Rapid mono and biexponential 3D-T1ρ mapping of knee cartilage using variational networks

In this study we use undersampled MRI acquisition methods to obtain accelerated 3D mono and biexponential spin–lattice relaxation time in the rotating frame (T 1ρ ) mapping of knee cartilage, reducing the usual long scan time. We compare the accelerated T 1ρ maps obtained by deep learning-based vari...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports Vol. 10; no. 1; p. 19144
Main Authors: Zibetti, Marcelo V. W., Johnson, Patricia M., Sharafi, Azadeh, Hammernik, Kerstin, Knoll, Florian, Regatte, Ravinder R.
Format: Journal Article
Language:English
Published: London Nature Publishing Group UK 05-11-2020
Nature Publishing Group
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this study we use undersampled MRI acquisition methods to obtain accelerated 3D mono and biexponential spin–lattice relaxation time in the rotating frame (T 1ρ ) mapping of knee cartilage, reducing the usual long scan time. We compare the accelerated T 1ρ maps obtained by deep learning-based variational network (VN) and compressed sensing (CS). Both methods were compared with spatial (S) and spatio-temporal (ST) filters. Complex-valued fitting was used for T 1ρ parameters estimation. We tested with seven in vivo and six synthetic datasets, with acceleration factors (AF) from 2 to 10. Median normalized absolute deviation (MNAD), analysis of variance (ANOVA), and coefficient of variation (CV) were used for analysis. The methods CS-ST, VN-S, and VN-ST performed well for accelerating monoexponential T 1ρ mapping, with MNAD around 5% for AF = 2, which increases almost linearly with the AF to an MNAD of 13% for AF = 8, with all methods. For biexponential mapping, the VN-ST was the best method starting with MNAD of 7.4% for AF = 2 and reaching MNAD of 13.1% for AF = 8. The VN was able to produce 3D-T 1ρ mapping of knee cartilage with lower error than CS. The best results were obtained by VN-ST, improving CS-ST method by nearly 7.5%.
AbstractList In this study we use undersampled MRI acquisition methods to obtain accelerated 3D mono and biexponential spin-lattice relaxation time in the rotating frame (T1ρ) mapping of knee cartilage, reducing the usual long scan time. We compare the accelerated T1ρ maps obtained by deep learning-based variational network (VN) and compressed sensing (CS). Both methods were compared with spatial (S) and spatio-temporal (ST) filters. Complex-valued fitting was used for T1ρ parameters estimation. We tested with seven in vivo and six synthetic datasets, with acceleration factors (AF) from 2 to 10. Median normalized absolute deviation (MNAD), analysis of variance (ANOVA), and coefficient of variation (CV) were used for analysis. The methods CS-ST, VN-S, and VN-ST performed well for accelerating monoexponential T1ρ mapping, with MNAD around 5% for AF = 2, which increases almost linearly with the AF to an MNAD of 13% for AF = 8, with all methods. For biexponential mapping, the VN-ST was the best method starting with MNAD of 7.4% for AF = 2 and reaching MNAD of 13.1% for AF = 8. The VN was able to produce 3D-T1ρ mapping of knee cartilage with lower error than CS. The best results were obtained by VN-ST, improving CS-ST method by nearly 7.5%.
Abstract In this study we use undersampled MRI acquisition methods to obtain accelerated 3D mono and biexponential spin–lattice relaxation time in the rotating frame (T 1ρ ) mapping of knee cartilage, reducing the usual long scan time. We compare the accelerated T 1ρ maps obtained by deep learning-based variational network (VN) and compressed sensing (CS). Both methods were compared with spatial (S) and spatio-temporal (ST) filters. Complex-valued fitting was used for T 1ρ parameters estimation. We tested with seven in vivo and six synthetic datasets, with acceleration factors (AF) from 2 to 10. Median normalized absolute deviation (MNAD), analysis of variance (ANOVA), and coefficient of variation (CV) were used for analysis. The methods CS-ST, VN-S, and VN-ST performed well for accelerating monoexponential T 1ρ mapping, with MNAD around 5% for AF = 2, which increases almost linearly with the AF to an MNAD of 13% for AF = 8, with all methods. For biexponential mapping, the VN-ST was the best method starting with MNAD of 7.4% for AF = 2 and reaching MNAD of 13.1% for AF = 8. The VN was able to produce 3D-T 1ρ mapping of knee cartilage with lower error than CS. The best results were obtained by VN-ST, improving CS-ST method by nearly 7.5%.
In this study we use undersampled MRI acquisition methods to obtain accelerated 3D mono and biexponential spin–lattice relaxation time in the rotating frame (T 1ρ ) mapping of knee cartilage, reducing the usual long scan time. We compare the accelerated T 1ρ maps obtained by deep learning-based variational network (VN) and compressed sensing (CS). Both methods were compared with spatial (S) and spatio-temporal (ST) filters. Complex-valued fitting was used for T 1ρ parameters estimation. We tested with seven in vivo and six synthetic datasets, with acceleration factors (AF) from 2 to 10. Median normalized absolute deviation (MNAD), analysis of variance (ANOVA), and coefficient of variation (CV) were used for analysis. The methods CS-ST, VN-S, and VN-ST performed well for accelerating monoexponential T 1ρ mapping, with MNAD around 5% for AF = 2, which increases almost linearly with the AF to an MNAD of 13% for AF = 8, with all methods. For biexponential mapping, the VN-ST was the best method starting with MNAD of 7.4% for AF = 2 and reaching MNAD of 13.1% for AF = 8. The VN was able to produce 3D-T 1ρ mapping of knee cartilage with lower error than CS. The best results were obtained by VN-ST, improving CS-ST method by nearly 7.5%.
