Rapid mono and biexponential 3D-T1ρ mapping of knee cartilage using variational networks
In this study we use undersampled MRI acquisition methods to obtain accelerated 3D mono and biexponential spin–lattice relaxation time in the rotating frame (T 1ρ ) mapping of knee cartilage, reducing the usual long scan time. We compare the accelerated T 1ρ maps obtained by deep learning-based vari...
Saved in:
Published in: | Scientific reports Vol. 10; no. 1; p. 19144 |
---|---|
Main Authors: | , , , , , |
Format: | Journal Article |
Language: | English |
Published: |
London
Nature Publishing Group UK
05-11-2020
Nature Publishing Group |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Abstract | In this study we use undersampled MRI acquisition methods to obtain accelerated 3D mono and biexponential spin–lattice relaxation time in the rotating frame (T
1ρ
) mapping of knee cartilage, reducing the usual long scan time. We compare the accelerated T
1ρ
maps obtained by deep learning-based variational network (VN) and compressed sensing (CS). Both methods were compared with spatial (S) and spatio-temporal (ST) filters. Complex-valued fitting was used for T
1ρ
parameters estimation. We tested with seven in vivo and six synthetic datasets, with acceleration factors (AF) from 2 to 10. Median normalized absolute deviation (MNAD), analysis of variance (ANOVA), and coefficient of variation (CV) were used for analysis. The methods CS-ST, VN-S, and VN-ST performed well for accelerating monoexponential T
1ρ
mapping, with MNAD around 5% for AF = 2, which increases almost linearly with the AF to an MNAD of 13% for AF = 8, with all methods. For biexponential mapping, the VN-ST was the best method starting with MNAD of 7.4% for AF = 2 and reaching MNAD of 13.1% for AF = 8. The VN was able to produce 3D-T
1ρ
mapping of knee cartilage with lower error than CS. The best results were obtained by VN-ST, improving CS-ST method by nearly 7.5%. |
---|---|
AbstractList | In this study we use undersampled MRI acquisition methods to obtain accelerated 3D mono and biexponential spin-lattice relaxation time in the rotating frame (T1ρ) mapping of knee cartilage, reducing the usual long scan time. We compare the accelerated T1ρ maps obtained by deep learning-based variational network (VN) and compressed sensing (CS). Both methods were compared with spatial (S) and spatio-temporal (ST) filters. Complex-valued fitting was used for T1ρ parameters estimation. We tested with seven in vivo and six synthetic datasets, with acceleration factors (AF) from 2 to 10. Median normalized absolute deviation (MNAD), analysis of variance (ANOVA), and coefficient of variation (CV) were used for analysis. The methods CS-ST, VN-S, and VN-ST performed well for accelerating monoexponential T1ρ mapping, with MNAD around 5% for AF = 2, which increases almost linearly with the AF to an MNAD of 13% for AF = 8, with all methods. For biexponential mapping, the VN-ST was the best method starting with MNAD of 7.4% for AF = 2 and reaching MNAD of 13.1% for AF = 8. The VN was able to produce 3D-T1ρ mapping of knee cartilage with lower error than CS. The best results were obtained by VN-ST, improving CS-ST method by nearly 7.5%. Abstract In this study we use undersampled MRI acquisition methods to obtain accelerated 3D mono and biexponential spin–lattice relaxation time in the rotating frame (T 1ρ ) mapping of knee cartilage, reducing the usual long scan time. We compare the accelerated T 1ρ maps obtained by deep learning-based variational network (VN) and compressed sensing (CS). Both methods were compared with spatial (S) and spatio-temporal (ST) filters. Complex-valued fitting was used for T 1ρ parameters estimation. We tested with seven in vivo and six synthetic datasets, with acceleration factors (AF) from 2 to 10. Median normalized absolute deviation (MNAD), analysis of variance (ANOVA), and coefficient of variation (CV) were used for analysis. The methods CS-ST, VN-S, and VN-ST performed well for accelerating monoexponential T 1ρ mapping, with MNAD around 5% for AF = 2, which increases almost linearly with the AF to an MNAD of 13% for AF = 8, with all methods. For biexponential mapping, the VN-ST was the best method starting with MNAD of 7.4% for AF = 2 and reaching MNAD of 13.1% for AF = 