Effect of ginger essential oil and 6-gingerol on a multispecies biofilm of Listeria monocytogenes, Salmonella Typhimurium, and Pseudomonas aeruginosa
The objective of this study was to evaluate the potential antimicrobial and antibiofilm effect of ginger essential oil (GEO) and 6-gingerol on a multispecies biofilm formed by Listeria monocytogenes, Salmonella Typhimurium, and Pseudomonas aeruginosa on a polypropylene surface. The minimum inhibitor...
Saved in:
Published in: | Brazilian journal of microbiology Vol. 54; no. 4; pp. 3041 - 3049 |
---|---|
Main Authors: | , , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
Cham
Springer
01-12-2023
Springer International Publishing Springer Nature B.V |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The objective of this study was to evaluate the potential antimicrobial and antibiofilm effect of ginger essential oil (GEO) and 6-gingerol on a multispecies biofilm formed by Listeria monocytogenes, Salmonella Typhimurium, and Pseudomonas aeruginosa on a polypropylene surface. The minimum inhibitory concentration concentrations obtained for GEO were 100 and 50 mg/mL and for 6-gingerol 1.25 mg/mL. Sessile cell counts ranged within 5.35--7.35 log CFU/cm2 in the control biofilm, with the highest sessile growth at 72 h. GEO treatments acted on the total population regardless of concentration at 1 and 48 h. L. monocytogenes behaved similarly to the total population, showing GEO action at 1 h and keeping the same pattern at 48, 72, and 96 h. Better action on S. Typhimurium was obtained at times of 1, 72, and 96 h. P. aeruginosa showed logarithmic reduction only when treated with GEO 50 mg at 24 h. As for 6-gingerol, in general, there was no significant action (p\thinspace>\thinspace0.05) on the evaluated sessile cells. GEO showed antimicrobial activity against L. monocytogenes, S. Typhimurium, and P. aeruginosa, acting as an inhibitor of biofilm formation. As for 6-gingerol, it was considered a possible antimicrobial agent but without efficacy during biofilm formation.
The authors thank the National Council for Scientifc and Technological Development (Conselho Nacional de Desenvolvimento Científco e Tecnológico—CNPq, Brasília, DF, Brazil), the Coordination for the Improvement of Higher Education Personnel (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—CAPES, Brasília, DF, Brazil—Code 001 and CAPES PRINT Project, 88881310254/2018-01), and the Federal University of Paraná (Universidade Federal do Paraná—UFPR; nº 02/2020—RESEARCH/PRPPG/UFPR—Araucária Foundation). |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1517-8382 1678-4405 1678-4405 |
DOI: | 10.1007/s42770-023-01075-2 |