ArticleNumber 19144
Author Knoll, Florian
Sharafi, Azadeh
Hammernik, Kerstin
Johnson, Patricia M.
Regatte, Ravinder R.
Zibetti, Marcelo V. W.
Author_xml – sequence: 1
  givenname: Marcelo V. W.
  orcidid: 0000-0003-2856-3625
  surname: Zibetti
  fullname: Zibetti, Marcelo V. W.
  email: Marcelo.WustZibetti@nyulangone.org
  organization: Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine
– sequence: 2
  givenname: Patricia M.
  orcidid: 0000-0003-1547-9969
  surname: Johnson
  fullname: Johnson, Patricia M.
  organization: Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine
– sequence: 3
  givenname: Azadeh
  orcidid: 0000-0001-9572-4922
  surname: Sharafi
  fullname: Sharafi, Azadeh
  organization: Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine
– sequence: 4
  givenname: Kerstin
  orcidid: 0000-0002-2734-1409
  surname: Hammernik
  fullname: Hammernik, Kerstin
  organization: Department of Computing, Imperial College London
– sequence: 5
  givenname: Florian
  orcidid: 0000-0001-5357-8656
  surname: Knoll
  fullname: Knoll, Florian
  organization: Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine
– sequence: 6
  givenname: Ravinder R.
  orcidid: 0000-0002-4607-7682
  surname: Regatte
  fullname: Regatte, Ravinder R.
  organization: Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine
BookMark eNp9UU1P3DAUtCpQoXT_QE-WeuES8EccJ5dKCFpAQkJC9NCT9Ta2F0Nip3ZCt0d-IX-pXnYFlAO-PMtvZt74zSe05YM3CH2h5IASXh-mkoqmLggjhawoq4rlB7TLSCkKxhnbenXfQbOUbkk-gjUlbT6iHc6pKAUVu-jXFQxO4z74gMFrPHdmOeRJfnTQYX5SXNPHB9zDMDi_wMHiO28MbiGOroOFwVNavd9DdDC64DPHm_FPiHfpM9q20CUz29Q99PPH9-vjs-Li8vT8-OiiaLODseBVZesKJK_KmgPlJlvWdUMa0lqw1nIN2s6lMMwSKWlJGDRaa8lZKVo6r_ke-rbWHaZ5b3SbrUfo1BBdD_GvCuDU_x3vbtQi3CtZlUKKJgvsbwRi-D2ZNKrepdZ0HXgTpqTyoDpvvOYiQ7--gd6GKeZfr1Ay75RUT4JsjWpjSCka-2yGErUKT63DUzk89RSeWmYSX5NSBvuFiS_S77D-AeCVnm8
CitedBy_id crossref_primary_10_1088_1361_6560_acc0cd
crossref_primary_10_1109_TCI_2022_3176129
crossref_primary_10_3390_diagnostics12030688
crossref_primary_10_3390_bioengineering10020267
crossref_primary_10_1007_s00256_024_04734_z
crossref_primary_10_1002_jmri_28451
crossref_primary_10_1155_2022_9222958
crossref_primary_10_1088_1361_6560_ac8c81
crossref_primary_10_1002_jmri_28689
crossref_primary_10_1038_s41598_022_21269_2
Cites_doi 10.1007/s11045-016-0383-6
10.1002/mrm.21926
10.1002/mrm.22595
10.1002/mrm.28067
10.1002/jmri.26173
10.1002/mrm.25773
10.1002/mrm.27355
10.1258/ar.2012.120108
10.1109/MSP.2019.2950640
10.1148/radiol.10101174
10.1002/mrm.28019
10.1002/mrm.25722
10.1148/radiol.2018180445
10.1002/mrm.25130
10.1016/j.joca.2017.11.018
10.1109/ACCESS.2018.2867435
10.1002/jmri.24290
10.1002/mrm.24593
10.1109/MSP.2019.2950557
10.1002/nbm.3760
10.1002/mrm.27138
10.1109/TIP.2014.2315156
10.1002/mrm.27707
10.1002/mrm.22756
10.1002/jmri.25778
10.1002/mrm.27416
10.1002/mrm.24751
10.1002/mrm.25702
10.1002/mrm.26977
10.1302/2046-3758.57.BJR-2016-0057.R1
10.1002/jmri.24584
10.1137/0720042
10.1109/TCI.2018.2882681
10.1007/s11263-008-0197-6
10.1038/s41592-019-0458-z
10.1002/mrm.22483
10.1002/mrm.21391
10.1093/oso/9780195171792.001.0001
10.1109/CVPR.2018.00196
10.1007/978-3-030-00928-1_60
10.1109/ICIP.2012.6467010
10.1002/mrm.22178
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PIMPY
PQEST
PQQKQ
PQUKI
Q9U
7X8
5PM
DOI 10.1038/s41598-020-76126-x
DatabaseName SpringerOpen
CrossRef
ProQuest Central (Corporate)
ProQuest_Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Science Database (ProQuest)
Biological Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 19144
ExternalDocumentID 10_1038_s41598_020_76126_x
GrantInformation_xml – fundername: National Institutes of Health
  grantid: R21-AR075259-01A1; R01 AR076328; R01-AR067156; R01EB024532; R01-AR068966
– fundername: NIBIB Biomedical Technology Resource Center
  grantid: P41-EB017183
– fundername: ;
  grantid: P41-EB017183
– fundername: ;
  grantid: R21-AR075259-01A1; R01 AR076328; R01-AR067156; R01EB024532; R01-AR068966
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ADBBV
ADRAZ
AENEX
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RIG
RNT
RNTTT
RPM
SNYQT
UKHRP
AAYXX
AFPKN
CITATION
7XB
8FK
K9.