8. The VN was able to produce 3D-T 1ρ mapping of knee cartilage with lower error than CS. The best results were obtained by VN-ST, improving CS-ST method by nearly 7.5%. In this study we use undersampled MRI acquisition methods to obtain accelerated 3D mono and biexponential spin–lattice relaxation time in the rotating frame (T 1ρ ) mapping of knee cartilage, reducing the usual long scan time. We compare the accelerated T 1ρ maps obtained by deep learning-based variational network (VN) and compressed sensing (CS). Both methods were compared with spatial (S) and spatio-temporal (ST) filters. Complex-valued fitting was used for T 1ρ parameters estimation. We tested with seven in vivo and six synthetic datasets, with acceleration factors (AF) from 2 to 10. Median normalized absolute deviation (MNAD), analysis of variance (ANOVA), and coefficient of variation (CV) were used for analysis. The methods CS-ST, VN-S, and VN-ST performed well for accelerating monoexponential T 1ρ mapping, with MNAD around 5% for AF = 2, which increases almost linearly with the AF to an MNAD of 13% for AF = 8, with all methods. For biexponential mapping, the VN-ST was the best method starting with MNAD of 7.4% for AF = 2 and reaching MNAD of 13.1% for AF = 8. The VN was able to produce 3D-T 1ρ mapping of knee cartilage with lower error than CS. The best results were obtained by VN-ST, improving CS-ST method by nearly 7.5%. |
ArticleNumber | 19144 |
Author | Knoll, Florian Sharafi, Azadeh Hammernik, Kerstin Johnson, Patricia M. Regatte, Ravinder R. Zibetti, Marcelo V. W. |
Author_xml | – sequence: 1 givenname: Marcelo V. W. orcidid: 0000-0003-2856-3625 surname: Zibetti fullname: Zibetti, Marcelo V. W. email: Marcelo.WustZibetti@nyulangone.org organization: Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine – sequence: 2 givenname: Patricia M. orcidid: 0000-0003-1547-9969 surname: Johnson fullname: Johnson, Patricia M. organization: Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine – sequence: 3 givenname: Azadeh orcidid: 0000-0001-9572-4922 surname: Sharafi fullname: Sharafi, Azadeh organization: Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine – sequence: 4 givenname: Kerstin orcidid: 0000-0002-2734-1409 surname: Hammernik fullname: Hammernik, Kerstin organization: Department of Computing, Imperial College London – sequence: 5 givenname: Florian orcidid: 0000-0001-5357-8656 surname: Knoll fullname: Knoll, Florian organization: Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine – sequence: 6 givenname: Ravinder R. orcidid: 0000-0002-4607-7682 surname: Regatte fullname: Regatte, Ravinder R. organization: Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine |
BookMark | eNp9UU1P3DAUtCpQoXT_QE-WeuES8EccJ5dKCFpAQkJC9NCT9Ta2F0Nip3ZCt0d-IX-pXnYFlAO-PMtvZt74zSe05YM3CH2h5IASXh-mkoqmLggjhawoq4rlB7TLSCkKxhnbenXfQbOUbkk-gjUlbT6iHc6pKAUVu-jXFQxO4z74gMFrPHdmOeRJfnTQYX5SXNPHB9zDMDi_wMHiO28MbiGOroOFwVNavd9DdDC64DPHm_FPiHfpM9q20CUz29Q99PPH9-vjs-Li8vT8-OiiaLODseBVZesKJK_KmgPlJlvWdUMa0lqw1nIN2s6lMMwSKWlJGDRaa8lZKVo6r_ke-rbWHaZ5b3SbrUfo1BBdD_GvCuDU_x3vbtQi3CtZlUKKJgvsbwRi-D2ZNKrepdZ0HXgTpqTyoDpvvOYiQ7--gd6GKeZfr1Ay75RUT4JsjWpjSCka-2yGErUKT63DUzk89RSeWmYSX5NSBvuFiS_S77D-AeCVnm8 |
CitedBy_id | crossref_primary_10_1088_1361_6560_acc0cd crossref_primary_10_1109_TCI_2022_3176129 crossref_primary_10_3390_diagnostics12030688 crossref_primary_10_3390_bioengineering10020267 crossref_primary_10_1007_s00256_024_04734_z crossref_primary_10_1002_jmri_28451 crossref_primary_10_1155_2022_9222958 crossref_primary_10_1088_1361_6560_ac8c81 crossref_primary_10_1002_jmri_28689 crossref_primary_10_1038_s41598_022_21269_2 |
Cites_doi | 10.1007/s11045-016-0383-6 10.1002/mrm.21926 10.1002/mrm.22595 10.1002/mrm.28067 10.1002/jmri.26173 10.1002/mrm.25773 10.1002/mrm.27355 10.1258/ar.2012.120108 10.1109/MSP.2019.2950640 10.1148/radiol.10101174 10.1002/mrm.28019 10.1002/mrm.25722 10.1148/radiol.2018180445 10.1002/mrm.25130 10.1016/j.joca.2017.11.018 10.1109/ACCESS.2018.2867435 10.1002/jmri.24290 10.1002/mrm.24593 10.1109/MSP.2019.2950557 10.1002/nbm.3760 10.1002/mrm.27138 10.1109/TIP.2014.2315156 10.1002/mrm.27707 10.1002/mrm.22756 10.1002/jmri.25778 10.1002/mrm.27416 10.1002/mrm.24751 10.1002/mrm.25702 10.1002/mrm.26977 10.1302/2046-3758.57.BJR-2016-0057.R1 10.1002/jmri.24584 10.1137/0720042 10.1109/TCI.2018.2882681 10.1007/s11263-008-0197-6 10.1038/s41592-019-0458-z 10.1002/mrm.22483 10.1002/mrm.21391 10.1093/oso/9780195171792.001.0001 10.1109/CVPR.2018.00196 10.1007/978-3-030-00928-1_60 10.1109/ICIP.2012.6467010 10.1002/mrm.22178 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PIMPY PQEST PQQKQ PQUKI Q9U 7X8 5PM |
