A Modularized Charge Equalizer for an HEV Lithium-Ion Battery String

Based on the fact that a hybrid electric vehicle (HEV) connects a high number of batteries in series to obtain more than approximately 300 V, this paper proposes a modularized charge equalizer for an HEV battery pack. In this paper, the overall battery string is modularized into M*N cells, where M i...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) Vol. 56; no. 5; pp. 1464 - 1476
Main Authors: Park, H.-S., Kim, C.-E., Kim, C.-H., Moon, G.-W., Lee, J.-H.
Format: Journal Article
Language:English
Published: New York IEEE 01-05-2009
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Based on the fact that a hybrid electric vehicle (HEV) connects a high number of batteries in series to obtain more than approximately 300 V, this paper proposes a modularized charge equalizer for an HEV battery pack. In this paper, the overall battery string is modularized into M*N cells, where M is the number of modules in the string and N is the number of cells in each module. With this modularization, low voltage stress on the electronic devices can be achieved, which means that there is less chance of a failure on the charge equalizer. The power rating selection is one of the most important design issues for a charge equalizer because it is very closely related to equalization time. To solve this problem optimally, this paper presents a power rating design guide. In addition, this paper considers system-level design issues, such as cell voltage acquisition, equalizer control logic, and system-level grounding. The simulation and experimental results are presented to show the usefulness of the optimal power rating selection guide and the low voltage stressed charge equalization process.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2009.2012456