PQEST
PQUKI
Q9U
7X8
5PM
ID FETCH-LOGICAL-c451t-366f86a736483a13e232d89090cfafff3dadfb75e2f0771402a9ddd73245c1b83
IEDL.DBID RPM
ISSN 2045-2322
IngestDate Tue Sep 17 21:09:00 EDT 2024
Sat Oct 26 06:01:28 EDT 2024
Sat Nov 09 11:41:27 EST 2024
Wed Aug 28 12:36:05 EDT 2024
Fri Oct 11 20:44:34 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c451t-366f86a736483a13e232d89090cfafff3dadfb75e2f0771402a9ddd73245c1b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5357-8656
0000-0002-4607-7682
0000-0001-9572-4922
0000-0003-1547-9969
0000-0002-2734-1409
0000-0003-2856-3625
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7645759/
PMID 33154515
PQID 2471540659
PQPubID 2041939
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7645759
proquest_miscellaneous_2458038835
proquest_journals_2471540659
crossref_primary_10_1038_s41598_020_76126_x
springer_journals_10_1038_s41598_020_76126_x
PublicationCentury 2000
PublicationDate 2020-11-05
PublicationDateYYYYMMDD 2020-11-05
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-05
  day: 05
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Lustig, Alley, Vasanawala, Donoho, Pauly (CR30) 2009; 17
Steihaug (CR43) 1983; 20
Nishioka (CR2) 2016; 5
CR19
Zhu (CR23) 2015; 73
CR18
CR39
Raya (CR40) 2010; 63
Mosher (CR4) 2011; 258
Zhu (CR22) 2020; 83
Roth, Black (CR34) 2009; 82
Zibetti, Helou, Regatte, Herman (CR38) 2019; 5
CR35
Sharafi, Chang, Regatte (CR7) 2018; 47
Motulsky, Christopoulos (CR45) 2004
Hammernik (CR14) 2018; 79
Yuan, Zhao, Chan, Wang (CR44) 2012; 53
Hernando, Levin, Sirlin, Reeder (CR42) 2014; 40
Sharafi, Xia, Chang, Regatte (CR3) 2017; 30
Baboli, Sharafi, Chang, Regatte (CR8) 2018; 48
Liu (CR5) 2014; 39
Liang, Cheng, Ke, Ying (CR13) 2020; 37
Chen (CR17) 2018; 289
Belthangady, Royer (CR28) 2019
Feng (CR24) 2011; 65
Knoll, Bredies, Pock, Stollberger (CR36) 2011; 65
Hu, Ongie, Ramani, Jacob (CR37) 2014; 23
Doneva (CR25) 2010; 64
Hernando, Kramer, Reeder (CR41) 2013; 70
Zibetti, Sharafi, Otazo, Regatte (CR12) 2019; 81
Liu, Feng, Kijowski (CR27) 2019; 82
CR29
Knoll (CR16) 2019; 81
Zibetti, Sharafi, Otazo, Regatte (CR21) 2020; 83
Li, Cheng, Gui (CR20) 2018; 6
Zibetti, De Pierro (CR32) 2016; 28
Pandit, Rivoire, King, Li (CR9) 2016; 75
Lustig, Donoho, Pauly (CR31) 2007; 58
Zhou (CR10) 2016; 75
Uecker (CR33) 2014; 71
Reiter, Lin, Fishbein, Spencer (CR6) 2009; 61
Zibetti, Sharafi, Otazo, Regatte (CR11) 2018; 80
Knoll (CR15) 2020; 37
MacKay (CR1) 2018; 26
Bhave, Lingala, Johnson, Magnotta, Jacob (CR26) 2016; 75
MVW Zibetti (76126_CR21) 2020; 83
F Liu (76126_CR5) 2014; 39
R Baboli (76126_CR8) 2018; 48
D Hernando (76126_CR41) 2013; 70
Y Zhu (76126_CR23) 2015; 73
H Nishioka (76126_CR2) 2016; 5
76126_CR19
H Motulsky (76126_CR45) 2004
D Liang (76126_CR13) 2020; 37
M Lustig (76126_CR30) 2009; 17
MVW Zibetti (76126_CR38) 2019; 5
DA Reiter (76126_CR6) 2009; 61
J Yuan (76126_CR44) 2012; 53
D Hernando (76126_CR42) 2014; 40
P Pandit (76126_CR9) 2016; 75
A Sharafi (76126_CR7) 2018; 47
M Doneva (76126_CR25) 2010; 64
F Knoll (76126_CR15) 2020; 37
S Bhave (76126_CR26) 2016; 75
76126_CR29