DOI | 10.1038/s41598-020-76126-x |
DatabaseName | SpringerOpen CrossRef ProQuest Central (Corporate) ProQuest_Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Science Database (ProQuest) Biological Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 19144 |
ExternalDocumentID | 10_1038_s41598_020_76126_x |
GrantInformation_xml | – fundername: National Institutes of Health grantid: R21-AR075259-01A1; R01 AR076328; R01-AR067156; R01EB024532; R01-AR068966 – fundername: NIBIB Biomedical Technology Resource Center grantid: P41-EB017183 – fundername: ; grantid: P41-EB017183 – fundername: ; grantid: R21-AR075259-01A1; R01 AR076328; R01-AR067156; R01EB024532; R01-AR068966 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ADBBV ADRAZ AENEX AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RIG RNT RNTTT RPM SNYQT UKHRP AAYXX AFPKN CITATION 7XB 8FK K9. PQEST PQUKI Q9U 7X8 5PM |
ID | FETCH-LOGICAL-c451t-366f86a736483a13e232d89090cfafff3dadfb75e2f0771402a9ddd73245c1b83 |
IEDL.DBID | RPM |
ISSN | 2045-2322 |
IngestDate | Tue Sep 17 21:09:00 EDT 2024 Sat Oct 26 06:01:28 EDT 2024 Sat Nov 09 11:41:27 EST 2024 Wed Aug 28 12:36:05 EDT 2024 Fri Oct 11 20:44:34 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c451t-366f86a736483a13e232d89090cfafff3dadfb75e2f0771402a9ddd73245c1b83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5357-8656 0000-0002-4607-7682 0000-0001-9572-4922 0000-0003-1547-9969 0000-0002-2734-1409 0000-0003-2856-3625 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7645759/ |
PMID | 33154515 |
PQID | 2471540659 |
PQPubID | 2041939 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7645759 proquest_miscellaneous_2458038835 proquest_journals_2471540659 crossref_primary_10_1038_s41598_020_76126_x springer_journals_10_1038_s41598_020_76126_x |
PublicationCentury | 2000 |
PublicationDate | 2020-11-05 |
PublicationDateYYYYMMDD | 2020-11-05 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Lustig, Alley, Vasanawala, Donoho, Pauly (CR30) 2009; 17 Steihaug (CR43) 1983; 20 Nishioka (CR2) 2016; 5 CR19 Zhu (CR23) 2015; 73 CR18 CR39 Raya (CR40) 2010; 63 Mosher (CR4) 2011; 258 Zhu (CR22) 2020; 83 Roth, Black (CR34) 2009; 82 Zibetti, Helou, Regatte, Herman (CR38) 2019; 5 CR35 Sharafi, Chang, Regatte (CR7) 2018; 47 Motulsky, Christopoulos (CR45) 2004 Hammernik (CR14) 2018; 79 Yuan, Zhao, Chan, Wang (CR44) 2012; 53 Hernando, Levin, Sirlin, Reeder (CR42) 2014; 40 Sharafi, Xia, Chang, Regatte (CR3) 2017; 30 Baboli, Sharafi, Chang, Regatte (CR8) 2018; 48 Liu (CR5) 2014; 39 Liang, Cheng, Ke, Ying (CR13) 2020; 37 Chen (CR17) 2018; 289 Belthangady, Royer (CR28) 2019 Feng (CR24) 2011; 65 Knoll, Bredies, Pock, Stollberger (CR36) 2011; 65 Hu, Ongie, Ramani, Jacob (CR37) 2014; 23 Doneva (CR25) 2010; 64 Hernando, Kramer, Reeder (CR41) 2013; 70 Zibetti, Sharafi, Otazo, Regatte (CR12) 2019; 81 Liu, Feng, Kijowski (CR27) 2019; 82 CR29 Knoll (CR16) 2019; 81 Zibetti, Sharafi, Otazo, Regatte (CR21) 2020; 83 Li, Cheng, Gui (CR20) 2018; 6 Zibetti, De Pierro (CR32) 2016; 28 Pandit, Rivoire, King, Li (CR9) 2016; 75 Lustig, Donoho, Pauly (CR31) 2007; 58 Zhou (CR10) 2016; 75 Uecker (CR33) 2014; 71 Reiter, Lin, Fishbein, Spencer (CR6) 2009; 61 Zibetti, Sharafi, Otazo, Regatte (CR11) 2018; 80 Knoll (CR15) 2020; 37 MacKay (CR1) 2018; 26 Bhave, Lingala, Johnson, Magnotta, Jacob (CR26) 2016; 75 MVW Zibetti (76126_CR21) 2020; 83 F Liu (76126_CR5) 2014; 39 R Baboli (76126_CR8) 2018; 48 D Hernando (76126_CR41) 2013; 70 Y Zhu (76126_CR23) 2015; 73 H Nishioka (76126_CR2) 2016; 5 76126_CR19 H Motulsky (76126_CR45) 2004 D Liang (76126_CR13) 2020; 37 M Lustig (76126_CR30) 2009; 17 MVW Zibetti (76126_CR38) 2019; 5 DA Reiter (76126_CR6) 2009; 61 J Yuan (76126_CR44) 2012; 53 D Hernando (76126_CR42) 2014; 40 P Pandit (76126_CR9) 2016; 75 A Sharafi (76126_CR7) 2018; 47 M Doneva (76126_CR25) 2010; 64 F Knoll (76126_CR15) 2020; 37 S Bhave (76126_CR26) 2016; 75 76126_CR29 T Steihaug (76126_CR43) 1983; 20 A Sharafi (76126_CR3) 2017; 30 K Hammernik (76126_CR14) 2018; 79 C Belthangady (76126_CR28) 2019 JW MacKay (76126_CR1) 2018; 26 MVW Zibetti (76126_CR32) 2016; 28 F Knoll (76126_CR16) 2019; 81 F Knoll (76126_CR36) 2011; 65 Y Li (76126_CR20) 2018; 6 F Chen (76126_CR17) 2018; 289 M Lustig (76126_CR31) 2007; 58 Y Zhou (76126_CR10) 2016; 75 TJ Mosher (76126_CR4) 2011; 258 M Uecker (76126_CR33) 2014; 71 L Feng (76126_CR24) 2011; 65 Y Hu (76126_CR37) 2014; 23 MVW Zibetti (76126_CR12) 2019; 81 S Roth (76126_CR34) 2009; 82 76126_CR18 76126_CR39 Y Zhu (76126_CR22) 2020; 83 F Liu (76126_CR27) 2019; 82 76126_CR35 JG Raya (76126_CR40) 2010; 63 MVW Zibetti (76126_CR11) 2018; 80 |
References_xml | – ident: CR18 – volume: 28 start-page: 1109 year: 2016 end-page: 1131 ident: CR32 article-title: Improving compressive sensing in MRI with separate magnitude and phase priors publication-title: Multidimens. Syst. Signal Process. doi: 10.1007/s11045-016-0383-6 contributor: fullname: De Pierro – year: 2004 ident: CR45 publication-title: Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting contributor: fullname: Christopoulos – volume: 61 start-page: 803 year: 2009 end-page: 809 ident: CR6 article-title: Multicomponent T2 relaxation analysis in cartilage publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21926 contributor: fullname: Spencer – volume: 65 start-page: 480 year: 2011 end-page: 491 ident: CR36 article-title: Second order total generalized variation (TGV) for MRI publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22595 contributor: fullname: Stollberger – volume: 83 start-page: 2092 year: 2020 end-page: 2106 ident: CR22 article-title: Bio-SCOPE: fast biexponential T1ρ mapping of the brain using signal-compensated low-rank plus sparse matrix decomposition publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28067 contributor: fullname: Zhu – ident: CR39 – volume: 48 start-page: 1707 year: 2018 end-page: 1716 ident: CR8 article-title: Isotropic morphometry and multicomponent T1ρ mapping of human knee articular cartilage in vivo at 3T publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.26173 contributor: fullname: Regatte – volume: 75 start-page: 1617 year: 2016 end-page: 1629 ident: CR10 article-title: Accelerating T1ρ cartilage imaging using compressed sensing with iterative locally adapted support detection and JSENSE publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25773 contributor: fullname: Zhou – volume: 81 start-page: 116 year: 2019 end-page: 128 ident: CR16 article-title: Assessment of the generalization of learned image reconstruction and the potential for transfer learning publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27355 contributor: fullname: Knoll – volume: 53 start-page: 675 year: 2012 end-page: 681 ident: CR44 article-title: Observation of bi-exponential T1ρ relaxation of in-vivo rat muscles at 3T publication-title: Acta Radiol. doi: 10.1258/ar.2012.120108 contributor: fullname: Wang – volume: 37 start-page: 128 year: 2020 end-page: 140 ident: CR15 article-title: Deep-learning methods for parallel magnetic resonance imaging reconstruction: A survey of the current approaches, trends, and issues publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2019.2950640 contributor: fullname: Knoll – volume: 17 start-page: 379 year: 2009 ident: CR30 article-title: L1 SPIR-iT: autocalibrating parallel imaging compressed sensing publication-title: Proc. Intl. Soc. Mag. Res. Med contributor: fullname: Pauly – ident: CR35 – ident: CR29 – volume: 258 start-page: 832 year: 2011 end-page: 842 ident: CR4 article-title: Knee articular cartilage damage in osteoarthritis: Analysis of MR image biomarker reproducibility in ACRIN-PA 4001 multicenter trial publication-title: Radiology doi: 10.1148/radiol.10101174 contributor: fullname: Mosher – volume: 83 start-page: 1291 year: 2020 end-page: 1309 ident: CR21 article-title: Accelerated mono- and biexponential 3D–T1ρ relaxation mapping of knee cartilage using golden angle radial acquisitions and compressed sensing publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28019 contributor: fullname: Regatte – volume: 75 start-page: 1175 year: 2016 end-page: 1186 ident: CR26 article-title: Accelerated whole-brain multi-parameter mapping using blind compressed sensing publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25722 contributor: fullname: Jacob – volume: 289 start-page: 366 year: 2018 end-page: 373 ident: CR17 article-title: Variable-density single-shot fast spin-echo MRI with deep learning reconstruction by using variational networks publication-title: Radiology doi: 10.1148/radiol.2018180445 contributor: fullname: Chen – volume: 73 start-page: 263 year: 2015 end-page: 272 ident: CR23 article-title: PANDA-T1ρ: Integrating principal component analysis and dictionary learning for fast T1ρ mapping publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25130 contributor: fullname: Zhu – volume: 26 start-page: 1140 year: 2018 end-page: 1152 ident: CR1 article-title: Systematic review and meta-analysis of the reliability and discriminative validity of cartilage compositional MRI in knee osteoarthritis publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2017.11.018 contributor: fullname: MacKay – volume: 6 start-page: 47943 year: 2018 end-page: 47952 ident: CR20 article-title: Co-Robust-ADMM-Net: Joint ADMM framework and DNN for robust sparse composite regularization publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2867435 contributor: fullname: Gui – ident: CR19 – volume: 39 start-page: 1191 year: 2014 end-page: 1197 ident: CR5 article-title: Rapid multicomponent T2 analysis of the articular cartilage of the human knee joint at 3.0T publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.24290 contributor: fullname: Liu – volume: 70 start-page: 1319 year: 2013 end-page: 1331 ident: CR41 article-title: Multipeak fat-corrected complex R2* relaxometry: Theory, optimization, and clinical validation publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24593 contributor: fullname: Reeder – volume: 37 start-page: 141 year: 2020 end-page: 151 ident: CR13 article-title: Deep magnetic resonance image reconstruction: Inverse problems meet neural networks publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2019.2950557 contributor: fullname: Ying – volume: 30 start-page: e3760 year: 2017 ident: CR3 article-title: Biexponential T1ρ relaxation mapping of human knee cartilage in vivo at 3 T publication-title: NMR Biomed. doi: 10.1002/nbm.3760 contributor: fullname: Regatte – volume: 80 start-page: 1475 year: 2018 end-page: 1491 ident: CR11 article-title: Accelerating 3D–T1ρ mapping of cartilage using compressed sensing with different sparse and low rank models publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27138 contributor: fullname: Regatte – volume: 23 start-page: 2423 year: 2014 end-page: 2435 ident: CR37 article-title: Generalized higher degree total variation (HDTV) regularization publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2315156 contributor: fullname: Jacob – volume: 82 start-page: 174 year: 2019 end-page: 188 ident: CR27 article-title: MANTIS: Model-augmented neural network with incoherent k-space SAMPLING for efficient MR parameter mapping publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27707 contributor: fullname: Kijowski – volume: 65 start-page: 1661 year: 2011 end-page: 1669 ident: CR24 article-title: Accelerated cardiac T2 mapping using breath-hold multiecho fast spin-echo pulse sequence with k–t FOCUSS publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22756 contributor: fullname: Feng – volume: 47 start-page: 809 year: 2018 end-page: 819 ident: CR7 article-title: Biexponential T2 relaxation estimation of human knee cartilage in vivo at 3T publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.25778 contributor: fullname: Regatte – volume: 81 start-page: 863 year: 2019 end-page: 880 ident: CR12 article-title: Compressed sensing acceleration of biexponential 3D-T1ρ relaxation mapping of knee cartilage publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27416 contributor: fullname: Regatte – volume: 71 start-page: 990 year: 2014 end-page: 1001 ident: CR33 article-title: ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24751 contributor: fullname: Uecker – volume: 63 start-page: 181 year: 2010 end-page: 193 ident: CR40 article-title: T2 measurement in articular cartilage: Impact of the fitting method on accuracy and precision at low SNR publication-title: Magn. Reson. Med. contributor: fullname: Raya – volume: 75 start-page: 1256 year: 2016 end-page: 1261 ident: CR9 article-title: Accelerated T1ρ acquisition for knee cartilage quantification using compressed sensing and data-driven parallel imaging: A feasibility study publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25702 contributor: fullname: Li – volume: 79 start-page: 3055 year: 2018 end-page: 3071 ident: CR14 article-title: Learning a variational network for reconstruction of accelerated MRI data publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26977 contributor: fullname: Hammernik – volume: 5 start-page: 294 year: 2016 end-page: 300 ident: CR2 article-title: MRI T1ρ and T2 mapping for the assessment of articular cartilage changes in patients with medial knee osteoarthritis after hemicallotasis osteotomy publication-title: Bone Jt. Res. doi: 10.1302/2046-3758.57.BJR-2016-0057.R1 contributor: fullname: Nishioka – volume: 40 start-page: 1003 year: 2014 end-page: 1021 ident: CR42 article-title: Quantification of liver iron with MRI: State of the art and remaining challenges publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.24584 contributor: fullname: Reeder – volume: 20 start-page: 626 year: 1983 end-page: 637 ident: CR43 article-title: The conjugate gradient method and trust regions in large scale optimization publication-title: SIAM J. Numer. Anal. doi: 10.1137/0720042 contributor: fullname: Steihaug – volume: 5 start-page: 109 year: 2019 end-page: 119 ident: CR38 article-title: Monotone FISTA with variable acceleration for compressed sensing magnetic resonance imaging publication-title: IEEE Trans. Comput. Imaging doi: 10.1109/TCI.2018.2882681 contributor: fullname: Herman – volume: 82 start-page: 205 year: 2009 end-page: 229 ident: CR34 article-title: Fields of Experts publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-008-0197-6 contributor: fullname: Black – year: 2019 ident: CR28 article-title: Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction publication-title: Nat. Methods doi: 10.1038/s41592-019-0458-z contributor: fullname: Royer – volume: 64 start-page: 1114 year: 2010 end-page: 1120 ident: CR25 article-title: Compressed sensing reconstruction for magnetic resonance parameter mapping publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22483 contributor: fullname: Doneva – volume: 58 start-page: 1182 year: 2007 end-page: 1195 ident: CR31 article-title: Sparse MRI: The application of compressed sensing for rapid MR imaging publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21391 contributor: fullname: Pauly – volume: 65 start-page: 1661 year: 2011 ident: 76126_CR24 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22756 contributor: fullname: L Feng – volume: 37 start-page: 141 year: 2020 ident: 76126_CR13 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2019.2950557 contributor: fullname: D Liang – volume: 71 start-page: 990 year: 2014 ident: 76126_CR33 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24751 contributor: fullname: M Uecker – volume-title: Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting year: 2004 ident: 76126_CR45 doi: 10.1093/oso/9780195171792.001.0001 contributor: fullname: H Motulsky – volume: 39 start-page: 1191 year: 2014 ident: 76126_CR5 publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.24290 contributor: fullname: F Liu – volume: 79 start-page: 3055 year: 2018 ident: 76126_CR14 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.26977 contributor: fullname: K Hammernik – volume: 37 start-page: 128 year: 2020 ident: 76126_CR15 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2019.2950640 contributor: fullname: F Knoll – ident: 76126_CR19 doi: 10.1109/CVPR.2018.00196 – volume: 23 start-page: 2423 year: 2014 ident: 76126_CR37 publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2014.2315156 contributor: fullname: Y Hu – ident: 76126_CR29 doi: 10.1007/978-3-030-00928-1_60 – volume: 289 start-page: 366 year: 2018 ident: 76126_CR17 publication-title: Radiology doi: 10.1148/radiol.2018180445 contributor: fullname: F Chen – volume: 75 start-page: 1617 year: 2016 ident: 76126_CR10 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25773 contributor: fullname: Y Zhou – volume: 258 start-page: 832 year: 2011 ident: 76126_CR4 publication-title: Radiology doi: 10.1148/radiol.10101174 contributor: fullname: TJ Mosher – volume: 61 start-page: 803 year: 2009 ident: 76126_CR6 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21926 contributor: fullname: DA Reiter – volume: 20 start-page: 626 year: 1983 ident: 76126_CR43 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0720042 contributor: fullname: T Steihaug – volume: 58 start-page: 1182 year: 2007 ident: 76126_CR31 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.21391 contributor: fullname: M Lustig – ident: 76126_CR35 doi: 10.1109/ICIP.2012.6467010 – volume: 6 start-page: 47943 year: 2018 ident: 76126_CR20 publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2867435 contributor: fullname: Y Li – volume: 63 start-page: 181 year: 2010 ident: 76126_CR40 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22178 contributor: fullname: JG Raya – volume: 70 start-page: 1319 year: 2013 ident: 76126_CR41 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.24593 contributor: fullname: D Hernando – ident: 76126_CR18 – volume: 83 start-page: 1291 year: 2020 ident: 76126_CR21 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28019 contributor: fullname: MVW Zibetti – ident: 76126_CR39 – volume: 64 start-page: 1114 year: 2010 ident: 76126_CR25 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22483 contributor: fullname: M Doneva – volume: 5 start-page: 294 year: 2016 ident: 76126_CR2 publication-title: Bone Jt. Res. doi: 10.1302/2046-3758.57.BJR-2016-0057.R1 contributor: fullname: H Nishioka – volume: 40 start-page: 1003 year: 2014 ident: 76126_CR42 publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.24584 contributor: fullname: D Hernando – volume: 17 start-page: 379 year: 2009 ident: 76126_CR30 publication-title: Proc. Intl. Soc. Mag. Res. Med contributor: fullname: M Lustig – volume: 81 start-page: 116 year: 2019 ident: 76126_CR16 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27355 contributor: fullname: F Knoll – volume: 28 start-page: 1109 year: 2016 ident: 76126_CR32 publication-title: Multidimens. Syst. Signal Process. doi: 10.1007/s11045-016-0383-6 contributor: fullname: MVW Zibetti – volume: 82 start-page: 205 year: 2009 ident: 76126_CR34 publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-008-0197-6 contributor: fullname: S Roth – volume: 73 start-page: 263 year: 2015 ident: 76126_CR23 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25130 contributor: fullname: Y Zhu – year: 2019 ident: 76126_CR28 publication-title: Nat. Methods doi: 10.1038/s41592-019-0458-z contributor: fullname: C Belthangady – volume: 80 start-page: 1475 year: 2018 ident: 76126_CR11 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27138 contributor: fullname: MVW Zibetti – volume: 26 start-page: 1140 year: 2018 ident: 76126_CR1 publication-title: Osteoarthr. Cartil. doi: 10.1016/j.joca.2017.11.018 contributor: fullname: JW MacKay – volume: 81 start-page: 863 year: 2019 ident: 76126_CR12 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27416 contributor: fullname: MVW Zibetti – volume: 65 start-page: 480 year: 2011 ident: 76126_CR36 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.22595 contributor: fullname: F Knoll – volume: 75 start-page: 1256 year: 2016 ident: 76126_CR9 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25702 contributor: fullname: P Pandit – volume: 5 start-page: 109 year: 2019 ident: 76126_CR38 publication-title: IEEE Trans. Comput. Imaging doi: 10.1109/TCI.2018.2882681 contributor: fullname: MVW Zibetti – volume: 53 start-page: 675 year: 2012 ident: 76126_CR44 publication-title: Acta Radiol. doi: 10.1258/ar.2012.120108 contributor: fullname: J Yuan – volume: 47 start-page: 809 year: 2018 ident: 76126_CR7 publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.25778 contributor: fullname: A Sharafi – volume: 48 start-page: 1707 year: 2018 ident: 76126_CR8 publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.26173 contributor: fullname: R Baboli – volume: 75 start-page: 1175 year: 2016 ident: 76126_CR26 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.25722 contributor: fullname: S Bhave – volume: 83 start-page: 2092 year: 2020 ident: 76126_CR22 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28067 contributor: fullname: Y Zhu – volume: 30 start-page: e3760 year: 2017 ident: 76126_CR3 publication-title: NMR Biomed. doi: 10.1002/nbm.3760 contributor: fullname: A Sharafi – volume: 82 start-page: 174 year: 2019 ident: 76126_CR27 publication-title: Magn. Reson. Med. doi: 10.1002/mrm.27707 contributor: fullname: F Liu |
SSID | ssj0000529419 |
Score | 2.4395235 |
Snippet | In this study we use undersampled MRI acquisition methods to obtain accelerated 3D mono and biexponential spin–lattice relaxation time in the rotating frame (T... Abstract In this study we use undersampled MRI acquisition methods to obtain accelerated 3D mono and biexponential spin–lattice relaxation time in the rotating... In this study we use undersampled MRI acquisition methods to obtain accelerated 3D mono and biexponential spin–lattice relaxation time in the rotating frame... In this study we use undersampled MRI acquisition methods to obtain accelerated 3D mono and biexponential spin-lattice relaxation time in the rotating frame... |
SourceID | pubmedcentral proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 19144 |
SubjectTerms | 692/700/1421/1628 692/700/1421/2025 Cartilage Coefficient of variation Humanities and Social Sciences Knee Magnetic resonance imaging Mapping multidisciplinary Science Science (multidisciplinary) Variance analysis |
Title | Rapid mono and biexponential 3D-T1ρ mapping of knee cartilage using variational networks |
URI | https://link.springer.com/article/10.1038/s41598-020-76126-x https://www.proquest.com/docview/2471540659 https://search.proquest.com/docview/2458038835 https://pubmed.ncbi.nlm.nih.gov/PMC7645759 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6xlZC4IFpABNrKSNzA3SRObOeI-lAvRQiKBKfI8aOs2vWu2C4qR34hf4kZJ-lL4sIpB8eyPZ5kvvGMvwF44xTqQeNzjs6y4FVtCm46GbjuvCmMKa1N4YLjz-rDV31wSDQ59XgXJiXt2262Fy_me3H2PeVWLud2OuaJTT-e7CtZUV3J6QQmiA1vueg9oXfZVEUzXJDJhZ6u0EjRRTJ0lNBpLyUn8mkhCDxQNdzb9ugGZN5PkbwXJ03m5-gJPB5wI3vfz28THvi4BQ_7SpK_nsK3T2Y5cwx1asFMdKyb-avlIlIqEPYSB_y0-PObzQ2xMZyxRWDn0XtmabkX-EdhlP5-xn6i4zwcDrLY54evnsGXo8PT_WM-VE3gFtdzyYWUQUujhKy0MIXwiJmcbvImt8GEEIQzLnSq9mXIFdH1laZxzilEVrUtOi2ew0bECb4AppWRpZO5RUxV4aOz0udWUFnPyrlgM3g7yq5d9uQYbQpqC932Qm9R6G0SenuVwfYo3nb4UFZticYRQaOsmwxeXzejilPcwkS_WNM7tSbSGlFnoO5sy_WoRJJ9twV1J5FlD7qSwbtxA28G__dcX_73QK_gUUmaRifP9TZsXP5Y-x2YrNx6N_n7u0lb_wIKPe7I |
link.rule.ids | 230,315,729,782,786,866,887,27935,27936,53803,53805 |
linkProvider | National Library of Medicine |
linkToHtml | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIgQX3hWBAkbiBu4mcWI7R9SHFtFWCBYJTpbjR1nRza7YLipHfiF_iZk8-pK49JSDE43lb5yZ8Yy_AXjtFepBFVKOwbLgRWkzbmsZua6DzazNnWvTBePP6vCr3tklmpxyuAvTFu27errVHM-2mun3trZyMXOjoU5s9PFgW8mC-kqO1uAm7tdUXAjSO0rvvCqyqr8ikwo9WqKZoqtkGCph2J5LTvTTQpD7QP1wL1qkczfzapHklUxpa4D27l1z6vfhbu9xsnfd8AO4EZqHcKvrQfn7EXz7ZBdTz1Ab58w2ntXTcLqYN1REhF-JHT7J_v5hM0s8DkdsHtmPJgTmSNox_osYFc4fsV8YcvfHiqzpKsuXj-HL3u5ke8z7fgvc4TqccCFl1NIqIQstbCYCelteV2mVumhjjMJbH2tVhjymioj-clt57xX6ZKXLai02YL3BCT4BppWVuZepQ2-swEftZEidoIaghffRJfBmWHOz6Gg1TJsOF9p0YBkEy7RgmdMENgdYTL_FliZHs4rupiyrBF6dDePmoIyHbcJ8Re-UmuhuRJmAugTnmVSi1748gtC1NNs9VAm8HYA_F_7_uT69tqCXcHs8Odg3--8PPzyDOzlpK51fl5uwfvJzFZ7D2tKvXrS6_g9r2wN4 |
linkToPdf | http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIhAX3qiBAkbiBm4eTmzniLpdFQFVBUWCk-X4UVbteiO2i8qRX9i_1HGS3T4kLnDKwYnG8jfOzHjG3wC8tgL1oHYZxWCZ0bLSOdUN91Q2TudaF8Z06YLdL2LvmxztRJqcVauvrmjfNJOtcDzdCpMfXW1lOzXpsk4s3f-0LXgZ-0qmrfXpGtzEPZtVlwL1nta7qMu8Hq7JZEymczRV8ToZhksYuhecRgpqxqILEXviXrZKF67m9ULJa9nSzgiN7_3H9O_D3cHzJO_6Vx7ADRcewq2-F-XvR_D9s24nlqBWzogOljQTd9rOQiwmwq_YiB7kZ3_IVEc-h0My8-QoOEdMlHiM_yQSC-gPyS8MvYfjRRL6CvP5Y_g63jnY3qVD3wVqcC1OKOPcS64F46VkOmcOvS4r66zOjNfee2a19Y2oXOEzEQn_Cl1bawX6ZpXJG8mewHrACW4AkULzwvLMoFdW4qMx3GWGxcagpbXeJPBmue6q7ek1VJcWZ1L1gCkETHWAqdMENpfQqGGrzVWB5hXdTl7VCbxaDeMmiZkPHdxsEd-pZKS9YVUC4gqkK6mRZvvqCMLX0W0PcCXwdgn-hfC_z_XpPwt6Cbf3R2P18f3eh2dwp4gKG4-xq01YP_m5cM9hbW4XLzp1Pwed5wX4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+mono+and+biexponential+3D-T1%CF%81+mapping+of+knee+cartilage+using+variational+networks&rft.jtitle=Scientific+reports&rft.au=Zibetti%2C+Marcelo+V.+W.&rft.au=Johnson%2C+Patricia+M.&rft.au=Sharafi%2C+Azadeh&rft.au=Hammernik%2C+Kerstin&rft.date=2020-11-05&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-020-76126-x&rft.externalDocID=10_1038_s41598_020_76126_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |