identically distributed, making them inefficient for longitudinal supervised learning. In this study, we formulate an analytic framework, which integrates the random-effects structure of GLMM into non-linear machine learning models capable of exploiting temporal heterogeneous effects, sparse and varying-length patient characteristics inherent in longitudinal data. We applied the derived mixed-effect machine learning (MEml) framework to predict longitudinal change in glycemic control measured by hemoglobin A1c (HbA1c) among well controlled adults with type 2 diabetes. Results show that MEml is competitive with traditional GLMM, but substantially outperformed standard machine learning models that do not account for random-effects. Specifically, the accuracy of MEml in predicting glycemic change at the 1st, 2nd, 3rd, and 4th clinical visits in advanced was 1.04, 1.08, 1.11, and 1.14 times that of the gradient boosted model respectively, with similar results for the other methods. To further demonstrate the general applicability of MEml, a series of experiments were performed using real publicly available and synthetic data sets for accuracy and robustness. These experiments reinforced the superiority of MEml over the other methods. Overall, results from this study highlight the importance of modeling random-effects in machine learning approaches based on longitudinal data. Our MEml method is highly resistant to correlated data, readily accounts for random-effects, and predicts change of a longitudinal clinical outcome in real-world clinical settings with high accuracy. |
Author | McCoy, Rozalina G. Caffo, Brian S. Shah, Nilay D. Ngufor, Che Van Houten, Holly |
AuthorAffiliation | b Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD a Department of Health Sciences Research, Mayo Clinic, Rochester, MN |
AuthorAffiliation_xml | – name: b Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD – name: a Department of Health Sciences Research, Mayo Clinic, Rochester, MN |
Author_xml | – sequence: 1 givenname: Che surname: Ngufor fullname: Ngufor, Che email: Ngufor.Che@mayo.edu organization: Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States – sequence: 2 givenname: Holly surname: Van Houten fullname: Van Houten, Holly organization: Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States – sequence: 3 givenname: Brian S. surname: Caffo fullname: Caffo, Brian S. organization: Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States – sequence: 4 givenname: Nilay D. surname: Shah fullname: Shah, Nilay D. organization: Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States – sequence: 5 givenname: Rozalina G. surname: McCoy fullname: McCoy, Rozalina G. organization: Department of Health Sciences Research, Mayo Clinic, Rochester, MN, United States |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30189255$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUFP3DAQha1qq-5C-wO4VD5ySWontpOAhLRCtEUCcYGz5TjjrLeJvdhZoP8erxZW9NKTR5r3nkfvO0Iz5x0gdEJJTgkVP9b5urV5QWidkyYnhH5CC8rLIiOsJrPDLNgcHcW4TgLKufiC5mWyNAXnCyRv7Qt0GIwBPeFR6ZV1gAdQwVnXn-ElNkGN8OzDH2x8wJsAndVT2uHBu95O2846NWC9Uq4HbB1ewej7wbdpXFL9FX02aojw7e09Rg8_r-4vf2c3d7-uL5c3mWacTllXlw3hgtZM1UKQSrS10EBLAaItCsa5UUrX2rQtEa3QhrHKUFoy09RVx0VZHqOLfe5m247QaXBTUIPcBDuq8Fd6ZeW_G2dXsvdPUrCG84qkgNO3gOAftxAnOdqoYRiUA7-NskiNFxUrqEhSupfq4GMMYA7fUCJ3YORaJjByB0aSRqbek-f7x_sOjncSSXC-F0Bq6clCkFFbcDrVHRIa2Xn7n_hX6Y2g2Q |
CitedBy_id | crossref_primary_10_1016_j_diabres_2023_110989 crossref_primary_10_1016_j_ibusrev_2023_102203 crossref_primary_10_1017_cts_2020_545 crossref_primary_10_1155_2021_3752598 crossref_primary_10_1001_jamanetworkopen_2020_8270 crossref_primary_10_1007_s11428_021_00817_w crossref_primary_10_1080_02664763_2023_2176834 crossref_primary_10_3389_fpsyt_2022_871916 crossref_primary_10_1371_journal_pone_0273178 crossref_primary_10_1016_j_compbiomed_2023_106670 crossref_primary_10_1002_nau_25162 crossref_primary_10_1016_j_artmed_2024_102868 crossref_primary_10_3389_fendo_2019_00185 crossref_primary_10_1038_s41598_022_23685_w crossref_primary_10_1016_j_compmedimag_2021_101910 crossref_primary_10_1093_ehjdh_ztac072 crossref_primary_10_1080_00273171_2022_2146638 crossref_primary_10_1080_01605682_2022_2118630 crossref_primary_10_1002_ecm_1422 crossref_primary_10_3390_ijerph192214903 crossref_primary_10_1177_09622802221133556 crossref_primary_10_1177_09622802241242313 crossref_primary_10_1016_j_envres_2020_110704 crossref_primary_10_3390_math10060898 crossref_primary_10_1016_j_jbi_2021_103763 crossref_primary_10_3390_rs14236068 crossref_primary_10_1080_1528008X_2022_2143466 crossref_primary_10_1080_23737484_2023_2278112 crossref_primary_10_1016_j_biocon_2021_109446 crossref_primary_10_1016_j_ijmedinf_2020_104268 crossref_primary_10_1016_j_compbiomed_2022_105969 crossref_primary_10_1080_00952990_2021_2024839 crossref_primary_10_5812_ijpr_127039 crossref_primary_10_1002_cpt_3152 crossref_primary_10_1111_jce_15171 crossref_primary_10_1186_s12911_022_01889_4 crossref_primary_10_1038_s41746_023_00927_3 crossref_primary_10_1007_s10462_023_10561_w crossref_primary_10_1007_s10260_022_00658_x crossref_primary_10_3389_fpsyt_2024_1291362 crossref_primary_10_1093_jamia_ocaa120 crossref_primary_10_1080_01621459_2024_2340789 crossref_primary_10_1038_s41598_021_02827_6 crossref_primary_10_1093_bib_bbad002 crossref_primary_10_1002_sim_9852 crossref_primary_10_1093_jn_nxab281 crossref_primary_10_1371_journal_pdig_0000082 crossref_primary_10_3389_fmed_2021_698851 crossref_primary_10_1016_j_ijer_2023_102267 crossref_primary_10_1177_00131644221108180 crossref_primary_10_1016_j_jwb_2024_101517 |
Cites_doi | 10.1097/MLR.0000000000000807 10.1109/JSTSP.2010.2076030 10.1016/j.athoracsur.2008.02.023 10.4236/ojs.2011.12007 10.1016/0895-4356(92)90133-8 10.1109/ICPR.2010.764 10.2337/dc11-1307 10.1007/s10994-011-5258-3 10.1186/1472-6823-8-4 10.1214/aos/1176347963 10.1080/01621459.1998.10474100 10.1001/jama.281.21.2005 10.1136/bmj.h6138 10.1016/S0140-6736(12)60480-2 10.1093/bioinformatics/btr597 10.1198/106186008X319331 10.1080/01621459.1993.10594284 10.1214/aos/1013203451 10.1109/ICASSP.2013.6638947 10.1198/106186006X133933 10.4158/EP151126.CS 10.1377/hlthaff.2014.0038 10.1093/ije/dyu262 10.1023/A:1010933404324 10.1080/01621459.1992.10475220 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Inc. Copyright © 2018 Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright © 2018 Elsevier Inc. All rights reserved. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 5PM |
DOI | 10.1016/j.jbi.2018.09.001 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: ECM name: MEDLINE url: https://search.ebscohost.com/login.aspx?direct=true&db=cmedm&site=ehost-live sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Public Health |
EISSN | 1532-0480 |
EndPage | 67 |
ExternalDocumentID | 10_1016_j_jbi_2018_09_001 30189255 S1532046418301758 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: R01 NS060910 – fundername: NIDDK NIH HHS grantid: K23 DK114497 – fundername: NIBIB NIH HHS grantid: P41 EB015909 |
GroupedDBID | --- --K --M -~X .DC .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 6I. 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAWTL AAXUO AAYFN ABBOA ABBQC ABFRF ABJNI ABLVK ABMAC ABMZM ABVKL ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADMUD AEBSH AEFWE AEKER AENEX AEXQZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BAWUL BKOJK BLXMC BNPGV CAG COF CS3 DIK DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HVGLF HZ~ IHE IXB J1W KOM LCYCR LG5 M41 MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SSV SSZ T5K UAP UHS UNMZH XPP ZGI ZMT ZU3 ~G- 0SF AAXKI ADVLN AFJKZ AKRWK CGR CUY CVF ECM EIF NPM AAYXX ABDPE CITATION 7X8 5PM |
ID | FETCH-LOGICAL-c451t-d839056184a866076b86ce136e6b22455faac8cfbb06b6cf447f1134f987d5633 |
ISSN | 1532-0464 |
IngestDate | Tue Sep 17 20:57:58 EDT 2024 Fri Oct 25 01:06:31 EDT 2024 Fri Nov 22 02:59:12 EST 2024 Sat Sep 28 08:36:41 EDT 2024 Fri Feb 23 02:34:24 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Type 2 diabetes Glycemic control Glycosylated hemoglobin Random-effects Longitudinal supervised learning Machine learning |
Language | English |
License | Copyright © 2018 Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c451t-d839056184a866076b86ce136e6b22455faac8cfbb06b6cf447f1134f987d5633 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doi.org/10.1016/j.jbi.2018.09.001 |
PMID | 30189255 |
PQID | 2101274216 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6495570 proquest_miscellaneous_2101274216 crossref_primary_10_1016_j_jbi_2018_09_001 pubmed_primary_30189255 elsevier_sciencedirect_doi_10_1016_j_jbi_2018_09_001 |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Journal of biomedical informatics |
PublicationTitleAlternate | J Biomed Inform |
PublicationYear | 2019 |
Publisher | Elsevier Inc |
Publisher_xml | – name: Elsevier Inc |
References | Dempster, Laird, Rubin (b0145) 1977 Sela, Simonoff (b0035) 2012; 86 Therneau, Grambsch (b0040) 2013 NICE, Type 2 Diabetes in Adults: Management. URL Santos, Barrios (b0190) 2011; 1 Ginde, Blanc, Lieberman, Camargo (b0075) 2008; 8 Friedman (b0110) 1991 J. Bruin, R Advanced: Simulating the Hospital Doctor Patient Dataset, July 2012. URL Z.C. Lipton, D.C. Kale, C. Elkan, R. Wetzel, Learning to Diagnose with LSTM Recurrent Neural Networks. Available from Stroup (b0115) 2012 Breiman, Friedman, Stone, Olshen (b0130) 1984 Hothorn, Hornik, Zeileis (b0180) 2006; 15 Mayo Clinic, Primary Biliary Cirrhosis. Breslow, Clayton (b0120) 1993; 88 Deyo, Cherkin, Ciol (b0080) 1992; 45 K.H. Brodersen, C.S. Ong, K.E. Stephan, J.M. Buhmann, The balanced accuracy and its posterior distribution, in: Pattern Recognition (ICPR), 2010 20th International Conference on, IEEE, 2010, pp. 3121–3124. (accessed 05-May-2017). Zhang (b0135) 1998; 93 Zeileis, Hothorn, Hornik (b0175) 2008; 17 Asar, Ritchie, Kalra, Diggle (b0050) 2015; 44 Wallace, Shah, Dennen, Bleicher, Crown (b0060) 2014; 33 Breiman (b0165) 2001; 45 Garber, Abrahamson, Barzilay, Blonde, Bloomgarden, Bush, Dagogo-Jack, DeFronzo, Einhorn, Fonseca (b0005) 2016; 22 Hajjem, Bellavance, Larocque (b0030) 2010 McCoy, Ngufor, Van Houten, Caffo, Shah (b0090) 2017; 55 Stekhoven, Bühlmann (b0100) 2011; 28 A. Graves, A.-R. Mohamed, G. Hinton, Speech recognition with deep recurrent neural networks, in: Acoustics, Speech and Signal Processing (ICASSP), 2013 IEEE International Conference on, IEEE, 2013, pp. 6645–6649. Best, Drury, Davis, Taskinen, Kesäniemi, Scott, Pardy, Voysey, Keech (b0025) 2012; 35 McCoy, Van Houten, Ross, Montori, Shah (b0085) 2015; 351 Friedman (b0170) 2001 Tricco, Ivers, Grimshaw, Moher, Turner, Galipeau, Halperin, Vachon, Ramsay, Manns (b0015) 2012; 379 NCQA, National Committee for Quality Assurance (NCQA) Healthcare Effectiveness Data and Information Set (HEDIS) 2013 Diabetes Mellitus Measures. URL H. Deng, Interpreting tree ensembles with inTrees, Available from Grambsch, Dickson, Wiesner, Langworthy (b0095) 1989; vol. 64 Segal (b0125) 1992; 87 . De’Ath (b0140) 2002; 83 Turner, Cull, Frighi, Holman, U.P.D.S.U. Group (b0020) 1999; 281 Optum, Optum Research Data Assets. URL Lim, Ali, Theodorou, Sousa, Ashrafian, Chamageorgakis, Duncan, Henein, Diggle, Pepper (b0105) 2008; 85 Kubo, Watanabe, Nakamura, McDermott, Kobayashi (b0150) 2010; 4 Breiman (10.1016/j.jbi.2018.09.001_b0165) 2001; 45 10.1016/j.jbi.2018.09.001_b0045 Best (10.1016/j.jbi.2018.09.001_b0025) 2012; 35 10.1016/j.jbi.2018.09.001_b0065 Deyo (10.1016/j.jbi.2018.09.001_b0080) 1992; 45 10.1016/j.jbi.2018.09.001_b0185 10.1016/j.jbi.2018.09.001_b0160 Zhang (10.1016/j.jbi.2018.09.001_b0135) 1998; 93 Grambsch (10.1016/j.jbi.2018.09.001_b0095) 1989; vol. 64 Lim (10.1016/j.jbi.2018.09.001_b0105) 2008; 85 Hajjem (10.1016/j.jbi.2018.09.001_b0030) 2010 Friedman (10.1016/j.jbi.2018.09.001_b0110) 1991 Turner (10.1016/j.jbi.2018.09.001_b0020) 1999; 281 Asar (10.1016/j.jbi.2018.09.001_b0050) 2015; 44 Wallace (10.1016/j.jbi.2018.09.001_b0060) 2014; 33 Stroup (10.1016/j.jbi.2018.09.001_b0115) 2012 Dempster (10.1016/j.jbi.2018.09.001_b0145) 1977 Tricco (10.1016/j.jbi.2018.09.001_b0015) 2012; 379 Hothorn (10.1016/j.jbi.2018.09.001_b0180) 2006; 15 Breiman (10.1016/j.jbi.2018.09.001_b0130) 1984 Zeileis (10.1016/j.jbi.2018.09.001_b0175) 2008; 17 Santos (10.1016/j.jbi.2018.09.001_b0190) 2011; 1 Ginde (10.1016/j.jbi.2018.09.001_b0075) 2008; 8 Friedman (10.1016/j.jbi.2018.09.001_b0170) 2001 Stekhoven (10.1016/j.jbi.2018.09.001_b0100) 2011; 28 10.1016/j.jbi.2018.09.001_b0155 Segal (10.1016/j.jbi.2018.09.001_b0125) 1992; 87 10.1016/j.jbi.2018.09.001_b0010 10.1016/j.jbi.2018.09.001_b0055 10.1016/j.jbi.2018.09.001_b0195 Therneau (10.1016/j.jbi.2018.09.001_b0040) 2013 10.1016/j.jbi.2018.09.001_b0070 McCoy (10.1016/j.jbi.2018.09.001_b0085) 2015; 351 Sela (10.1016/j.jbi.2018.09.001_b0035) 2012; 86 Kubo (10.1016/j.jbi.2018.09.001_b0150) 2010; 4 Garber (10.1016/j.jbi.2018.09.001_b0005) 2016; 22 McCoy (10.1016/j.jbi.2018.09.001_b0090) 2017; 55 De’Ath (10.1016/j.jbi.2018.09.001_b0140) 2002; 83 Breslow (10.1016/j.jbi.2018.09.001_b0120) 1993; 88 |
References_xml | – volume: 8 start-page: 4 year: 2008 ident: b0075 article-title: Validation of ICD-9-CM coding algorithm for improved identification of hypoglycemia visits publication-title: BMC Endocr. Disorders contributor: fullname: Camargo – volume: 55 start-page: 956 year: 2017 end-page: 964 ident: b0090 article-title: Trajectories of glycemic change in a national cohort of adults with previously controlled type 2 diabetes publication-title: Med. Care contributor: fullname: Shah – volume: 44 start-page: 334 year: 2015 end-page: 344 ident: b0050 article-title: Joint modelling of repeated measurement and time-to-event data: an introductory tutorial publication-title: Int. J. Epidemiol. contributor: fullname: Diggle – volume: 15 start-page: 651 year: 2006 end-page: 674 ident: b0180 article-title: Unbiased recursive partitioning: a conditional inference framework publication-title: J. Comput. Graph. Stat. contributor: fullname: Zeileis – volume: vol. 64 start-page: 699 year: 1989 end-page: 704 ident: b0095 article-title: Application of the mayo primary biliary cirrhosis survival model to mayo liver transplant patients publication-title: Mayo Clinic Proceedings contributor: fullname: Langworthy – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b0165 article-title: Random forests publication-title: Mach. Learn. contributor: fullname: Breiman – volume: 379 start-page: 2252 year: 2012 end-page: 2261 ident: b0015 article-title: Effectiveness of quality improvement strategies on the management of diabetes: a systematic review and meta-analysis publication-title: Lancet contributor: fullname: Manns – start-page: 1 year: 1977 end-page: 38 ident: b0145 article-title: Maximum likelihood from incomplete data via the em algorithm publication-title: J. Roy. Stat. Soc. Ser. B (Methodol.) contributor: fullname: Rubin – volume: 17 start-page: 492 year: 2008 end-page: 514 ident: b0175 article-title: Model-based recursive partitioning publication-title: J. Comput. Graph. Stat. contributor: fullname: Hornik – volume: 86 start-page: 169 year: 2012 end-page: 207 ident: b0035 article-title: RE-EM trees: a data mining approach for longitudinal and clustered data publication-title: Mach. Learn. contributor: fullname: Simonoff – volume: 4 start-page: 974 year: 2010 end-page: 984 ident: b0150 article-title: A sequential pattern classifier based on hidden markov kernel machine and its application to phoneme classification publication-title: IEEE J. Sel. Top. Signal Process. contributor: fullname: Kobayashi – volume: 22 start-page: 84 year: 2016 end-page: 113 ident: b0005 article-title: Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm–2016 executive summary publication-title: Endocr. Pract. contributor: fullname: Fonseca – volume: 87 start-page: 407 year: 1992 end-page: 418 ident: b0125 article-title: Tree-structured methods for longitudinal data publication-title: J. Am. Stat. Assoc. contributor: fullname: Segal – volume: 85 start-page: 2026 year: 2008 end-page: 2029 ident: b0105 article-title: Longitudinal study of the profile and predictors of left ventricular mass regression after stentless aortic valve replacement publication-title: Ann. Thorac. Surg. contributor: fullname: Pepper – volume: 33 start-page: 1187 year: 2014 end-page: 1194 ident: b0060 article-title: Optum labs: building a novel node in the learning health care system publication-title: Health Aff. contributor: fullname: Crown – volume: 45 start-page: 613 year: 1992 end-page: 619 ident: b0080 article-title: Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases publication-title: J. Clin. Epidemiol. contributor: fullname: Ciol – volume: 83 start-page: 1105 year: 2002 end-page: 1117 ident: b0140 article-title: Multivariate regression trees: a new technique for modeling species–environment relationships publication-title: Ecology contributor: fullname: De’Ath – start-page: 34 year: 2010 ident: b0030 article-title: Generalized mixed effects regression trees publication-title: Mixed Effects Trees For. Clustered Data contributor: fullname: Larocque – start-page: 1189 year: 2001 end-page: 1232 ident: b0170 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Stat. contributor: fullname: Friedman – volume: 1 start-page: 58 year: 2011 ident: b0190 article-title: Small sample estimation in dynamic panel data models: a simulation study publication-title: Open J. Stat. contributor: fullname: Barrios – volume: 351 start-page: h6138 year: 2015 ident: b0085 article-title: Hba1c overtesting and overtreatment among us adults with controlled type 2 diabetes, 2001-13: observational population based study publication-title: BMJ contributor: fullname: Shah – volume: 35 start-page: 1165 year: 2012 end-page: 1170 ident: b0025 article-title: Glycemic control over 5 years in 4,900 people with type 2 diabetes publication-title: Diabetes Care contributor: fullname: Keech – start-page: 1 year: 1991 end-page: 67 ident: b0110 article-title: Multivariate adaptive regression splines publication-title: Ann. Stat. contributor: fullname: Friedman – volume: 281 start-page: 2005 year: 1999 end-page: 2012 ident: b0020 article-title: Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49) publication-title: Jama contributor: fullname: U.P.D.S.U. Group – volume: 93 start-page: 180 year: 1998 end-page: 193 ident: b0135 article-title: Classification trees for multiple binary responses publication-title: J. Am. Stat. Assoc. contributor: fullname: Zhang – year: 1984 ident: b0130 article-title: Classification and Regression Trees contributor: fullname: Olshen – year: 2013 ident: b0040 article-title: Modeling Survival Data: Extending the Cox Model contributor: fullname: Grambsch – volume: 28 start-page: 112 year: 2011 end-page: 118 ident: b0100 article-title: Missforestnon-parametric missing value imputation for mixed-type data publication-title: Bioinformatics contributor: fullname: Bühlmann – year: 2012 ident: b0115 article-title: Generalized Linear Mixed Models: Modern Concepts, Methods and Applications contributor: fullname: Stroup – volume: 88 start-page: 9 year: 1993 end-page: 25 ident: b0120 article-title: Approximate inference in generalized linear mixed models publication-title: J. Am. Stat. Assoc. contributor: fullname: Clayton – volume: 55 start-page: 956 issue: 11 year: 2017 ident: 10.1016/j.jbi.2018.09.001_b0090 article-title: Trajectories of glycemic change in a national cohort of adults with previously controlled type 2 diabetes publication-title: Med. Care doi: 10.1097/MLR.0000000000000807 contributor: fullname: McCoy – ident: 10.1016/j.jbi.2018.09.001_b0185 – volume: vol. 64 start-page: 699 year: 1989 ident: 10.1016/j.jbi.2018.09.001_b0095 article-title: Application of the mayo primary biliary cirrhosis survival model to mayo liver transplant patients contributor: fullname: Grambsch – ident: 10.1016/j.jbi.2018.09.001_b0160 – volume: 4 start-page: 974 issue: 6 year: 2010 ident: 10.1016/j.jbi.2018.09.001_b0150 article-title: A sequential pattern classifier based on hidden markov kernel machine and its application to phoneme classification publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2010.2076030 contributor: fullname: Kubo – ident: 10.1016/j.jbi.2018.09.001_b0055 – volume: 85 start-page: 2026 issue: 6 year: 2008 ident: 10.1016/j.jbi.2018.09.001_b0105 article-title: Longitudinal study of the profile and predictors of left ventricular mass regression after stentless aortic valve replacement publication-title: Ann. Thorac. Surg. doi: 10.1016/j.athoracsur.2008.02.023 contributor: fullname: Lim – volume: 1 start-page: 58 issue: 02 year: 2011 ident: 10.1016/j.jbi.2018.09.001_b0190 article-title: Small sample estimation in dynamic panel data models: a simulation study publication-title: Open J. Stat. doi: 10.4236/ojs.2011.12007 contributor: fullname: Santos – volume: 83 start-page: 1105 issue: 4 year: 2002 ident: 10.1016/j.jbi.2018.09.001_b0140 article-title: Multivariate regression trees: a new technique for modeling species–environment relationships publication-title: Ecology contributor: fullname: De’Ath – ident: 10.1016/j.jbi.2018.09.001_b0045 – volume: 45 start-page: 613 issue: 6 year: 1992 ident: 10.1016/j.jbi.2018.09.001_b0080 article-title: Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases publication-title: J. Clin. Epidemiol. doi: 10.1016/0895-4356(92)90133-8 contributor: fullname: Deyo – ident: 10.1016/j.jbi.2018.09.001_b0010 – ident: 10.1016/j.jbi.2018.09.001_b0195 doi: 10.1109/ICPR.2010.764 – volume: 35 start-page: 1165 issue: 5 year: 2012 ident: 10.1016/j.jbi.2018.09.001_b0025 article-title: Glycemic control over 5 years in 4,900 people with type 2 diabetes publication-title: Diabetes Care doi: 10.2337/dc11-1307 contributor: fullname: Best – volume: 86 start-page: 169 issue: 2 year: 2012 ident: 10.1016/j.jbi.2018.09.001_b0035 article-title: RE-EM trees: a data mining approach for longitudinal and clustered data publication-title: Mach. Learn. doi: 10.1007/s10994-011-5258-3 contributor: fullname: Sela – volume: 8 start-page: 4 issue: 1 year: 2008 ident: 10.1016/j.jbi.2018.09.001_b0075 article-title: Validation of ICD-9-CM coding algorithm for improved identification of hypoglycemia visits publication-title: BMC Endocr. Disorders doi: 10.1186/1472-6823-8-4 contributor: fullname: Ginde – start-page: 1 year: 1991 ident: 10.1016/j.jbi.2018.09.001_b0110 article-title: Multivariate adaptive regression splines publication-title: Ann. Stat. doi: 10.1214/aos/1176347963 contributor: fullname: Friedman – year: 1984 ident: 10.1016/j.jbi.2018.09.001_b0130 contributor: fullname: Breiman – volume: 93 start-page: 180 issue: 441 year: 1998 ident: 10.1016/j.jbi.2018.09.001_b0135 article-title: Classification trees for multiple binary responses publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1998.10474100 contributor: fullname: Zhang – volume: 281 start-page: 2005 issue: 21 year: 1999 ident: 10.1016/j.jbi.2018.09.001_b0020 article-title: Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49) publication-title: Jama doi: 10.1001/jama.281.21.2005 contributor: fullname: Turner – volume: 351 start-page: h6138 year: 2015 ident: 10.1016/j.jbi.2018.09.001_b0085 article-title: Hba1c overtesting and overtreatment among us adults with controlled type 2 diabetes, 2001-13: observational population based study publication-title: BMJ doi: 10.1136/bmj.h6138 contributor: fullname: McCoy – year: 2012 ident: 10.1016/j.jbi.2018.09.001_b0115 contributor: fullname: Stroup – volume: 379 start-page: 2252 issue: 9833 year: 2012 ident: 10.1016/j.jbi.2018.09.001_b0015 article-title: Effectiveness of quality improvement strategies on the management of diabetes: a systematic review and meta-analysis publication-title: Lancet doi: 10.1016/S0140-6736(12)60480-2 contributor: fullname: Tricco – volume: 28 start-page: 112 issue: 1 year: 2011 ident: 10.1016/j.jbi.2018.09.001_b0100 article-title: Missforestnon-parametric missing value imputation for mixed-type data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr597 contributor: fullname: Stekhoven – volume: 17 start-page: 492 issue: 2 year: 2008 ident: 10.1016/j.jbi.2018.09.001_b0175 article-title: Model-based recursive partitioning publication-title: J. Comput. Graph. Stat. doi: 10.1198/106186008X319331 contributor: fullname: Zeileis – volume: 88 start-page: 9 issue: 421 year: 1993 ident: 10.1016/j.jbi.2018.09.001_b0120 article-title: Approximate inference in generalized linear mixed models publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1993.10594284 contributor: fullname: Breslow – start-page: 34 year: 2010 ident: 10.1016/j.jbi.2018.09.001_b0030 article-title: Generalized mixed effects regression trees publication-title: Mixed Effects Trees For. Clustered Data contributor: fullname: Hajjem – start-page: 1 year: 1977 ident: 10.1016/j.jbi.2018.09.001_b0145 article-title: Maximum likelihood from incomplete data via the em algorithm publication-title: J. Roy. Stat. Soc. Ser. B (Methodol.) contributor: fullname: Dempster – start-page: 1189 year: 2001 ident: 10.1016/j.jbi.2018.09.001_b0170 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann. Stat. doi: 10.1214/aos/1013203451 contributor: fullname: Friedman – ident: 10.1016/j.jbi.2018.09.001_b0065 – ident: 10.1016/j.jbi.2018.09.001_b0155 doi: 10.1109/ICASSP.2013.6638947 – volume: 15 start-page: 651 issue: 3 year: 2006 ident: 10.1016/j.jbi.2018.09.001_b0180 article-title: Unbiased recursive partitioning: a conditional inference framework publication-title: J. Comput. Graph. Stat. doi: 10.1198/106186006X133933 contributor: fullname: Hothorn – volume: 22 start-page: 84 issue: 1 year: 2016 ident: 10.1016/j.jbi.2018.09.001_b0005 article-title: Consensus statement by the American Association of Clinical Endocrinologists and American College of Endocrinology on the comprehensive type 2 diabetes management algorithm–2016 executive summary publication-title: Endocr. Pract. doi: 10.4158/EP151126.CS contributor: fullname: Garber – volume: 33 start-page: 1187 issue: 7 year: 2014 ident: 10.1016/j.jbi.2018.09.001_b0060 article-title: Optum labs: building a novel node in the learning health care system publication-title: Health Aff. doi: 10.1377/hlthaff.2014.0038 contributor: fullname: Wallace – volume: 44 start-page: 334 issue: 1 year: 2015 ident: 10.1016/j.jbi.2018.09.001_b0050 article-title: Joint modelling of repeated measurement and time-to-event data: an introductory tutorial publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyu262 contributor: fullname: Asar – ident: 10.1016/j.jbi.2018.09.001_b0070 – year: 2013 ident: 10.1016/j.jbi.2018.09.001_b0040 contributor: fullname: Therneau – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.jbi.2018.09.001_b0165 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 contributor: fullname: Breiman – volume: 87 start-page: 407 issue: 418 year: 1992 ident: 10.1016/j.jbi.2018.09.001_b0125 article-title: Tree-structured methods for longitudinal data publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1992.10475220 contributor: fullname: Segal |
SSID | ssj0011556 |
Score | 2.5115905 |
Snippet | [Display omitted]
•Integrate random effects into standard machine learning algorithms.•Framework for longitudinal supervised learning with common machine... Accurate and reliable prediction of clinical progression over time has the potential to improve the outcomes of chronic disease. The classical approach to... |
SourceID | pubmedcentral proquest crossref pubmed elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 56 |
SubjectTerms | Adult Algorithms Diabetes Mellitus, Type 2 - blood Diabetes Mellitus, Type 2 - diagnosis Disease Progression Glycated Hemoglobin A - analysis Glycemic control Glycosylated hemoglobin Humans Longitudinal Studies Longitudinal supervised learning Machine Learning Random-effects Type 2 diabetes |
Title | Mixed effect machine learning: A framework for predicting longitudinal change in hemoglobin A1c |
URI | https://dx.doi.org/10.1016/j.jbi.2018.09.001 https://www.ncbi.nlm.nih.gov/pubmed/30189255 https://search.proquest.com/docview/2101274216 https://pubmed.ncbi.nlm.nih.gov/PMC6495570 |
Volume | 89 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF6cBEpLKa37cl9soacGGUtarVa9mcTFLSSXpCU3sZJ2Y5tECokFyb_vjEYvJ6S0hV6EWUnW4u_zaHb2mxnGPhkdqcxmqeMFxjhC-8KJIus6iXE9LLfihQqTk-dH4eGJ2p-J2WDQNGTqxv4r0jAGWGPm7F-g3X4pDMBnwByOgDoc_wj3g-U1-JAk09g9r6SSpukNcUp56LYRZFUaw4tL3Kup1M9nBXYvKrOqUxalBGM8ZGHOCywcgqERN73HnaU8_gryuhjruiekPzwtLQUG9hYtlX6CbZkX5Zos3xy7XndbItYWxL3KAo3bSNBCL4jBZ_pmd3_cj1pgotRG1KJNp9lQe4L19VBrShEG0x-jdk-NyaauQ7XNDWTv7U29Pe68FyhEsRqvkiXK-dSYypR2L8FWmniED8Q5gK0DaxWoLbbjgREDG7oz_TY7-d7uUYEnJqkaL0262TOv1IO3HnSf13N3VXNbnNvzdo6fsic1rnxK_HrGBiYfske94pVD9uCglmUM2WMK_nLKaXvO4oqEnEjIaxLyhoRf-JS3FORAC95RkPcpyImCfJnzjoIcKPiC_fg6O96bO3UnDycVgbt2MnDDcamqhFZSTkKZKJka15dGJuBDBoHVOlWpTZKJTGRqhQit6_rCRirMAun7L9l2XuTmNeOwXjCZ1iacwGWenWjjgpcr4LYo863rj9jn5peOL6hgS9woGVcxwBIjLPEkQjXniIkGi7j2OMmTjIE4v7vtY4NbDNYYt9h0boryKvawXF4oPFeO2CvCsZ0F0ElFsIIfsXAD4fYCrPS-eSZfLqqK71JEWCrvzb9N9y172P0F37Ht9WVp3rOtq6z8UHP6F0JMyjU |
link.rule.ids | 230,315,782,786,887,27933,27934 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixed+effect+machine+learning%3A+A+framework+for+predicting+longitudinal+change+in+hemoglobin+A1c&rft.jtitle=Journal+of+biomedical+informatics&rft.au=Ngufor%2C+Che&rft.au=Van+Houten%2C+Holly&rft.au=Caffo%2C+Brian+S.&rft.au=Shah%2C+Nilay+D.&rft.date=2019-01-01&rft.pub=Elsevier+Inc&rft.issn=1532-0464&rft.eissn=1532-0480&rft.volume=89&rft.spage=56&rft.epage=67&rft_id=info:doi/10.1016%2Fj.jbi.2018.09.001&rft.externalDocID=S1532046418301758 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0464&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0464&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0464&client=summon |