T Steihaug (76126_CR43) 1983; 20
A Sharafi (76126_CR3) 2017; 30
K Hammernik (76126_CR14) 2018; 79
C Belthangady (76126_CR28) 2019
JW MacKay (76126_CR1) 2018; 26
MVW Zibetti (76126_CR32) 2016; 28
F Knoll (76126_CR16) 2019; 81
F Knoll (76126_CR36) 2011; 65
Y Li (76126_CR20) 2018; 6
F Chen (76126_CR17) 2018; 289
M Lustig (76126_CR31) 2007; 58
Y Zhou (76126_CR10) 2016; 75
TJ Mosher (76126_CR4) 2011; 258
M Uecker (76126_CR33) 2014; 71
L Feng (76126_CR24) 2011; 65
Y Hu (76126_CR37) 2014; 23
MVW Zibetti (76126_CR12) 2019; 81
S Roth (76126_CR34) 2009; 82
76126_CR18
76126_CR39
Y Zhu (76126_CR22) 2020; 83
F Liu (76126_CR27) 2019; 82
76126_CR35
JG Raya (76126_CR40) 2010; 63
MVW Zibetti (76126_CR11) 2018; 80
References_xml – ident: CR18
– volume: 28
  start-page: 1109
  year: 2016
  end-page: 1131
  ident: CR32
  article-title: Improving compressive sensing in MRI with separate magnitude and phase priors
  publication-title: Multidimens. Syst. Signal Process.
  doi: 10.1007/s11045-016-0383-6
  contributor:
    fullname: De Pierro
– year: 2004
  ident: CR45
  publication-title: Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting
  contributor:
    fullname: Christopoulos
– volume: 61
  start-page: 803
  year: 2009
  end-page: 809
  ident: CR6
  article-title: Multicomponent T2 relaxation analysis in cartilage
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21926
  contributor:
    fullname: Spencer
– volume: 65
  start-page: 480
  year: 2011
  end-page: 491
  ident: CR36
  article-title: Second order total generalized variation (TGV) for MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22595
  contributor:
    fullname: Stollberger
– volume: 83
  start-page: 2092
  year: 2020
  end-page: 2106
  ident: CR22
  article-title: Bio-SCOPE: fast biexponential T1ρ mapping of the brain using signal-compensated low-rank plus sparse matrix decomposition
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.28067
  contributor:
    fullname: Zhu
– ident: CR39
– volume: 48
  start-page: 1707
  year: 2018
  end-page: 1716
  ident: CR8
  article-title: Isotropic morphometry and multicomponent T1ρ mapping of human knee articular cartilage in vivo at 3T
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.26173
  contributor:
    fullname: Regatte
– volume: 75
  start-page: 1617
  year: 2016
  end-page: 1629
  ident: CR10
  article-title: Accelerating T1ρ cartilage imaging using compressed sensing with iterative locally adapted support detection and JSENSE
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25773
  contributor:
    fullname: Zhou
– volume: 81
  start-page: 116
  year: 2019
  end-page: 128
  ident: CR16
  article-title: Assessment of the generalization of learned image reconstruction and the potential for transfer learning
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27355
  contributor:
    fullname: Knoll
– volume: 53
  start-page: 675
  year: 2012
  end-page: 681
  ident: CR44
  article-title: Observation of bi-exponential T1ρ relaxation of in-vivo rat muscles at 3T
  publication-title: Acta Radiol.
  doi: 10.1258/ar.2012.120108
  contributor:
    fullname: Wang
– volume: 37
  start-page: 128
  year: 2020
  end-page: 140
  ident: CR15
  article-title: Deep-learning methods for parallel magnetic resonance imaging reconstruction: A survey of the current approaches, trends, and issues
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2019.2950640
  contributor:
    fullname: Knoll
– volume: 17
  start-page: 379
  year: 2009
  ident: CR30
  article-title: L1 SPIR-iT: autocalibrating parallel imaging compressed sensing
  publication-title: Proc. Intl. Soc. Mag. Res. Med
  contributor:
    fullname: Pauly
– ident: CR35
– ident: CR29
– volume: 258
  start-page: 832
  year: 2011
  end-page: 842
  ident: CR4
  article-title: Knee articular cartilage damage in osteoarthritis: Analysis of MR image biomarker reproducibility in ACRIN-PA 4001 multicenter trial
  publication-title: Radiology
  doi: 10.1148/radiol.10101174
  contributor:
    fullname: Mosher
– volume: 83
  start-page: 1291
  year: 2020
  end-page: 1309
  ident: CR21
  article-title: Accelerated mono- and biexponential 3D–T1ρ relaxation mapping of knee cartilage using golden angle radial acquisitions and compressed sensing
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.28019
  contributor:
    fullname: Regatte
– volume: 75
  start-page: 1175
  year: 2016
  end-page: 1186
  ident: CR26
  article-title: Accelerated whole-brain multi-parameter mapping using blind compressed sensing
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25722
  contributor:
    fullname: Jacob
– volume: 289
  start-page: 366
  year: 2018
  end-page: 373
  ident: CR17
  article-title: Variable-density single-shot fast spin-echo MRI with deep learning reconstruction by using variational networks
  publication-title: Radiology
  doi: 10.1148/radiol.2018180445
  contributor:
    fullname: Chen
– volume: 73
  start-page: 263
  year: 2015
  end-page: 272
  ident: CR23
  article-title: PANDA-T1ρ: Integrating principal component analysis and dictionary learning for fast T1ρ mapping
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25130
  contributor:
    fullname: Zhu
– volume: 26
  start-page: 1140
  year: 2018
  end-page: 1152
  ident: CR1
  article-title: Systematic review and meta-analysis of the reliability and discriminative validity of cartilage compositional MRI in knee osteoarthritis
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2017.11.018
  contributor:
    fullname: MacKay
– volume: 6
  start-page: 47943
  year: 2018
  end-page: 47952
  ident: CR20
  article-title: Co-Robust-ADMM-Net: Joint ADMM framework and DNN for robust sparse composite regularization
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2867435
  contributor:
    fullname: Gui
– ident: CR19
– volume: 39
  start-page: 1191
  year: 2014
  end-page: 1197
  ident: CR5
  article-title: Rapid multicomponent T2 analysis of the articular cartilage of the human knee joint at 3.0T
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.24290
  contributor:
    fullname: Liu
– volume: 70
  start-page: 1319
  year: 2013
  end-page: 1331
  ident: CR41
  article-title: Multipeak fat-corrected complex R2* relaxometry: Theory, optimization, and clinical validation
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24593
  contributor:
    fullname: Reeder
– volume: 37
  start-page: 141
  year: 2020
  end-page: 151
  ident: CR13
  article-title: Deep magnetic resonance image reconstruction: Inverse problems meet neural networks
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2019.2950557
  contributor:
    fullname: Ying
– volume: 30
  start-page: e3760
  year: 2017
  ident: CR3
  article-title: Biexponential T1ρ relaxation mapping of human knee cartilage in vivo at 3 T
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.3760
  contributor:
    fullname: Regatte
– volume: 80
  start-page: 1475
  year: 2018
  end-page: 1491
  ident: CR11
  article-title: Accelerating 3D–T1ρ mapping of cartilage using compressed sensing with different sparse and low rank models
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27138
  contributor:
    fullname: Regatte
– volume: 23
  start-page: 2423
  year: 2014
  end-page: 2435
  ident: CR37
  article-title: Generalized higher degree total variation (HDTV) regularization
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2315156
  contributor:
    fullname: Jacob
– volume: 82
  start-page: 174
  year: 2019
  end-page: 188
  ident: CR27
  article-title: MANTIS: Model-augmented neural network with incoherent k-space SAMPLING for efficient MR parameter mapping
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27707
  contributor:
    fullname: Kijowski
– volume: 65
  start-page: 1661
  year: 2011
  end-page: 1669
  ident: CR24
  article-title: Accelerated cardiac T2 mapping using breath-hold multiecho fast spin-echo pulse sequence with k–t FOCUSS
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22756
  contributor:
    fullname: Feng
– volume: 47
  start-page: 809
  year: 2018
  end-page: 819
  ident: CR7
  article-title: Biexponential T2 relaxation estimation of human knee cartilage in vivo at 3T
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.25778
  contributor:
    fullname: Regatte
– volume: 81
  start-page: 863
  year: 2019
  end-page: 880
  ident: CR12
  article-title: Compressed sensing acceleration of biexponential 3D-T1ρ relaxation mapping of knee cartilage
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27416
  contributor:
    fullname: Regatte
– volume: 71
  start-page: 990
  year: 2014
  end-page: 1001
  ident: CR33
  article-title: ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24751
  contributor:
    fullname: Uecker
– volume: 63
  start-page: 181
  year: 2010
  end-page: 193
  ident: CR40
  article-title: T2 measurement in articular cartilage: Impact of the fitting method on accuracy and precision at low SNR
  publication-title: Magn. Reson. Med.
  contributor:
    fullname: Raya
– volume: 75
  start-page: 1256
  year: 2016
  end-page: 1261
  ident: CR9
  article-title: Accelerated T1ρ acquisition for knee cartilage quantification using compressed sensing and data-driven parallel imaging: A feasibility study
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25702
  contributor:
    fullname: Li
– volume: 79
  start-page: 3055
  year: 2018
  end-page: 3071
  ident: CR14
  article-title: Learning a variational network for reconstruction of accelerated MRI data
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26977
  contributor:
    fullname: Hammernik
– volume: 5
  start-page: 294
  year: 2016
  end-page: 300
  ident: CR2
  article-title: MRI T1ρ and T2 mapping for the assessment of articular cartilage changes in patients with medial knee osteoarthritis after hemicallotasis osteotomy
  publication-title: Bone Jt. Res.
  doi: 10.1302/2046-3758.57.BJR-2016-0057.R1
  contributor:
    fullname: Nishioka
– volume: 40
  start-page: 1003
  year: 2014
  end-page: 1021
  ident: CR42
  article-title: Quantification of liver iron with MRI: State of the art and remaining challenges
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.24584
  contributor:
    fullname: Reeder
– volume: 20
  start-page: 626
  year: 1983
  end-page: 637
  ident: CR43
  article-title: The conjugate gradient method and trust regions in large scale optimization
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0720042
  contributor:
    fullname: Steihaug
– volume: 5
  start-page: 109
  year: 2019
  end-page: 119
  ident: CR38
  article-title: Monotone FISTA with variable acceleration for compressed sensing magnetic resonance imaging
  publication-title: IEEE Trans. Comput. Imaging
  doi: 10.1109/TCI.2018.2882681
  contributor:
    fullname: Herman
– volume: 82
  start-page: 205
  year: 2009
  end-page: 229
  ident: CR34
  article-title: Fields of Experts
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-008-0197-6
  contributor:
    fullname: Black
– year: 2019
  ident: CR28
  article-title: Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0458-z
  contributor:
    fullname: Royer
– volume: 64
  start-page: 1114
  year: 2010
  end-page: 1120
  ident: CR25
  article-title: Compressed sensing reconstruction for magnetic resonance parameter mapping
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22483
  contributor:
    fullname: Doneva
– volume: 58
  start-page: 1182
  year: 2007
  end-page: 1195
  ident: CR31
  article-title: Sparse MRI: The application of compressed sensing for rapid MR imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21391
  contributor:
    fullname: Pauly
– volume: 65
  start-page: 1661
  year: 2011
  ident: 76126_CR24
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22756
  contributor:
    fullname: L Feng
– volume: 37
  start-page: 141
  year: 2020
  ident: 76126_CR13
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2019.2950557
  contributor:
    fullname: D Liang
– volume: 71
  start-page: 990
  year: 2014
  ident: 76126_CR33
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24751
  contributor:
    fullname: M Uecker
– volume-title: Fitting Models to Biological Data Using Linear and Nonlinear Regression: A Practical Guide to Curve Fitting
  year: 2004
  ident: 76126_CR45
  doi: 10.1093/oso/9780195171792.001.0001
  contributor:
    fullname: H Motulsky
– volume: 39
  start-page: 1191
  year: 2014
  ident: 76126_CR5
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.24290
  contributor:
    fullname: F Liu
– volume: 79
  start-page: 3055
  year: 2018
  ident: 76126_CR14
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26977
  contributor:
    fullname: K Hammernik
– volume: 37
  start-page: 128
  year: 2020
  ident: 76126_CR15
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2019.2950640
  contributor:
    fullname: F Knoll
– ident: 76126_CR19
  doi: 10.1109/CVPR.2018.00196
– volume: 23
  start-page: 2423
  year: 2014
  ident: 76126_CR37
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2315156
  contributor:
    fullname: Y Hu
– ident: 76126_CR29
  doi: 10.1007/978-3-030-00928-1_60
– volume: 289
  start-page: 366
  year: 2018
  ident: 76126_CR17
  publication-title: Radiology
  doi: 10.1148/radiol.2018180445
  contributor:
    fullname: F Chen
– volume: 75
  start-page: 1617
  year: 2016
  ident: 76126_CR10
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25773
  contributor:
    fullname: Y Zhou
– volume: 258
  start-page: 832
  year: 2011
  ident: 76126_CR4
  publication-title: Radiology
  doi: 10.1148/radiol.10101174
  contributor:
    fullname: TJ Mosher
– volume: 61
  start-page: 803
  year: 2009
  ident: 76126_CR6
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21926
  contributor:
    fullname: DA Reiter
– volume: 20
  start-page: 626
  year: 1983
  ident: 76126_CR43
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0720042
  contributor:
    fullname: T Steihaug
– volume: 58
  start-page: 1182
  year: 2007
  ident: 76126_CR31
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21391
  contributor:
    fullname: M Lustig
– ident: 76126_CR35
  doi: 10.1109/ICIP.2012.6467010
– volume: 6
  start-page: 47943
  year: 2018
  ident: 76126_CR20
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2867435
  contributor:
    fullname: Y Li
– volume: 63
  start-page: 181
  year: 2010
  ident: 76126_CR40
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22178
  contributor:
    fullname: JG Raya
– volume: 70
  start-page: 1319
  year: 2013
  ident: 76126_CR41
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24593
  contributor:
    fullname: D Hernando
– ident: 76126_CR18
– volume: 83
  start-page: 1291
  year: 2020
  ident: 76126_CR21
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.28019
  contributor:
    fullname: MVW Zibetti
– ident: 76126_CR39
– volume: 64
  start-page: 1114
  year: 2010
  ident: 76126_CR25
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22483
  contributor:
    fullname: M Doneva
– volume: 5
  start-page: 294
  year: 2016
  ident: 76126_CR2
  publication-title: Bone Jt. Res.
  doi: 10.1302/2046-3758.57.BJR-2016-0057.R1
  contributor:
    fullname: H Nishioka
– volume: 40
  start-page: 1003
  year: 2014
  ident: 76126_CR42
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.24584
  contributor:
    fullname: D Hernando
– volume: 17
  start-page: 379
  year: 2009
  ident: 76126_CR30
  publication-title: Proc. Intl. Soc. Mag. Res. Med
  contributor:
    fullname: M Lustig
– volume: 81
  start-page: 116
  year: 2019
  ident: 76126_CR16
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27355
  contributor:
    fullname: F Knoll
– volume: 28
  start-page: 1109
  year: 2016
  ident: 76126_CR32
  publication-title: Multidimens. Syst. Signal Process.
  doi: 10.1007/s11045-016-0383-6
  contributor:
    fullname: MVW Zibetti
– volume: 82
  start-page: 205
  year: 2009
  ident: 76126_CR34
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-008-0197-6
  contributor:
    fullname: S Roth
– volume: 73
  start-page: 263
  year: 2015
  ident: 76126_CR23
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25130
  contributor:
    fullname: Y Zhu
– year: 2019
  ident: 76126_CR28
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0458-z
  contributor:
    fullname: C Belthangady
– volume: 80
  start-page: 1475
  year: 2018
  ident: 76126_CR11
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27138
  contributor:
    fullname: MVW Zibetti
– volume: 26
  start-page: 1140
  year: 2018
  ident: 76126_CR1
  publication-title: Osteoarthr. Cartil.
  doi: 10.1016/j.joca.2017.11.018
  contributor:
    fullname: JW MacKay
– volume: 81
  start-page: 863
  year: 2019
  ident: 76126_CR12
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27416
  contributor:
    fullname: MVW Zibetti
– volume: 65
  start-page: 480
  year: 2011
  ident: 76126_CR36
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22595
  contributor:
    fullname: F Knoll
– volume: 75
  start-page: 1256
  year: 2016
  ident: 76126_CR9
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25702
  contributor:
    fullname: P Pandit
– volume: 5
  start-page: 109
  year: 2019
  ident: 76126_CR38
  publication-title: IEEE Trans. Comput. Imaging
  doi: 10.1109/TCI.2018.2882681
  contributor:
    fullname: MVW Zibetti
– volume: 53
  start-page: 675
  year: 2012
  ident: 76126_CR44
  publication-title: Acta Radiol.
  doi: 10.1258/ar.2012.120108
  contributor:
    fullname: J Yuan
– volume: 47
  start-page: 809
  year: 2018
  ident: 76126_CR7
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.25778
  contributor:
    fullname: A Sharafi
– volume: 48
  start-page: 1707
  year: 2018
  ident: 76126_CR8
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.26173
  contributor:
    fullname: R Baboli
– volume: 75
  start-page: 1175
  year: 2016
  ident: 76126_CR26
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.25722
  contributor:
    fullname: S Bhave
– volume: 83
  start-page: 2092
  year: 2020
  ident: 76126_CR22
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.28067
  contributor:
    fullname: Y Zhu
– volume: 30
  start-page: e3760
  year: 2017
  ident: 76126_CR3
  publication-title: NMR Biomed.
  doi: 10.1002/nbm.3760
  contributor:
    fullname: A Sharafi
– volume: 82
  start-page: 174
  year: 2019
  ident: 76126_CR27
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27707
  contributor:
    fullname: F Liu
SSID ssj0000529419
Score 2.4395235
Snippet In this study we use undersampled MRI acquisition methods to obtain accelerated 3D mono and biexponential spin–lattice relaxation time in the rotating frame (T...
Abstract In this study we use undersampled MRI acquisition methods to obtain accelerated 3D mono and biexponential spin–lattice relaxation time in the rotating...
In this study we use undersampled MRI acquisition methods to obtain accelerated 3D mono and biexponential spin–lattice relaxation time in the rotating frame...
In this study we use undersampled MRI acquisition methods to obtain accelerated 3D mono and biexponential spin-lattice relaxation time in the rotating frame...
SourceID pubmedcentral
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 19144
SubjectTerms 692/700/1421/1628
692/700/1421/2025
Cartilage
Coefficient of variation
Humanities and Social Sciences
Knee
Magnetic resonance imaging
Mapping
multidisciplinary
Science
Science (multidisciplinary)
Variance analysis
Title Rapid mono and biexponential 3D-T1ρ mapping of knee cartilage using variational networks
URI https://link.springer.com/article/10.1038/s41598-020-76126-x
https://www.proquest.com/docview/2471540659
https://search.proquest.com/docview/2458038835
https://pubmed.ncbi.nlm.nih.gov/PMC7645759
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6xlZC4IFpABNrKSNzA3SRObOeI-lAvRQiKBKfI8aOs2vWu2C4qR34hf4kZJ-lL4sIpB8eyPZ5kvvGMvwF44xTqQeNzjs6y4FVtCm46GbjuvCmMKa1N4YLjz-rDV31wSDQ59XgXJiXt2262Fy_me3H2PeVWLud2OuaJTT-e7CtZUV3J6QQmiA1vueg9oXfZVEUzXJDJhZ6u0EjRRTJ0lNBpLyUn8mkhCDxQNdzb9ugGZN5PkbwXJ03m5-gJPB5wI3vfz28THvi4BQ_7SpK_nsK3T2Y5cwx1asFMdKyb-avlIlIqEPYSB_y0-PObzQ2xMZyxRWDn0XtmabkX-EdhlP5-xn6i4zwcDrLY54evnsGXo8PT_WM-VE3gFtdzyYWUQUujhKy0MIXwiJmcbvImt8GEEIQzLnSq9mXIFdH1laZxzilEVrUtOi2ew0bECb4AppWRpZO5RUxV4aOz0udWUFnPyrlgM3g7yq5d9uQYbQpqC932Qm9R6G0SenuVwfYo3nb4UFZticYRQaOsmwxeXzejilPcwkS_WNM7tSbSGlFnoO5sy_WoRJJ9twV1J5FlD7qSwbtxA28G__dcX_73QK_gUUmaRifP9TZsXP5Y-x2YrNx6N_n7u0lb_wIKPe7I
link.rule.ids 230,315,729,782,786,866,887,27935,27936,53803,53805
linkProvider National Library of Medicine
linkToHtml http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7RIgQX3hWBAkbiBu4mcWI7R9SHFtFWCBYJTpbjR1nRza7YLipHfiF_iZk8-pK49JSDE43lb5yZ8Yy_AXjtFepBFVKOwbLgRWkzbmsZua6DzazNnWvTBePP6vCr3tklmpxyuAvTFu27errVHM-2mun3trZyMXOjoU5s9PFgW8mC-kqO1uAm7tdUXAjSO0rvvCqyqr8ikwo9WqKZoqtkGCph2J5LTvTTQpD7QP1wL1qkczfzapHklUxpa4D27l1z6vfhbu9xsnfd8AO4EZqHcKvrQfn7EXz7ZBdTz1Ab58w2ntXTcLqYN1REhF-JHT7J_v5hM0s8DkdsHtmPJgTmSNox_osYFc4fsV8YcvfHiqzpKsuXj-HL3u5ke8z7fgvc4TqccCFl1NIqIQstbCYCelteV2mVumhjjMJbH2tVhjymioj-clt57xX6ZKXLai02YL3BCT4BppWVuZepQ2-swEftZEidoIaghffRJfBmWHOz6Gg1TJsOF9p0YBkEy7RgmdMENgdYTL_FliZHs4rupiyrBF6dDePmoIyHbcJ8Re-UmuhuRJmAugTnmVSi1748gtC1NNs9VAm8HYA_F_7_uT69tqCXcHs8Odg3--8PPzyDOzlpK51fl5uwfvJzFZ7D2tKvXrS6_g9r2wN4
linkToPdf http://sdu.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7RIhAX3qiBAkbiBm4eTmzniLpdFQFVBUWCk-X4UVbteiO2i8qRX9i_1HGS3T4kLnDKwYnG8jfOzHjG3wC8tgL1oHYZxWCZ0bLSOdUN91Q2TudaF8Z06YLdL2LvmxztRJqcVauvrmjfNJOtcDzdCpMfXW1lOzXpsk4s3f-0LXgZ-0qmrfXpGtzEPZtVlwL1nta7qMu8Hq7JZEymczRV8ToZhksYuhecRgpqxqILEXviXrZKF67m9ULJa9nSzgiN7_3H9O_D3cHzJO_6Vx7ADRcewq2-F-XvR_D9s24nlqBWzogOljQTd9rOQiwmwq_YiB7kZ3_IVEc-h0My8-QoOEdMlHiM_yQSC-gPyS8MvYfjRRL6CvP5Y_g63jnY3qVD3wVqcC1OKOPcS64F46VkOmcOvS4r66zOjNfee2a19Y2oXOEzEQn_Cl1bawX6ZpXJG8mewHrACW4AkULzwvLMoFdW4qMx3GWGxcagpbXeJPBmue6q7ek1VJcWZ1L1gCkETHWAqdMENpfQqGGrzVWB5hXdTl7VCbxaDeMmiZkPHdxsEd-pZKS9YVUC4gqkK6mRZvvqCMLX0W0PcCXwdgn-hfC_z_XpPwt6Cbf3R2P18f3eh2dwp4gKG4-xq01YP_m5cM9hbW4XLzp1Pwed5wX4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rapid+mono+and+biexponential+3D-T1%CF%81+mapping+of+knee+cartilage+using+variational+networks&rft.jtitle=Scientific+reports&rft.au=Zibetti%2C+Marcelo+V.+W.&rft.au=Johnson%2C+Patricia+M.&rft.au=Sharafi%2C+Azadeh&rft.au=Hammernik%2C+Kerstin&rft.date=2020-11-05&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-020-76126-x&rft.externalDocID=10_1038_s41598_020_76126_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon